Decanoylcarnitine (C10) (BioDeep_00000003494)

 

Secondary id: BioDeep_00000630423, BioDeep_00001868659

human metabolite Endogenous blood metabolite LipidSearch natural product


代谢物信息卡片


(3R)-3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate

化学式: C17H33NO4 (315.2409)
中文名称: L-癸酰肉碱
谱图信息: 最多检出来源 Homo sapiens(blood) 25.79%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Decanoylcarnitine (C10). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/decanoylcarnitine_(c10) (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000003494). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCCCCCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
InChI: InChI=1S/C17H33NO4/c1-5-6-7-8-9-10-11-12-17(21)22-15(13-16(19)20)14-18(2,3)4/h15H,5-14H2,1-4H3

描述信息

Decanoylcarnitine is a member of the class of compounds known as acylcarnitines. More specifically, it is a decanoic acid ester of carnitine. Acylcarnitines were first discovered in the 1940s (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Decanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine decanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494 ). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. In particular decanoylcarnitine is elevated in the blood or plasma of individuals with obesity in adolescence (PMID: 26910390 ). It is also decreased in the blood or plasma of individuals with adolescent idiopathic scoliosis (PMID: 26928931 ). Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Acylcarnitine useful in the diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency deficiencyoxidation disorders.(PMID: 12385891) [HMDB]

同义名列表

7 个代谢物同义名

(3R)-3-(decanoyloxy)-4-(trimethylazaniumyl)butanoate; O-Decanoyl-(R)-carnitine; O-decanoyl-R-carnitine; O-Decanoyl-L-carnitine; Decanoyl-L-carnitine; L-Decanoylcarnitine; Decanoylcarnitine



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

11 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ACADM, FASN, FGF19, MYBPC3, TLR4
Golgi apparatus, trans-Golgi network membrane 1 HLA-DRB5
Endosome membrane 3 CD14, HLA-DRB5, TLR4
Endoplasmic reticulum membrane 2 HLA-DRB5, HSP90B1
Nucleus 3 ACADM, HSP90B1, PLCZ1
cytosol 4 FASN, HSP90B1, MYBPC3, PLCZ1
mitochondrial membrane 1 ACADM
nucleoplasm 1 PLCZ1
Cell membrane 5 CD14, HLA-DRB5, SLC5A2, TLR4, TNF
Early endosome membrane 1 NMB
Multi-pass membrane protein 1 SLC5A2
cell surface 2 TLR4, TNF
Golgi apparatus 2 CD14, FASN
Golgi membrane 2 HLA-DRB5, INS
lysosomal membrane 1 HLA-DRB5
mitochondrial inner membrane 1 ATAD3A
neuronal cell body 1 TNF
smooth endoplasmic reticulum 1 HSP90B1
plasma membrane 8 CD14, FASN, HLA-DRB5, KNG1, NMB, SLC5A2, TLR4, TNF
Membrane 7 ATAD3A, FASN, HLA-DRB5, HSP90B1, NMB, SLC5A2, TLR4
apical plasma membrane 1 SLC5A2
axon 1 ACADM
extracellular exosome 6 CD14, FASN, HLA-DRB5, HSP90B1, KNG1, SLC5A2
Lysosome membrane 1 HLA-DRB5
endoplasmic reticulum 1 HSP90B1
extracellular space 10 AMH, CD14, CRP, FGF19, IGF1, INS, KNG1, MMP10, NMB, TNF
perinuclear region of cytoplasm 3 HSP90B1, PLCZ1, TLR4
mitochondrion 2 ACADM, ATAD3A
protein-containing complex 1 HSP90B1
pronucleus 1 PLCZ1
Single-pass type I membrane protein 3 HLA-DRB5, NMB, TLR4
Secreted 6 AMH, CD14, CRP, IGF1, INS, NMB
extracellular region 12 AMH, CD14, CRP, FGF19, HSP90B1, IGF1, INS, KNG1, MMP10, NMB, PLA2G7, TNF
Single-pass membrane protein 1 ATAD3A
Mitochondrion matrix 1 ACADM
mitochondrial matrix 1 ACADM
external side of plasma membrane 3 CD14, TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 MMP10
high-density lipoprotein particle 1 PLA2G7
low-density lipoprotein particle 1 PLA2G7
nucleolus 1 PLCZ1
Melanosome membrane 1 NMB
midbody 1 HSP90B1
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 SLC5A2
Cytoplasm, perinuclear region 1 PLCZ1
Mitochondrion inner membrane 1 ATAD3A
Membrane raft 2 CD14, TNF
focal adhesion 1 HSP90B1
extracellular matrix 1 MMP10
mitochondrial nucleoid 1 ATAD3A
collagen-containing extracellular matrix 2 HSP90B1, KNG1
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
sarcomere 1 MYBPC3
receptor complex 1 TLR4
Cell projection, neuron projection 1 NMB
neuron projection 1 NMB
Late endosome membrane 1 HLA-DRB5
phagocytic cup 2 TLR4, TNF
Secreted, extracellular space 2 KNG1, PLA2G7
blood microparticle 1 KNG1
Lipid-anchor, GPI-anchor 1 CD14
myosin filament 1 MYBPC3
endosome lumen 1 INS
Melanosome 2 FASN, HSP90B1
side of membrane 1 CD14
sperm plasma membrane 1 HSP90B1
trans-Golgi network membrane 1 HLA-DRB5
exocytic vesicle 1 IGF1
lipopolysaccharide receptor complex 2 CD14, TLR4
secretory granule lumen 1 INS
secretory granule membrane 1 CD14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 HSP90B1, INS, KNG1
platelet alpha granule lumen 2 IGF1, KNG1
endocytic vesicle membrane 1 HLA-DRB5
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
ER to Golgi transport vesicle membrane 1 HLA-DRB5
clathrin-coated endocytic vesicle membrane 1 HLA-DRB5
Sarcoplasmic reticulum lumen 1 HSP90B1
A band 1 MYBPC3
lumenal side of endoplasmic reticulum membrane 1 HLA-DRB5
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
MHC class II protein complex 1 HLA-DRB5
transport vesicle membrane 1 HLA-DRB5
cardiac myofibril 1 MYBPC3
sperm head 1 PLCZ1
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1
insulin-like growth factor binding protein complex 1 IGF1
insulin-like growth factor ternary complex 1 IGF1
endoplasmic reticulum chaperone complex 1 HSP90B1
Mitochondrion matrix, mitochondrion nucleoid 1 ATAD3A
glycogen granule 1 FASN
striated muscle myosin thick filament 1 MYBPC3
C zone 1 MYBPC3
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Robin Pla, Estelle Pujos-Guillot, Stéphanie Durand, Marion Brandolini-Bunlon, Delphine Centeno, David B Pyne, Jean-François Toussaint, Philippe Hellard. Non-targeted metabolomics analyses by mass spectrometry to explore metabolic stress after six training weeks in high level swimmers. Journal of sports sciences. 2021 May; 39(9):969-978. doi: 10.1080/02640414.2020.1851933. [PMID: 33320058]
  • Eugenio Zoni, Martina Minoli, Cédric Bovet, Anne Wehrhan, Salvatore Piscuoglio, Charlotte K Y Ng, Peter C Gray, Martin Spahn, George N Thalmann, Marianna Kruithof-de Julio. Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and may be used for personalized patient stratification. BMC cancer. 2019 Dec; 19(1):1216. doi: 10.1186/s12885-019-6418-2. [PMID: 31842810]
  • Emmalie A Jager, Myrthe M Kuijpers, Annet M Bosch, Margot F Mulder, Estela R Gozalbo, Gepke Visser, Maaike de Vries, Monique Williams, Hans R Waterham, Francjan J van Spronsen, Peter C J I Schielen, Terry G J Derks. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. Journal of inherited metabolic disease. 2019 09; 42(5):890-897. doi: 10.1002/jimd.12102. [PMID: 31012112]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Lucie Habartová, Bohuš Bunganič, Michal Tatarkovič, Miroslav Zavoral, Jana Vondroušová, Kamila Syslová, Vladimír Setnička. Chiroptical spectroscopy and metabolomics for blood-based sensing of pancreatic cancer. Chirality. 2018 05; 30(5):581-591. doi: 10.1002/chir.22834. [PMID: 29473211]
  • Ya-Xiao Chen, Xiao-Jing Zhang, Jia Huang, Shu-Jun Zhou, Fang Liu, Lin-Lin Jiang, Meiwan Chen, Jian-Bo Wan, Dong-Zi Yang. UHPLC/Q-TOFMS-based plasma metabolomics of polycystic ovary syndrome patients with and without insulin resistance. Journal of pharmaceutical and biomedical analysis. 2016 Mar; 121(?):141-150. doi: 10.1016/j.jpba.2016.01.025. [PMID: 26808063]
  • Xiyuan Li, Yuan Ding, Yanyan Ma, Yupeng Liu, Qiao Wang, Jinqing Song, Yanling Yang. Very long-chain acyl-coenzyme A dehydrogenase deficiency in Chinese patients: eight case reports, including one case of prenatal diagnosis. European journal of medical genetics. 2015 Mar; 58(3):134-9. doi: 10.1016/j.ejmg.2015.01.005. [PMID: 25652019]
  • Minjoo Kim, Saem Jung, Sang-Hyun Lee, Jong Ho Lee. Association between arterial stiffness and serum L-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up study. PloS one. 2015; 10(3):e0119519. doi: 10.1371/journal.pone.0119519. [PMID: 25781947]
  • Saem Jung, Oh Yoen Kim, Minjoo Kim, Juheui Song, Sang-Hyun Lee, Jong Ho Lee. Age-related increase in alanine aminotransferase correlates with elevated levels of plasma amino acids, decanoylcarnitine, Lp-PLA2 Activity, oxidative stress, and arterial stiffness. Journal of proteome research. 2014 Jul; 13(7):3467-75. doi: 10.1021/pr500422z. [PMID: 24874467]
  • Anelise M Tonin, Mateus Grings, Lisiane A Knebel, Ângela Zanatta, Alana P Moura, César A J Ribeiro, Guilhian Leipnitz, Moacir Wajner. Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in medium-chain acyl-CoA dehydrogenase deficiency. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2012 Aug; 30(5):383-90. doi: 10.1016/j.ijdevneu.2012.03.238. [PMID: 22472139]
  • C Danese, M Cirene, M Colotto, A Aratari, S Amato, S Di Bona, M Curione. Cardiac involvement in inflammatory bowel disease: role of acylcarnitine esters. La Clinica terapeutica. 2011; 162(4):e105-9. doi: . [PMID: 21912810]
  • Masahiro Hayashi, Mikio Tomita. Mechanistic analysis for drug permeation through intestinal membrane. Drug metabolism and pharmacokinetics. 2007 Apr; 22(2):67-77. doi: 10.2133/dmpk.22.67. [PMID: 17495413]
  • M Tomita, M Hayashi, S Awazu. Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. The Journal of pharmacology and experimental therapeutics. 1995 Feb; 272(2):739-43. doi: . [PMID: 7853188]
  • J D McGarry, D W Foster. Acute reversal of experimental diabetic ketoacidosis in the rat with (+)-decanoylcarnitine. The Journal of clinical investigation. 1973 Apr; 52(4):877-84. doi: 10.1172/jci107252. [PMID: 4632691]