Eicosapentaenoic acid (BioDeep_00000001307)
Secondary id: BioDeep_00000404901, BioDeep_00000868528, BioDeep_00001891867
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs
代谢物信息卡片
化学式: C20H30O2 (302.224568)
中文名称: 花生五烯酸, 二十碳五烯酸, 顺式-5,8,11,14,17-二十碳五烯酸(EPA), 5Z,8Z,11Z,14Z,17Z-二十碳五烯酸
谱图信息:
最多检出来源 Homo sapiens(feces) 0.27%
Last reviewed on 2024-07-02.
Cite this Page
Eicosapentaenoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/eicosapentaenoic_acid (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000001307). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)(O)CCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC
InChI: InChI=1S/C20H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h3-4,6-7,9-10,12-13,15-16H,2,5,8,11,14,17-19H2,1H3,(H,21,22)/b4-3-,7-6-,10-9-,13-12-,16-15-
描述信息
Icosapent, also known as icosapentaenoate or (5z,8z,11z,14z,17z)-eicosapentaenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, icosapent is considered to be a fatty acid lipid molecule. Icosapent is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Icosapent can be found in a number of food items such as barley, sacred lotus, white lupine, and rape, which makes icosapent a potential biomarker for the consumption of these food products. Icosapent can be found primarily in blood, feces, sweat, and urine, as well as throughout most human tissues. In humans, icosapent is involved in the alpha linolenic acid and linoleic acid metabolism. Moreover, icosapent is found to be associated with essential hypertension and hypertension. Ethyl eicosapentaenoic acid (E-EPA, icosapent ethyl) is a derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA) that is used in combination with changes in diet to lower triglyceride levels in adults with severe (≥ 500 mg/dL) hypertriglyceridemia. This was the second class of fish oil-based drug to be approved for use as a drug and was approved by the FDA in 2012. These fish oil drugs are similar to fish oil dietary supplements but the ingredients are better controlled and have been tested in clinical trials . The anti-inflammatory, antithrombotic and immunomodulatory actions of EPA is probably due to its role in eicosanoid physiology and biochemistry. Most eicosanoids are produced by the metabolism of omega-3 fatty acids, specifically, arachidonic acid. These eicosanoids, leukotriene B4 (LTB4) and thromboxane A2 (TXA2) stimulate leukocyte chemotaxis, platelet aggregation and vasoconstriction. They are thrombogenic and artherogenic. On the other hand, EPA is metabolized to leukotriene B5 (LTB5) and thromboxane A3 (TXA3), which are eicosanoids that promote vasodilation, inhibit platelet aggregation and leukocyte chemotaxis and are anti-artherogenic and anti-thrombotic. The triglyceride-lowering effect of EPA results from inhibition of lipogenesis and stimulation of fatty acid oxidation. Fatty acid oxidation of EPA occurs mainly in the mitochondria. EPA is a substrate for Prostaglandin-endoperoxide synthase 1 and 2. It also appears to affect the function and bind to the Carbohydrate responsive element binding protein (ChREBP) and to a fatty acid receptor (G-coupled receptor) known as GP40 (DrugBank).
Eicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia).
Chemical was purchased from CAY 90110 (Lot. 0443819-6); Diagnostic ions: 301.2, 257.1, 202.9
CONFIDENCE standard compound; INTERNAL_ID 305
Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].
Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].
同义名列表
57 个代谢物同义名
cis, cis, cis, cis, cis-Eicosa-5,8,11,14,17-pentaenoic acid; (5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoic acid; cis, cis, cis, cis, cis-Eicosa-5,8,11,14,17-pentaenoate; (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-Eicosapentaenoic acid; (5Z,8Z,11Z,14Z,17Z)-Icosa-5,8,11,14,17-pentaenoic acid; (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-Eicosapentaenoate; (5Z,8Z,11Z,14Z,17Z)-Icosa-5,8,11,14,17-pentaenoate; (all-Z)-delta5,8,11,14,17-Eicosapentaenoic acid; cis-Delta(5,8,11,14,17)-Eicosapentaenoic acid; 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid (d5); (all-cis)-5,8,11,14,17-Eicosapentaenoic acid; (all-Z)-Δ5,8,11,14,17-eicosapentaenoic acid; all-cis-5,8,11,14,17-Eicosapentaenoic acid; all-cis-Icosa-5,8,11,14,17-pentaenoic acid; (all-Z)-5,8,11,14,17-Eicosapentaenoic acid; cis-delta(5,8,11,14,17)-Eicosapentaenoate; (5Z,8Z,11Z,14Z,17Z)-Eicosapentaenoic acid; cis-Δ(5,8,11,14,17)-eicosapentaenoic acid; (5Z,8Z,11Z,14Z,17Z)-Icosapentaenoic acid; 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid; (all-Z)-5,8,11,14,17-Eicosapentaenoate; all-cis-Icosa-5,8,11,14,17-pentaenoate; all-cis-5,8,11,14,17-Eicosapentaenoate; cis-5,8,11,14,17-Eicosapentaenoic acid; (5Z,8Z,11Z,14Z,17Z)-Eicosapentaenoate; cis-Δ(5,8,11,14,17)-eicosapentaenoate; (5Z,8Z,11Z,14Z,17Z)-Icosapentaenoate; 5Z,8Z,11Z,14Z,17Z-Eicosapentaenoate; 5,8,11,14,17-Eicosapentaenoic Acid; cis-5,8,11,14,17-Eicosapentaenoate; 5,8,11,14,17-Icosapentaenoic acid; 5,8,11,14,17-EICOSAPENTAENOate; 5,8,11,14,17-Icosapentaenoate; Omega-3-eicosapentaenoic acid; Omega 3 eicosapentaenoic acid; all-cis-Icosapentaenoic acid; FA(20:5(5Z,8Z,11Z,14Z,17Z)); all-cis-Icosapentaenoate; Eicosapentaenoic acid; Acid, eicosapentanoic; cis-5,8,11,14,17-EPA; Icosapentaenoic acid; Eicosapentanoic acid; EPA;Timnodonic acid; C20:5n-3,6,9,12,15; Eicosapentaenoate; Icosapentaenoate; Timnodonic acid; Timnodonate; Icosapentum; FA(20:5n3); Icosapento; Icosapent; EPA (d5); FA 20:5; EPA; 5Z,8Z,11Z,14Z,17Z-Eicosapentaenoic Acid
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:28364
- KEGG: C06428
- KEGGdrug: D08061
- PubChem: 446284
- PubChem: 3209
- HMDB: HMDB0001999
- Metlin: METLIN45772
- Metlin: METLIN6423
- DrugBank: DB00159
- ChEMBL: CHEMBL460026
- Wikipedia: Eicosapentaenoic acid
- LipidMAPS: LMFA01030759
- MeSH: Eicosapentaenoic Acid
- MetaCyc: EICOSAPENTAENOATE
- KNApSAcK: C00001215
- KNApSAcK: C00000408
- foodb: FDB030126
- chemspider: 393682
- CAS: 10417-94-4
- MoNA: RP030511
- MoNA: RP030503
- MoNA: RP030512
- MoNA: MSJ00051
- MoNA: RP030501
- MoNA: RP030502
- PMhub: MS000000304
- PDB-CCD: EPA
- 3DMET: B00962
- NIKKAJI: J343.473G
- RefMet: Eicosapentaenoic acid
- RefMet: EPA
- medchemexpress: HY-B0660
- LOTUS: LTS0016669
- wikidata: Q105124165
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
71 个相关的代谢反应过程信息。
Reactome(63)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of EPA-derived SPMs:
18(R)-HEPE + Oxygen ⟶ 5(S)-Hp-18(R)-HEPE
- Biosynthesis of electrophilic ?-3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HEPE + Oxygen ⟶ 5(S)-Hp-18(R)-HEPE
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Biosynthesis of electrophilic ?-3 PUFA oxo-derivatives:
EPA + Oxygen ⟶ 5-HEPE
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
EPA + Oxygen ⟶ 5-HEPE
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
EPA + Oxygen ⟶ 5-HEPE
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of E-series 18(S)-resolvins:
EPA + H+ + Oxygen + TPNH ⟶ 18(S)-HpEPE + TPN
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Biosynthesis of specialized proresolving mediators (SPMs):
18(R)-HEPE + Oxygen ⟶ 18(R)-RvE3
- Biosynthesis of electrophilic ?-3 PUFA oxo-derivatives:
EPA + Oxygen ⟶ 5-HEPE
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biosynthesis of specialized proresolving mediators (SPMs):
DHA + Oxygen ⟶ 17-HDHA
- Biosynthesis of EPA-derived SPMs:
18(R)-HpEPE + GSH ⟶ 18(R)-HEPE + GSSG + H2O
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives:
DHA + Oxygen ⟶ 17-HDHA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
BioCyc(0)
WikiPathways(2)
- Elongation of (very) long chain fatty acids:
C18:3 ⟶ C20:3
- Mitochondrial beta oxidation:
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(6)
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
- Alpha Linolenic Acid and Linoleic Acid Metabolism:
-Linolenic acid ⟶ Stearidonic acid
PharmGKB(0)
52 个相关的物种来源信息
- 4682 - Allium sativum: 10.1271/BBB1961.49.1187
- 7641 - Arbacia punctulata: 10.1007/BF02533484
- 52976 - Bartramia pomiformis: 10.1016/0031-9422(91)83188-Q
- 184619 - Brachythecium buchananii: 10.1016/0031-9422(91)83188-Q
- 98356 - Brotherella henonii: 10.1016/0031-9422(91)83188-Q
- 193026 - Campylopus richardii: 10.1016/0031-9422(91)83188-Q
- 99398 - Cratoneuron filicinum: 10.1016/0031-9422(91)83188-Q
- 455261 - Ctenidium percrassum: 10.1016/0031-9422(91)83188-Q
- 1385677 - Dicranum japonicum: 10.1016/0031-9422(91)83188-Q
- 195670 - Dolichomitra cymbifolia: 10.1016/0031-9422(91)83188-Q
- 113274 - Eurhynchium striatum: 10.1016/0031-9422(91)85024-T
- 2008595 - Fissidens nobilis: 10.1016/0031-9422(91)83188-Q
- 42017 - Gloiopeltis furcata: 10.1248/CPB.58.1236
- 254107 - Grimmia pilifera: 10.1016/0031-9422(91)83188-Q
- 1775740 - Hedlundia hybrida: 10.1021/JF071791S
- 52988 - Hedwigia ciliata: 10.1016/0031-9422(91)83188-Q
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 94452 - Loeskeobryum brevirostre: 10.1016/0031-9422(91)83188-Q
- 3197 - Marchantia polymorpha: 10.1016/0031-9422(91)83188-Q
- 64518 - Mortierella alpina:
- 64518 - Mortierella alpina: 10.1074/JBC.273.30.19055
- 10090 - Mus musculus: 10.1186/1476-511X-7-24
- 98946 - Myuroclada maximowiczii: 10.1016/0031-9422(91)83188-Q
- 5748 - Nannochloropsis: 10.1016/S0271-5317(05)80784-5
- 145522 - Nannochloropsis oceanica: 10.1016/J.BIORTECH.2014.12.012
- 95767 - Niphotrichum canescens: 10.1016/0031-9422(91)83188-Q
- 1852632 - Oncophorus crispifolius: 10.1016/0031-9422(91)83188-Q
- 417139 - Plagiomnium maximoviczii: 10.1016/0031-9422(91)83188-Q
- 90297 - Plagiothecium euryphyllum: 10.1016/0031-9422(91)83188-Q
- 185755 - Pogonatum inflexum: 10.1016/0031-9422(91)83188-Q
- 153248 - Ptilota filicina: 10.1021/BI00255A002
- 67399 - Pyrrhobryum spiniforme: 10.1016/0031-9422(91)83188-Q
- 2006508 - Rhizomnium tuomikoskii: 10.1016/0031-9422(91)83188-Q
- 53008 - Rhytidiadelphus squarrosus: 10.1016/0031-9422(91)85024-T
- 569448 - Salpa thompsoni: 10.1248/CPB.34.4562
- 205097 - Sarcophyton trocheliophorum: 10.1016/S0040-4020(01)00853-5
- 146586 - Scopelophila cataractae: 10.1016/0031-9422(91)83188-Q
- 13805 - Sphagnum palustre: 10.1016/0031-9422(91)83188-Q
- 279590 - Suberites massa: 10.1002/PRAC.19953370184
- 390907 - Thamnobryum plicatulum: 10.1016/0031-9422(91)83188-Q
- 173666 - Thuidium glaucinum: 10.1016/0031-9422(91)83188-Q
- 171374 - Thuidium pristocalyx: 10.1016/0031-9422(91)83188-Q
- 84223 - Thuidium recognitum: 10.1016/0031-9422(91)83188-Q
- 67428 - Thuidium tamariscinum: 10.1016/0031-9422(91)83188-Q
- 205647 - Tornabea scutellifera: 10.1002/CHIN.199517179
- 105367 - Tripneustes ventricosus: 10.1021/NP50107A008
- 140636 - Ulota crispa: 10.1016/0031-9422(91)83188-Q
- 74381 - Undaria pinnatifida: 10.1021/JF071791S
- 455291 - Vesicularia ferriei: 10.1016/0031-9422(91)83188-Q
- 213177 - Wijkia concavifolia: 10.1016/0031-9422(91)83188-Q
- 531995 - Zonaria tournefortii: 10.1016/J.BSE.2009.01.003
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Karolina Beton-Mysur, Jakub Surmacki, Beata Brożek-Płuska. Raman-AFM-fluorescence-guided impact of linoleic and eicosapentaenoic acids on subcellular structure and chemical composition of normal and cancer human colon cells.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jul; 315(?):124242. doi:
10.1016/j.saa.2024.124242
. [PMID: 38581725] - Emily G Oakes, Iliyan Vlasakov, Gregory Kotler, Vadim Bubes, Samia Mora, Raju Tatituri, Nancy R Cook, JoAnn E Manson, Karen H Costenbader. Joint effects of one year of marine omega-3 fatty acid supplementation and participant dietary fish intake upon circulating lipid mediators of inflammation resolution in a randomized controlled trial.
Nutrition (Burbank, Los Angeles County, Calif.).
2024 Jul; 123(?):112413. doi:
10.1016/j.nut.2024.112413
. [PMID: 38518540] - Hyun Gi Koh, Seungjib Jeon, Minsik Kim, Yong Keun Chang, Kyungmoon Park, See-Hyoung Park, Nam Kyu Kang. Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: Evaluating the effect of temperature and nitrogen concentrations.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108729. doi:
10.1016/j.plaphy.2024.108729
. [PMID: 38754177] - Ying Ou, Yu Qin, Shoushuai Feng, Hailin Yang. Dual stress factors adaptive evolution for high EPA production in Schizochytrium sp. and metabolomics mechanism analysis.
Bioprocess and biosystems engineering.
2024 Jun; 47(6):863-875. doi:
10.1007/s00449-024-03013-4
. [PMID: 38687387] - Rachel Grazda, Allison N Seyfried, Krishna Rao Maddipati, Gabrielle Fredman, Katherine C MacNamara. Resolvin E1 improves efferocytosis and rescues severe aplastic anemia in mice.
Cell death & disease.
2024 May; 15(5):324. doi:
10.1038/s41419-024-06705-7
. [PMID: 38724533] - Bodo Speckmann, Tanja Wagner, Paul M Jordan, Oliver Werz, Manfred Wilhelm, Heike Tom Dieck, Christiane Schön. Synbiotic Bacillus megaterium DSM 32963 and n-3 PUFA Salt Composition Elevates Pro-Resolving Lipid Mediator Levels in Healthy Subjects: A Randomized Controlled Study.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091354
. [PMID: 38732601] - Lena Hong, Peter Zahradka, Carla G Taylor. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/fa Zucker Rats.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091311
. [PMID: 38732558] - Michael Szarek, Deepak L Bhatt, Michael Miller, Eliot A Brinton, Terry A Jacobson, Jean-Claude Tardif, Christie M Ballantyne, R Preston Mason, Steven B Ketchum, Armando Lira Pineda, Ralph T Doyle, Ph Gabriel Steg. Lipoprotein(a) Blood Levels and Cardiovascular Risk Reduction With Icosapent Ethyl.
Journal of the American College of Cardiology.
2024 Apr; 83(16):1529-1539. doi:
10.1016/j.jacc.2024.02.016
. [PMID: 38530686] - Sylwia Klińska-Bąchor, Kamil Demski, Yangmin Gong, Antoni Banaś. Biochemical characterization of acyl-CoA:diacylglycerol acyltransferase2 from the diatom Phaeodactylum tricornutum and its potential effect on LC-PUFAs biosynthesis in planta.
BMC plant biology.
2024 Apr; 24(1):309. doi:
10.1186/s12870-024-05014-7
. [PMID: 38649801] - Wenting Wei, Siyan Yu, Huanting Zeng, Weifeng Tan, Manjiang Hu, Jie Huang, Xudong Li, Limei Mao. Docosahexaenoic and Eicosapentaenoic Acids Promote the Accumulation of Browning-Related Myokines via Calcium Signaling in Insulin-Resistant Mice.
The Journal of nutrition.
2024 Apr; 154(4):1271-1281. doi:
10.1016/j.tjnut.2024.02.016
. [PMID: 38367811] - Neila Sayah, Deepak L Bhatt, Michael Miller, Eliot A Brinton, Terry A Jacobson, Steven B Ketchum, Lixia Jiao, Armando Lira Pineda, Ralph T Doyle, Jean Claude Tardif, Christie M Ballantyne, Ph Gabriel Steg. Icosapent ethyl following acute coronary syndrome: the REDUCE-IT trial.
European heart journal.
2024 Apr; 45(13):1173-1176. doi:
10.1093/eurheartj/ehad889
. [PMID: 38252107] - Ivana Djuricic, Philip C Calder. Omega-3 (n-3) Fatty Acid-Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070962
. [PMID: 38612996] - Hsien-Yin Liao, Chia-Ming Yen, I-Han Hsiao, Hsin-Cheng Hsu, Yi-Wen Lin. Eicosapentaenoic Acid Modulates Transient Receptor Potential V1 Expression in Specific Brain Areas in a Mouse Fibromyalgia Pain Model.
International journal of molecular sciences.
2024 Mar; 25(5):. doi:
10.3390/ijms25052901
. [PMID: 38474148] - Lin-Hui Yang, Meng-Zhen Liu, Zi-Lei Chen, Ling-Ling Tong, Dong-Sheng Guo. Lipidomic and transcriptomic analysis of the increase in eicosapentaenoic acid under cobalamin deficiency of Schizochytrium sp.
Biotechnology journal.
2024 Mar; 19(3):e2300612. doi:
10.1002/biot.202300612
. [PMID: 38472102] - Samuel C R Sherratt, R Preston Mason, Peter Libby, Ph Gabriel Steg, Deepak L Bhatt. Do patients benefit from omega-3 fatty acids?.
Cardiovascular research.
2024 02; 119(18):2884-2901. doi:
10.1093/cvr/cvad188
. [PMID: 38252923] - Ajeet Singh Chauhan, Anil Kumar Patel, Reeta Rani Singhania, Akash Pralhad Vadrale, Chiu-Wen Chen, Balendu Sheker Giri, Jo-Shu Chang, Cheng-Di Dong. Fine-tuning of key parameters to enhance biomass and nutritional polyunsaturated fatty acids production from Thraustochytrium sp.
Bioresource technology.
2024 Feb; 394(?):130252. doi:
10.1016/j.biortech.2023.130252
. [PMID: 38145766] - Irene Cetin, Susan E Carlson, Christy Burden, Eduardo B da Fonseca, Gian Carlo di Renzo, Adamos Hadjipanayis, William S Harris, Kishore R Kumar, Sjurdur Frodi Olsen, Silke Mader, Fionnuala M McAuliffe, Beverly Muhlhausler, Emily Oken, Liona C Poon, Lucilla Poston, Usha Ramakrishnan, Charles C Roehr, Charles Savona-Ventura, Cornelius M Smuts, Alexandros Sotiriadis, Kuan-Pin Su, Rachel M Tribe, Gretchen Vannice, Berthold Koletzko. Omega-3 fatty acid supply in pregnancy for risk reduction of preterm and early preterm birth.
American journal of obstetrics & gynecology MFM.
2024 Feb; 6(2):101251. doi:
10.1016/j.ajogmf.2023.101251
. [PMID: 38070679] - Zeyan Chen, Yonghui Kong, Zishu Huang, Xiaoyu Zheng, Zhihong Zheng, Defu Yao, Shen Yang, Yueling Zhang, Jude Juventus Aweya. Exogenous alpha-linolenic acid and Vibrio parahaemolyticus induce EPA and DHA levels mediated by delta-6 desaturase to enhance shrimp immunity.
International journal of biological macromolecules.
2024 Feb; 257(Pt 2):128583. doi:
10.1016/j.ijbiomac.2023.128583
. [PMID: 38056755] - Maëlle Briottet, Khadeeja Sy, Charlie London, Abdel Aissat, Mickael Shum, Virginie Escabasse, Bruno Louis, Valérie Urbach. Specialized proresolving mediator resolvin E1 corrects the altered cystic fibrosis nasal epithelium cilia beating dynamics.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Jan; 121(5):e2313089121. doi:
10.1073/pnas.2313089121
. [PMID: 38252817] - William S Weintraub, Deepak L Bhatt, Zugui Zhang, Sarahfaye Dolman, William E Boden, Adam P Bress, Brandon K Bellows, Catherine G Derington, Sephy Philip, Gabriel Steg, Michael Miller, Eliot A Brinton, Terry A Jacobson, Jean-Claude Tardif, Christie M Ballantyne, Paul Kolm. Cost-Effectiveness of Icosapent Ethyl in REDUCE-IT USA: Results From Patients Randomized in the United States.
Journal of the American Heart Association.
2024 Jan; 13(1):e032413. doi:
10.1161/jaha.123.032413
. [PMID: 38156550] - Gerard Marrugat, Ainara Cano, Javier Amézaga, Sara Arranz, Nieves Embade, Óscar Millet, Carla Ferreri, Itziar Tueros. Effect of age and dietary habits on Red Blood Cell membrane fatty acids in a Southern Europe population (Basque Country).
Prostaglandins, leukotrienes, and essential fatty acids.
2024 Jan; 200(?):102602. doi:
10.1016/j.plefa.2023.102602
. [PMID: 38147804] - Archana S Rao, Ajay Nair, K Nivetha, Bibi Ayesha, Kapadia Hardi, Vora Divya, S M Veena, K S Anantharaju, Sunil S More. Impacts of Omega-3 Fatty Acids, Natural Elixirs for Neuronal Health, on Brain Development and Functions.
Methods in molecular biology (Clifton, N.J.).
2024; 2761(?):209-229. doi:
10.1007/978-1-0716-3662-6_15
. [PMID: 38427239] - Chun-Xiao Yan, Ying Zhang, Wen-Qian Yang, Wang Ma, Xiao-Man Sun, He Huang. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms.
Biotechnology advances.
2024 Jan; 70(?):108298. doi:
10.1016/j.biotechadv.2023.108298
. [PMID: 38048920] - Ateequr Rehman, Van Pham, Nicole Seifert, Nathalie Richard, Wilbert Sybesma, Robert E Steinert. The Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid, and Vitamin K1 Modulate the Gut Microbiome: A Study Using an In Vitro Shime Model.
Journal of dietary supplements.
2024; 21(2):135-153. doi:
10.1080/19390211.2023.2198007
. [PMID: 37078491] - Wen Liu, Min Zhu, Jingyi Liu, Shan Su, Xin Zeng, Fudong Fu, Yanrong Lu, Zhiyong Rao, Younan Chen. Comparison of the effects of monounsaturated fatty acids and polyunsaturated fatty acids on the lipotoxicity of islets.
Frontiers in endocrinology.
2024; 15(?):1368853. doi:
10.3389/fendo.2024.1368853
. [PMID: 38501107] - Yusuke Kobayashi, Tetsuya Fujikawa, Aiko Haruna, Rina Kawano, Moe Ozawa, Tatsuya Haze, Shiro Komiya, Shota Suzuki, Yuki Ohki, Akira Fujiwara, Sanae Saka, Nobuhito Hirawa, Yoshiyuki Toya, Kouichi Tamura. Omega-3 Fatty Acids Reduce Remnant-like Lipoprotein Cholesterol and Improve the Ankle-Brachial Index of Hemodialysis Patients with Dyslipidemia: A Pilot Study.
Medicina (Kaunas, Lithuania).
2023 Dec; 60(1):. doi:
10.3390/medicina60010075
. [PMID: 38256336] - Ella J Baker. Alternative sources of bioactive omega-3 fatty acids: what are the options?.
Current opinion in clinical nutrition and metabolic care.
2023 Dec; ?(?):. doi:
10.1097/mco.0000000000001006
. [PMID: 38126230] - Tamil Selvi Sundaram, Maria Filippa Addis, Carlotta Giromini, Raffaella Rebucci, Salvatore Pisanu, Daniela Pagnozzi, Antonella Baldi. Comprehensive proteomic analysis reveals omega-3 fatty acids to counteract endotoxin-stimulated metabolic dysregulation in porcine enterocytes.
Scientific reports.
2023 12; 13(1):21595. doi:
10.1038/s41598-023-48018-3
. [PMID: 38062040] - Siqing Mao, Ziling Liu, Yuan Tian, Dan Li, Xin Gao, Yanqiong Wen, Tao Peng, Weijun Shen, Dingfu Xiao, Fachun Wan, Lei Liu. Branched-Long-Chain Monomethyl Fatty Acids: Are They Hidden Gems?.
Journal of agricultural and food chemistry.
2023 Dec; 71(48):18674-18684. doi:
10.1021/acs.jafc.3c06300
. [PMID: 37982580] - Danilo Donnarumma, Anna Di Salle, Giuseppe Micalizzi, Federica Vento, Roberta La Tella, Pasquale Iannotta, Emanuela Trovato, Mariarosa Anna Beatrice Melone, Francesca Rigano, Paola Donato, Luigi Mondello, Gianfranco Peluso. Human blood lipid profiles after dietary supplementation of different omega 3 ethyl esters formulations.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2023 Dec; 1231(?):123922. doi:
10.1016/j.jchromb.2023.123922
. [PMID: 37976941] - Ritchie Ly, Brittany C MacIntyre, Stuart M Philips, Chris McGlory, David M Mutch, Philip Britz-McKibbin. Lipidomic studies reveal two specific circulating phosphatidylcholines as surrogate biomarkers of the omega-3 index.
Journal of lipid research.
2023 11; 64(11):100445. doi:
10.1016/j.jlr.2023.100445
. [PMID: 37730162] - Pradnya Gurav, Suraj Garad, Kedar R N. n-3 PUFAs Show Promise as Adjuvants in Chemotherapy, Enhancing their Efficacy while Safeguarding Hematopoiesis and Promoting Bone Generation.
Current topics in medicinal chemistry.
2023 Oct; ?(?):. doi:
10.2174/0115680266258838231020102401
. [PMID: 37907485] - Lingyu Zhang, Jiaqin Mu, Jing Meng, Wenjin Su, Jian Li. Dietary Phospholipids Alleviate Diet-Induced Obesity in Mice: Which Fatty Acids and Which Polar Head.
Marine drugs.
2023 Oct; 21(11):. doi:
10.3390/md21110555
. [PMID: 37999379] - Yan-Fang Chen, Ze-Kai Fan, Xiang Gao, Fang Zhou, Xiao-Fei Guo, Andrew J Sinclair, Duo Li. n-3 polyunsaturated fatty acids in phospholipid or triacylglycerol form attenuate nonalcoholic fatty liver disease via mediating cannabinoid receptor 1/adiponectin/ceramide pathway.
The Journal of nutritional biochemistry.
2023 Oct; 123(?):109484. doi:
10.1016/j.jnutbio.2023.109484
. [PMID: 37866428] - Akiko Harauma, Hajime Yoshihara, Yukino Hoshi, Kei Hamazaki, Toru Moriguchi. Effects of Varied Omega-3 Fatty Acid Supplementation on Postpartum Mental Health and the Association between Prenatal Erythrocyte Omega-3 Fatty Acid Levels and Postpartum Mental Health.
Nutrients.
2023 Oct; 15(20):. doi:
10.3390/nu15204388
. [PMID: 37892462] - Łukasz Kołodziej, Piotr Lech Czarny, Sylwia Ziółkowska, Katarzyna Białek, Janusz Szemraj, Piotr Gałecki, Kuan-Pin Su, Tomasz Śliwiński. How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF.
Progress in lipid research.
2023 Oct; 92(?):101254. doi:
10.1016/j.plipres.2023.101254
. [PMID: 37820872] - Ben Leyland, Ekaterina Novichkova, Achintya Kumar Dolui, Denis Jallet, Fayza Daboussi, Bertrand Legeret, Zhongze Li, Yonghua Li-Beisson, Sammy Boussiba, Inna Khozin-Goldberg. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad525
. [PMID: 37801606] - Jishou Zhang, Zheng Yin, Yao Xu, Cheng Wei, Shanshan Peng, Mengmeng Zhao, Jianfang Liu, Shuwan Xu, Wei Pan, Zihui Zheng, Siqi Liu, Jing Ye, Juan-Juan Qin, Jun Wan, Menglong Wang. Resolvin E1/ChemR23 Protects Against Hypertension and Vascular Remodeling in Angiotensin II-Induced Hypertensive Mice.
Hypertension (Dallas, Tex. : 1979).
2023 Oct; ?(?):. doi:
10.1161/hypertensionaha.123.21348
. [PMID: 37800344] - Vanessa Javera Castanheira Neia, Deborah Cristina Landi Masquio, Paola Alves Claudino, Pamela Duso, Débora Kanegae Tadano, Marciele Alves Bolognese, Patrícia Magalhães de Souza, Oscar Oliveira Santos, Jesuí Vergílio Visentainer, Bárbara Dal Molin Netto. Lipid profile and cost of enteral nutrition formula with addition of fish oil used in a public hospital.
Clinical nutrition ESPEN.
2023 10; 57(?):288-296. doi:
10.1016/j.clnesp.2023.06.007
. [PMID: 37739670] - Michael R Kolber, Scott Klarenbach, Michel Cauchon, Mike Cotterill, Loren Regier, Raelene D Marceau, Norah Duggan, Rebecca Whitley, Alex S Halme, Tanis Poshtar, G Michael Allan, Christina S Korownyk, Joey Ton, Liesbeth Froentjes, Samantha S Moe, Danielle Perry, Betsy S Thomas, James P McCormack, Jamie Falk, Nicolas Dugré, Scott R Garrison, Jessica E M Kirkwood, Jennifer Young, Émélie Braschi, Allison Paige, Jen Potter, Justin Weresch, Adrienne J Lindblad. PEER simplified lipid guideline 2023 update: Prevention and management of cardiovascular disease in primary care.
Canadian family physician Medecin de famille canadien.
2023 Oct; 69(10):675-686. doi:
10.46747/cfp.6910675
. [PMID: 37833089] - Ayaka Hamaguchi, Hayato Fukuda, Koichi Fujiwara, Tomofumi Harada, Keijo Fukushima, Satoshi Shuto, Hiromichi Fujino. Individual resolvin E family members work distinctly and in a coordinated manner in the resolution of inflammation.
Prostaglandins & other lipid mediators.
2023 10; 168(?):106759. doi:
10.1016/j.prostaglandins.2023.106759
. [PMID: 37327943] - Makoto Miyoshi, Makoto Usami, Yuya Nishiyama, Motoki Kai, Ayumi Suzuki, Noriaki Maeshige, Atomu Yamaguchi, Xiaoqi Ma, Masakazu Shinohara. Soleus muscle contains a higher concentration of lipid metabolites than extensor digitorum longus in rats with lipopolysaccharide-induced acute muscle atrophy.
Clinical nutrition ESPEN.
2023 10; 57(?):48-57. doi:
10.1016/j.clnesp.2023.06.011
. [PMID: 37739695] - N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl. Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.
Medical microbiology and immunology.
2023 Oct; 212(5):349-368. doi:
10.1007/s00430-023-00777-6
. [PMID: 37672050] - John R Davies, Tracey Mell, Harriett Fuller, Mark Harland, Rasha Nm Saleh, Amanda D Race, Colin J Rees, Louise C Brown, Paul M Loadman, Amy Downing, Anne Marie Minihane, Elizabeth A Williams, Mark A Hull. Polymorphisms in Cyclooxygenase, Lipoxygenase and TP53 genes predict colorectal polyp risk reduction by aspirin in the seAFOod polyp prevention trial.
Cancer prevention research (Philadelphia, Pa.).
2023 Sep; ?(?):. doi:
10.1158/1940-6207.capr-23-0111
. [PMID: 37756582] - Nimrod Krupnik, Alvaro Israel, David Meiri. Seasonal variation in the metabolome expression of Jania rubens (Rhodophyta) reveals eicosapentaenoic acid as a potential anticancer metabolite.
Scientific reports.
2023 09; 13(1):15559. doi:
10.1038/s41598-023-42497-0
. [PMID: 37730882] - Hao Chen, Xuebing Leng, Shaohui Liu, Ziqi Zeng, Feng Huang, Rongjie Huang, Yunfeng Zou, Yunan Xu. Association between dietary intake of omega-3 polyunsaturated fatty acids and all-cause and cardiovascular mortality among hypertensive adults: Results from NHANES 1999-2018.
Clinical nutrition (Edinburgh, Scotland).
2023 Sep; 42(12):2434-2442. doi:
10.1016/j.clnu.2023.09.011
. [PMID: 37871484] - Sophie Morin, Andréa Tremblay, Elizabeth Dumais, Pierre Julien, Nicolas Flamand, Roxane Pouliot. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells.
Biomolecules.
2023 09; 13(9):. doi:
10.3390/biom13091413
. [PMID: 37759812] - Mohsen Molaei, Ramin Lotfi, Reza Heidarymoghadam, Alireza Rezaiemanesh, Ali Gorgin Karaji, Farhad Salari. Imbalanced serum levels of resolvin E1 (RvE1) and leukotriene B4 (LTB4) may contribute to the pathogenesis of atherosclerosis.
Prostaglandins & other lipid mediators.
2023 Sep; ?(?):106781. doi:
10.1016/j.prostaglandins.2023.106781
. [PMID: 37704124] - Feras Almasri, Manal Badrasawi, Rana Zahdeh, Andreas Hahn, Jan Philipp Schuchardt, Theresa Greupner. Very low Omega-3 Index in young healthy students from Palestine.
Lipids.
2023 09; 58(5):209-216. doi:
10.1002/lipd.12375
. [PMID: 37300456] - Sophie Morin, Sarah Bélanger, Sergio Cortez Ghio, Roxane Pouliot. Eicosapentaenoic acid reduces the proportion of IL-17A-producing T cells in a 3D psoriatic skin model.
Journal of lipid research.
2023 09; 64(9):100428. doi:
10.1016/j.jlr.2023.100428
. [PMID: 37597582] - Daniel K Chen, Adam H Metherel, Kimia Rezaei, Camilla Parzanini, Chuck T Chen, Christopher E Ramsden, Mark Horowitz, Keturah R Faurot, Beth MacIntosh, Daisy Zamora, Richard P Bazinet. Analysis of omega-3 and omega-6 polyunsaturated fatty acid metabolism by compound-specific isotope analysis in humans.
Journal of lipid research.
2023 09; 64(9):100424. doi:
10.1016/j.jlr.2023.100424
. [PMID: 37572791] - Nan Liu, Yannan He, Feng Zhao, Xiaoxu Li, Yujing Chen, Bibo Jiang, Min Wei, Duo Li, Li Cai. Association between maternal erythrocyte PUFAs during pregnancy and neurodevelopment in children at 2 years of age: a birth cohort study.
Food & function.
2023 Aug; 14(17):7938-7945. doi:
10.1039/d3fo01853a
. [PMID: 37552113] - Yueqi Yang, Xueyan Wang, Lu Chen, Shiben Wang, Jun Han, Zhengping Wang, Min Wen. A Compared Study of Eicosapentaenoic Acid and Docosahexaenoic Acid in Improving Seizure-Induced Cognitive Deficiency in a Pentylenetetrazol-Kindling Young Mice Model.
Marine drugs.
2023 Aug; 21(9):. doi:
10.3390/md21090464
. [PMID: 37755077] - Kübra Karakoç Güvenç, Özlem Fentoğlu, Mustafa Calapoğlu, Fatih Aksoy, Hikmet Orhan. Periodontal and cardiovascular therapies modify specialized pro-resolving lipid mediator (sPRLM) (LPXA4, PD1, RvE1, RvD1, and MaR1)-mediated pathway: the first pilot clinical study.
Clinical oral investigations.
2023 Aug; ?(?):. doi:
10.1007/s00784-023-05174-0
. [PMID: 37535198] - David C Nieman, Camila A Sakaguchi, Ashraf M Omar, Kierstin L Davis, Cameron E Shaffner, Renee C Strauch, Mary Ann Lila, Qibin Zhang. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: a randomized trial.
Scientific reports.
2023 07; 13(1):11976. doi:
10.1038/s41598-023-39269-1
. [PMID: 37488250] - Qi Wang, Rui Wang, Xiuju Zhao, Hongyan Lu, Peng Zhang, Xinjie Dong, Yuming Wang. Comparison of the Effect of Phospholipid Extracts from Salmon and Silver Carp Heads on High-Fat-Diet-Induced Metabolic Syndrome in C57BL/6J Mice.
Marine drugs.
2023 Jul; 21(7):. doi:
10.3390/md21070409
. [PMID: 37504940] - Gabriele Beltrame, Eija Ahonen, Annelie Damerau, Haraldur G Gudmundsson, Gudmundur G Haraldsson, Kaisa M Linderborg. Lipid Structure Influences the Digestion and Oxidation Behavior of Docosahexaenoic and Eicosapentaenoic Acids in the Simulated Digestion System.
Journal of agricultural and food chemistry.
2023 Jul; 71(26):10087-10096. doi:
10.1021/acs.jafc.3c02207
. [PMID: 37338276] - N John Bosomworth. Indications for omega-3 fatty acid supplementation in prevention of cardiovascular disease: From fish to pharmaceuticals.
Canadian family physician Medecin de famille canadien.
2023 Jul; 69(7):459-468. doi:
10.46747/cfp.6907459
. [PMID: 37452000] - Chia-Hsuan Chang, Hua-Chien Wu, Yin-Ru Hsieh, Wen-De Lai, Te-Hsuan Tung, Jun-Jie Huang, Wei-Yu Kao, Shih-Yi Huang. Modulatory effect of n-3 polyunsaturated fatty acids on depressive-like behaviors in rats with chronic sleep deprivation: potential involvement of melatonin receptor pathway and brain lipidome.
Food & function.
2023 Jun; ?(?):. doi:
10.1039/d3fo01452e
. [PMID: 37334912] - Ting Zhang, Sabine Naudin, Hyokyoung G Hong, Demetrius Albanes, Satu Männistö, Stephanie J Weinstein, Steven C Moore, Rachael Z Stolzenberg-Solomon. Dietary quality and circulating lipidomic profiles in two cohorts of middle-aged and older male Finnish smokers and American populations.
The Journal of nutrition.
2023 Jun; ?(?):. doi:
10.1016/j.tjnut.2023.06.010
. [PMID: 37328109] - Zhen Wang, Xin Zhang, Yanling Qu, Shuyang Zhang, Yundai Chen, Xiaoping Chen, Xin Qi, Peijing Liu, Shuqin Liu, Shan Jiang, Ronghai Man, Liping He, Ling Wu, Zhanquan Li, Yijun Shang, Zhaohui Qiu, Feng Liu, Chenhong Xu, Chunlin Lai, Junbo Ge. Icosapent ethyl therapy for very high triglyceride levels: a 12-week, multi-center, placebo-controlled, randomized, double-blinded, phase III clinical trial in China.
Lipids in health and disease.
2023 Jun; 22(1):71. doi:
10.1186/s12944-023-01838-8
. [PMID: 37301827] - Tianjiao Wang, Xin Zhang, Na Zhou, Yuxuan Shen, Biao Li, Bingshu E Chen, Xinzhi Li. Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials.
Journal of the American Heart Association.
2023 06; 12(11):e029512. doi:
10.1161/jaha.123.029512
. [PMID: 37264945] - Xinyu Wei, Yuzhou Wang, Xiner Liu, Zijian Hu, Jinyi Qian, Tianqiong Shi, Yuetong Wang, Chao Ye. Metabolic analysis of Schizochytrium sp. mutants with high EPA content achieved with ARTP mutagenesis screening.
Bioprocess and biosystems engineering.
2023 Jun; 46(6):893-901. doi:
10.1007/s00449-023-02874-5
. [PMID: 37079130] - Takanori Honda, Sanmei Chen, Jun Hata, Mao Shibata, Yoshihiko Furuta, Emi Oishi, Satoko Sakata, Takanari Kitazono, Toshiharu Ninomiya. Changes in the Eicosapentaenoic Acid to Arachidonic Acid Ratio in Serum over 10 Years in a Japanese Community: The Hisayama Study.
Journal of atherosclerosis and thrombosis.
2023 Jun; 30(6):589-600. doi:
10.5551/jat.63727
. [PMID: 36089395] - Bruno C Araújo, David Aciole Barbosa, Renato M Honji, Giovana S Branco, Fabiano B Menegidio, Victor H Marques, Renata G Moreira, Marcelo V Kitahara, Artur N Rombenso, Paulo H de Mello, Alexandre W S Hilsdorf. Post-feeding Molecular Responses of Cobia (Rachycentron canadum): RNA-Sequencing as a Tool to Evaluate Postprandial Effects in Hepatic Lipid Metabolism.
Marine biotechnology (New York, N.Y.).
2023 Jun; 25(3):358-371. doi:
10.1007/s10126-023-10209-4
. [PMID: 37162622] - Qidi Ying, Dick C Chan, Jing Pang, Mikaël Croyal, Valentin Blanchard, Michel Krempf, Gerald F Watts. Effect of omega-3 fatty acid ethyl esters on postprandial arterial elasticity in patients with familial hypercholesterolemia.
Clinical nutrition ESPEN.
2023 06; 55(?):174-177. doi:
10.1016/j.clnesp.2023.03.012
. [PMID: 37202042] - Bruno C Araújo, Matthew R Miller, Seumas P Walker, Jane E Symonds. The influence of temperature on performance, biological indices, composition, and nutrient retention of juvenile Chinook salmon (Oncorhynchus tshawytscha) reared in freshwater.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2023 06; 280(?):111412. doi:
10.1016/j.cbpa.2023.111412
. [PMID: 36878388] - Gabriele Brosolo, Andrea Da Porto, Stefano Marcante, Alessandro Picci, Filippo Capilupi, Patrizio Capilupi, Nicole Bertin, Cinzia Vivarelli, Luca Bulfone, Antonio Vacca, Cristiana Catena, Leonardo A Sechi. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News?.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119520
. [PMID: 37298468] - Jing Xue, Lijun Ge, Honghai Wang, Jingjing Liang, Qingcheng Wang, Weibo Lu, Yiwei Cui, Hujun Xie, Shikai Jian, Danping Jin, Qizhi Jin, Ting Li, Qing Shen. Comprehensive Screening for EPA/DHA-Structured Phospholipids in Aquatic Products by a Specific Precursor Ion Scanning-Based HILIC-MS/MS Method.
Journal of agricultural and food chemistry.
2023 May; 71(20):7937-7946. doi:
10.1021/acs.jafc.3c00505
. [PMID: 37166010] - Ajeet Singh Chauhan, Chiu-Wen Chen, Vaibhav Sunil Tambat, Reeta Rani Singhania, Jo-Shu Chang, Cheng-Di Dong, Anil Kumar Patel. Bioprocess engineering to produce essential polyunsaturated fatty acids from Thraustochytrium sp.
Bioresource technology.
2023 May; ?(?):129209. doi:
10.1016/j.biortech.2023.129209
. [PMID: 37230331] - Tone-Kari Knutsdatter Østbye, Oddrun Anita Gudbrandsen, Aslaug Drotningsvik, Bente Ruyter, Gerd Marit Berge, Gjermund Vogt, Astrid Nilsson. Different Dietary Ratios of Camelina Oil to Sandeel Oil Influence the Capacity to Synthesise and Deposit EPA and DHA in Zucker Fa/Fa Rats.
Nutrients.
2023 May; 15(10):. doi:
10.3390/nu15102344
. [PMID: 37242227] - Magnus Bäck. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis.
Pharmacology & therapeutics.
2023 May; ?(?):108439. doi:
10.1016/j.pharmthera.2023.108439
. [PMID: 37201735] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - José A Roque-Jiménez, Mario F Oviedo-Ojeda, Megan Whalin, Héctor A Lee-Rangel, Alejandro E Relling. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring.
Journal of animal science.
2023 May; ?(?):. doi:
10.1093/jas/skad144
. [PMID: 37158288] - Mid-Eum Park, Hyun-A Choi, Hyun Uk Kim. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds.
Scientific reports.
2023 May; 13(1):7143. doi:
10.1038/s41598-023-34364-9
. [PMID: 37130939] - Rachel E Walker, Chesney K Richter, Ann C Skulas-Ray, Michael R Flock, Brian A Harsch, Carmen E Annevelink, Penny M Kris-Etherton, Gordon L Jensen, Gregory C Shearer. Effect of omega-3 ethyl esters on the triglyceride-rich lipoprotein response to endotoxin challenge in healthy young men.
Journal of lipid research.
2023 05; 64(5):100353. doi:
10.1016/j.jlr.2023.100353
. [PMID: 36907552] - Stefania Lamon-Fava, Minying Liu, Boadie W Dunlop, Becky Kinkead, Pamela J Schettler, Jennifer C Felger, Thomas R Ziegler, Maurizio Fava, David Mischoulon, Mark Hyman Rapaport. Clinical response to EPA supplementation in patients with major depressive disorder is associated with higher plasma concentrations of pro-resolving lipid mediators.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.
2023 05; 48(6):929-935. doi:
10.1038/s41386-022-01527-7
. [PMID: 36635595] - Ali Muhieddine, Natalie Fournier, Hani Dakroub, Ali Assi, Jean-Louis Paul, Ali Tfayli, Pierre Chaminade, Sana Tfaili. In vitro Raman imaging of human macrophages: Impact of eicosapentaenoic acid on the hydrolysis of cholesterol esters in lipid droplets.
Talanta.
2023 May; 256(?):124314. doi:
10.1016/j.talanta.2023.124314
. [PMID: 36753884] - Ying Ou, Yaqi Li, Shoushuai Feng, Qiong Wang, Hailin Yang. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a Schizochytrium sp. Mutant.
Microbiology spectrum.
2023 Apr; ?(?):e0013023. doi:
10.1128/spectrum.00130-23
. [PMID: 37093006] - Chenxuan Wang, Barbora Hucik, Ousseynou Sarr, Liam H Brown, Kyle R D Wells, Keith R Brunt, Manabu T Nakamura, Ewa Harasim-Symbor, Adrian Chabowski, David M Mutch. Delta-6 desaturase (Fads2) deficiency alters triacylglycerol / fatty acid cycling in murine white adipose tissue.
Journal of lipid research.
2023 Apr; ?(?):100376. doi:
10.1016/j.jlr.2023.100376
. [PMID: 37085033] - Alexander V Sorokin, Hildur Arnardottir, Maryia Svirydava, Qimin Ng, Yvonne Baumer, Alexander Berg, Carla J Pantoja, Elizabeth M Florida, Heather L Teague, Zhi-Hong Yang, Pradeep K Dagur, Tiffany M Powell-Wiley, Zu-Xi Yu, Martin P Playford, Alan T Remaley, Nehal N Mehta. Comparison of the dietary omega-3 fatty acids impact on murine psoriasis-like skin inflammation and associated lipid dysfunction.
The Journal of nutritional biochemistry.
2023 Apr; 117(?):109348. doi:
10.1016/j.jnutbio.2023.109348
. [PMID: 37044136] - Samuel C R Sherratt, Peter Libby, Hazem Dawoud, Deepak L Bhatt, Tadeusz Malinski, R Preston Mason. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Apr; 162(?):114629. doi:
10.1016/j.biopha.2023.114629
. [PMID: 37027984] - Annamaria Tisi, Giulia Carozza, Alessandro Leuti, Rita Maccarone, Mauro Maccarrone. Dysregulation of Resolvin E1 Metabolism and Signaling in a Light-Damage Model of Age-Related Macular Degeneration.
International journal of molecular sciences.
2023 Apr; 24(7):. doi:
10.3390/ijms24076749
. [PMID: 37047721] - Yi Tong Cheah, Bee Wah Ng, Tze Ling Tan, Zi Sheng Chia, Derek Juinn Chieh Chan. Biomass and eicosapentaenoic acid production from Amphora sp. under different environmental and nutritional conditions.
Biotechnology and applied biochemistry.
2023 Apr; 70(2):568-580. doi:
10.1002/bab.2379
. [PMID: 35767864] - Raikamal Bhattacharya, Sharika Sachin, Rohith Sivakumar, Sanjoy Ghosh. Solid-state fermentation-based enzyme-assisted extraction of eicosapentaenoic acid-rich oil from Nannochloropsis sp.
Bioresource technology.
2023 Apr; 374(?):128763. doi:
10.1016/j.biortech.2023.128763
. [PMID: 36813049] - Xiaotong Kuang, Xianfeng Shao, Huiying Li, Dongmei Jiang, Tianlin Gao, Jie Yang, Kelei Li, Duo Li. Lipid extract from blue mussel (Mytilus edulis) improves glycemic traits in Chinese type 2 diabetic mellitus patients: a double-blind randomized controlled trial.
Journal of the science of food and agriculture.
2023 Apr; 103(6):2970-2980. doi:
10.1002/jsfa.12346
. [PMID: 36409163] - Lei Lü, Ji-Rong Ma, Shu-Xian Li, Han-Zhu Xing, Yu-Hong Yang, Kazuo Miyashita. Characterization and Antioxidant Evaluation of Four Kinds of Marine Oils in vitro.
Journal of oleo science.
2023 Mar; 72(4):389-397. doi:
10.5650/jos.ess22362
. [PMID: 36908178] - Ankita Joardar, Hirak Chakraborty. Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on the Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes.
Langmuir : the ACS journal of surfaces and colloids.
2023 03; 39(12):4439-4449. doi:
10.1021/acs.langmuir.3c00119
. [PMID: 36931902] - Teruo Sekimoto, Shinji Koba, Hiroyoshi Mori, Taito Arai, Myong Hwa Yamamoto, Takuya Mizukami, Naoki Matsukawa, Rikuo Sakai, Yuya Yokota, Shunya Sato, Hideaki Tanaka, Ryota Masaki, Yosuke Oishi, Kunihiro Ogura, Ken Arai, Kosuke Nomura, Koshiro Sakai, Hiroaki Tsujita, Seita Kondo, Shigeto Tsukamoto, Hiroshi Suzuki, Toshiro Shinke. Association between Eicosapentaenoic Acid to Arachidonic Acid Ratio and Characteristics of Plaque Rupture.
Journal of atherosclerosis and thrombosis.
2023 Mar; ?(?):. doi:
10.5551/jat.63806
. [PMID: 36967129] - Lucia Cambiaggi, Akash Chakravarty, Nazek Noureddine, Martin Hersberger. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076110
. [PMID: 37047085] - Brian Olshansky, Deepak L Bhatt, Michael Miller, Ph Gabriel Steg, Eliot A Brinton, Terry A Jacobson, Steven B Ketchum, Ralph T Doyle, Rebecca A Juliano, Lixia Jiao, Peter R Kowey, James A Reiffel, Jean-Claude Tardif, Christie M Ballantyne, Mina K Chung. Cardiovascular Benefits of Icosapent Ethyl in Patients With and Without Atrial Fibrillation in REDUCE-IT.
Journal of the American Heart Association.
2023 03; 12(5):e026756. doi:
10.1161/jaha.121.026756
. [PMID: 36802845] - Jin-Yue Yang, Lingyu Zhang, Tian-Tian Zhang, Cheng-Cheng Wang, Ying-Cai Zhao, Xiao-Yue Li, Yu-Ming Wang, Chang-Hu Xue. Eicosapentaenoic acid-enriched phospholipids alleviate glucose and lipid metabolism in spontaneously hypertensive rats with CD36 mutation: a precise nutrition strategy.
Food & function.
2023 Mar; 14(5):2349-2361. doi:
10.1039/d2fo03016k
. [PMID: 36843452] - Xinsheng Zhang, Peng Zhang, Yinghua Liu, Zhao Liu, Qing Xu, Yong Zhang, Lu Liu, Xueyan Yang, Liya Li, Changyong Xue. Effects of Caprylic Acid and Eicosapentaenoic Acid on Lipids, Inflammatory Levels, and the JAK2/STAT3 Pathway in ABCA1-Deficient Mice and ABCA1 Knock-Down RAW264.7 Cells.
Nutrients.
2023 Mar; 15(5):. doi:
10.3390/nu15051296
. [PMID: 36904298] - Ronaldo Sousa Oliveira-Filho, Raquel Susana Torrinhas, Alweyd Tesser, Geni R Sampaio, Elizabeth Torres, Priscila Casarin Garla, Dan Linetzky Waitzberg. Effect of a parenteral fish oil-containing lipid emulsion on liver lipid peroxidation and antioxidant defenses in Lewis rats.
JPEN. Journal of parenteral and enteral nutrition.
2023 Mar; ?(?):. doi:
10.1002/jpen.2492
. [PMID: 36871108] - Astrid S Kahnt, Nils Helge Schebb, Dieter Steinhilber. Formation of Lipoxins and Resolvins in Human Leukocytes.
Prostaglandins & other lipid mediators.
2023 Mar; ?(?):106726. doi:
10.1016/j.prostaglandins.2023.106726
. [PMID: 36878381] - Yuji Nishizaki, Katsumi Miyauchi, Hiroshi Iwata, Teruo Inoue, Atsushi Hirayama, Kazuo Kimura, Yukio Ozaki, Toyoaki Murohara, Kenji Ueshima, Yoshihiro Kuwabara, Sachiko Tanaka-Mizuno, Naotake Yanagisawa, Tosiya Sato, Hiroyuki Daida. Study protocol and baseline characteristics of Randomized trial for Evaluation in Secondary Prevention Efficacy of Combination Therapy-Statin and Eicosapentaenoic Acid: RESPECT-EPA, the combination of a randomized control trial and an observational biomarker study.
American heart journal.
2023 Mar; 257(?):1-8. doi:
10.1016/j.ahj.2022.11.008
. [PMID: 36372250] - Lisa A Rodway, Samantha D Pauls, Christopher D Pascoe, Harold M Aukema, Carla G Taylor, Peter Zahradka. Distinct effects of α-linolenic acid and docosahexaenoic acid on the expression of genes related to cholesterol metabolism and the response to infection in THP-1 monocytes and immune cells of obese humans.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Mar; 159(?):114167. doi:
10.1016/j.biopha.2022.114167
. [PMID: 36621145] - Joshua M Budd, Barbora Hucik, Chenxuan Wang, Alexa N King, Ousseynou Sarr, Manabu T Nakamura, Ewa Harasim-Symbor, Adrian Chabowski, David J Dyck, David M Mutch. A reduction of skeletal muscle DHA content does not result in impaired whole body glucose tolerance or skeletal muscle basal insulin signaling in otherwise healthy mice.
American journal of physiology. Endocrinology and metabolism.
2023 03; 324(3):E241-E250. doi:
10.1152/ajpendo.00308.2022
. [PMID: 36696599] - Nathalie E Marchand, May Y Choi, Emily G Oakes, Nancy R Cook, Emma Stevens, Natalya Gomelskaya, Gregory Kotler, JoAnn E Manson, Jessica Lasky-Su, Samia Mora, I-Min Lee, Raju Tatituri, Karen H Costenbader. Over-the-counter fish oil supplementation and pro-resolving and pro-inflammatory lipid mediators in rheumatoid arthritis.
Prostaglandins, leukotrienes, and essential fatty acids.
2023 03; 190(?):102542. doi:
10.1016/j.plefa.2023.102542
. [PMID: 36773395]