Cholic acid (BioDeep_00000000134)

 

Secondary id: BioDeep_00000016565, BioDeep_00000017798, BioDeep_00000265147, BioDeep_00000419326

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids PANOMIX LipidSearch BioNovoGene_Lab2019


代谢物信息卡片


(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

化学式: C24H40O5 (408.2876)
中文名称: 胆酸
谱图信息: 最多检出来源 Homo sapiens(blood) 24.22%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Cholic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/cholic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000134). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(CCC(=O)O)C1CCC2C1(C(CC3C2C(CC4C3(CCC(C4)O)C)O)O)C
InChI: InChI=1S/C24H40O5/c1-13(4-7-21(28)29)16-5-6-17-22-18(12-20(27)24(16,17)3)23(2)9-8-15(25)10-14(23)11-19(22)26/h13-20,22,25-27H,4-12H2,1-3H3,(H,28,29)/t13-,14+,15-,16-,17+,18+,19-,20+,22+,23+,24-/m1/s1

描述信息

Cholic acid is a bile acid that is 5beta-cholan-24-oic acid bearing three alpha-hydroxy substituents at position 3, 7 and 12. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a C24-steroid, a 3alpha-hydroxy steroid, a 7alpha-hydroxy steroid, a 12alpha-hydroxy steroid and a trihydroxy-5beta-cholanic acid. It is a conjugate acid of a cholate.
Cholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Cholic acid is a Bile Acid.
Cholic acid is a naturally occurring bile acid that is used to treat patients with genetic deficiencies in the synthesis of bile acids. When given in high doses, cholic acid replacement therapy has been linked to minor elevations in serum aminotransferase levels, but it has not been linked to instances of clinically apparent acute liver injury with jaundice.
Cholic acid is a natural product found in Caenorhabditis elegans, Bufo bufo, and Homo sapiens with data available.
Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410).
A major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion.
See also: Cholic acid; ferrous gluconate; honey (component of).
Cholic acid is a major primary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, cholic acid can act as a hepatotoxin and a metabotoxin. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. Chronically high levels of cholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including cholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia.

Cholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-25-4 (retrieved 2024-06-29) (CAS RN: 81-25-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].
Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].

同义名列表

132 个代谢物同义名

(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid; (4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoicacid; 4-[(3R,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-Trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid; (4R)-4-[(1R,3aS,3bR,4R,5aS,7R,9aS,9bS,11S,11aR)-4,7,11-trihydroxy-9a,11a-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanoic acid; (4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoic acid; (R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-Trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; (R)-4-((3R,5S,7R,8R,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; (4R)-4-((3R,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; 4-((1S,2S,7S,11S,16S,5R,9R,10R,14R,15R)-5,9,16-trihydroxy-2,15-dimethyltetracy clo[8.7.0.0<2,7>.0<11,15>]heptadec-14-yl)pentanoic acid; (3alpha,5beta,7alpha,8alpha,12alpha,14beta,17alpha)-3,7,12-trihydroxycholan-24-oic acid; (3.alpha.,5.beta.,7.alpha.,12.alpha.)-3,7,12-Trihydroxycholan-24-oic acid sodium salt; CHOLAN-24-OIC ACID, 3,7,12-TRIHYDROXY-, (3-.ALPHA.,5-.BETA.,7-.ALPHA.,12-.ALPHA.)-; 17.beta.-(1-Methyl-3-carboxypropyl)etiocholane-3.alpha.,7.alpha.,12.alpha.-triol; Cholan-24-oic acid, 3,7,12-trihydroxy-, (3.alpha.,5.beta.,7.alpha.,12.alpha.)-; Cholan-24-oic acid, 3,7,12-trihydroxy-, (3alpha,5beta,7alpha,12alpha)- (9CI); 3,7,12-Trihydroxy-cholan-24-oic acid, (3.alpha.,5.beta.,7.alpha.,12.alpha.)-; Cholan-24-oic acid,7,12-trihydroxy-, (3.alpha.,5.beta.,7.alpha.,12.alpha.)-; Cholan-24-oic acid, 3,7,12-trihydroxy-, (3-alpha,5-beta,7-alpha,12-alpha)-; 17-beta-(1-Methyl-3-carboxypropyl)etiocholane-3alpha,7alpha,12alpha-triol; 17beta-[1-Methyl-3-carboxypropyl]etiocholane-3alpha,7alpha,12alpha-triol; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholan-24-oic Acid (Cholic Acid); Cholan-24-oic acid, 3,7,12-trihydroxy-, (3alpha,5beta,7alpha,12alpha)-; 3,7,12-Trihydroxy-cholan-24-oic acid (3-alpha,5-beta,7-alpha,12-alpha); 3-.alpha.,7-.alpha.,12-.alpha.-Trihydroxy-5-.beta.-cholan-24-oic acid; (3alpha,5beta,7alpha,8x,12alpha)-3,7,12-trihydroxycholan-24-oic acid; 5.beta.-Cholan-24-oic acid, 3.alpha.,7.alpha.,12.alpha.-trihydroxy-; 3,7,12-Trihydroxycholan-24-oic acid, (3alpha,5beta,7alpha,12alpha)-; 5beta-Cholanic acid-3alpha,7alpha,12alpha-triol 5beta-Cholic acid; (3alpha,5beta,7alpha,12alpha)-3,7,12-trihydroxycholan-24-oic acid; Cholic acid, United States Pharmacopeia (USP) Reference Standard; (3alpha,5beta,7alpha,12alpha)-3,7,12-Trihydroxycholan-24-Oate; 3-alpha,7-alpha,12-alpha-Trihydroxy-5-beta-cholan-24-oic acid; 3.alpha.,7.alpha.,12.alpha.-Trihydroxy-5.beta.-cholanic acid; 5beta-Cholanic acid, 3alpha,7alpha,12alpha-trihydroxy- (7CI); Cholic acid, European Pharmacopoeia (EP) Reference Standard; 5beta-Cholan-24-oic acid, 3alpha,7alpha,12alpha-trihydroxy-; Cholic acid, British Pharmacopoeia (BP) Reference Standard; 17b-[1-Methyl-3-carboxypropyl]etiocholane-3a,7a,12a-triol; 5.beta.-Cholan-24-oic acid,7.alpha.,12.alpha.-trihydroxy-; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholan-24-oic acid; 3-alpha,7-alpha,12-alpha-Trihydroxycholansaeure [German]; 3-&alpha,7-&alpha,12-&alpha-trihydroxy-5-&beta-cholanate; 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholanoic acid; Cholan-24-oic acid, 3,7,12-trihydroxy-, (3a,5b,7a,12a)-; 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholanic acid; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanoic acid; 3-.alpha.,7-.alpha.,12-.alpha.-Trihydroxycholansaeure; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanic acid; 3alpha,7alpha,12alpha-Trihydroxy-beta-cholanic acid; 3.alpha.,12.alpha.-Trihydroxy-5.beta.-cholanic acid; (3Α,5β,7α,12α)-3,7,12-trihydroxycholan-24-Oic acid; (3a,5b,7a,12a)-3,7,12-Trihydroxycholan-24-Oic acid; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanate; 3-alpha,7-alpha,12-alpha-Trihydroxycholansaeure; 5beta-Cholanic acid-3alpha,7alpha,12alpha-triol; (3a,5b,7a,12a)-3,7,12-Trihydroxycholan-24-Oate; (3Α,5β,7α,12α)-3,7,12-trihydroxycholan-24-Oate; URSODEOXYCHOLIC ACID IMPURITY B [EP IMPURITY]; URSODEOXYCHOLIC ACID IMPURITY B (EP IMPURITY); 3alpha,7alpha,12alpha-Trihydroxycholanic acid; 4-10-00-02072 (Beilstein Handbook Reference); Cholic acid, Vetec(TM) reagent grade, 98\\%; Cholic acid, from ox or sheep bile, >=98\\%; 3a,7a,12a-Trihydroxy-5b-cholan-24-oic acid; 3a,7a,12a-Trihydroxy-beta-cholanic acid; 3a,7a,12a-Trihydroxy-5b-cholan-24-oate; 3a,7a,12a-Trihydroxy-5b-cholanoic acid; 3a,7a,12a-Trihydroxy-5b-cholanic acid; 3Α,7α,12α-trihydroxy-5β-cholanic acid; 3a,7a,12a-Trihydroxy-5A-cholanic acid; 3a,7a,12a-Trihydroxy-b-cholanic acid; 3a,7a,12a-Trihydroxy-beta-cholanate; 3a,7a,12a-Trihydroxy-5b-cholanoate; 3a,7a,12a-Trihydroxycholanic acid; 3a,7a,12a-Trihydroxy-5b-cholanate; 3Α,7α,12α-trihydroxy-5β-cholanate; 5b-Cholanic acid-3a,7a,12a-triol; 3a,7a,12a-Trihydroxy-b-cholanate; 3,7,12-Trihydroxycholanic acid; 3a,7a,12a-Trihydroxycholanate; CHOLIC ACID [EP IMPURITY]; CHOLIC ACID (EP IMPURITY); CHOLIC ACID [ORANGE BOOK]; TERPENES AND TERPENOIDS; CHOLIC ACID [EMA EPAR]; CHOLIC ACID [WHO-DD]; Cholic acid (sodium); CHOLIC ACID (USP-RS); CHOLIC ACID [USP-RS]; Cholic acid, 5beta-; 5.beta.-Cholic acid; Cholsaeure [German]; CHOLIC ACID [HSDB]; Cholic acid [USAN]; Cholic acid (USAN); CholsA currencyure; CHOLIC ACID [FCC]; Cholic acid (8CI); CHOLIC ACID [JAN]; CHOLIC ACID [MI]; Spectrum5_002005; UNII-G1JO7801AE; SODIUM CHOLATE; 5b-Cholic acid; Orphacol&Reg;; Cholalic acid; Colalin (VAN); Cholbam (TN); Acid, cholic; cholic-acid; Cholic Acid; Allocholate; OrphacolReg; 5b-Cholate; ST 24:1;O5; Cholsaeure; cholicacid; G1JO7801AE; Cholalate; Cholalin; C24H40O5; orphacol; cholate; Cholbam; Colalin; kolbam; Cholic; CHD; sodium cholate hydrate; Cholate(2); Cholic acid (CA); Cholic acid



数据库引用编号

63 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

47 个相关的代谢反应过程信息。

Reactome(24)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(22)

PharmGKB(0)

15 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ABCB1, ABCB4, ALB, APOE, GPBAR1, PLA2G12A
Peripheral membrane protein 1 CYP27A1
Endosome membrane 1 LDLR
Endoplasmic reticulum membrane 3 CYP7A1, CYP8B1, HMGCR
Mitochondrion membrane 1 CYP27A1
Nucleus 3 ALB, APOE, PPARA
cytosol 4 ABCB4, ALB, APOA1, GPT
dendrite 1 APOE
centrosome 1 ALB
nucleoplasm 2 ABCB4, PPARA
Cell membrane 7 ABCB1, ABCB11, ABCB4, ABCG5, GPBAR1, LDLR, SLC10A1
Multi-pass membrane protein 9 ABCB1, ABCB11, ABCB4, ABCC2, ABCC3, ABCG5, GPBAR1, HMGCR, SLC10A1
cell surface 4 ABCB1, ABCB11, ABCC2, LDLR
glutamatergic synapse 1 APOE
Golgi apparatus 3 ALB, APOE, LDLR
Golgi membrane 2 ABCB11, INS
mitochondrial inner membrane 1 CYP27A1
neuronal cell body 1 APOE
Lysosome 1 LDLR
endosome 1 ABCB11
plasma membrane 11 ABCB1, ABCB11, ABCB4, ABCC2, ABCC3, ABCG5, APOA1, APOE, GPBAR1, LDLR, SLC10A1
Membrane 10 ABCB1, ABCB11, ABCB4, ABCC2, ABCC3, ABCG5, APOE, HMGCR, LDLR, SLC10A1
apical plasma membrane 5 ABCB1, ABCB11, ABCB4, ABCC2, ABCG5
basolateral plasma membrane 3 ABCC3, LDLR, SLC10A1
extracellular exosome 7 ABCB1, ABCB11, ABCB4, ALB, APOA1, APOE, GPT
endoplasmic reticulum 3 ALB, APOE, HMGCR
extracellular space 4 ALB, APOA1, APOE, INS
intercellular canaliculus 3 ABCB11, ABCB4, ABCC2
mitochondrion 1 CYP27A1
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 1 CYP7A1
Microsome membrane 2 CYP7A1, CYP8B1
Single-pass type I membrane protein 1 LDLR
Secreted 5 ALB, APOA1, APOE, INS, PLA2G12A
extracellular region 5 ALB, APOA1, APOE, INS, PLA2G12A
Single-pass membrane protein 3 CYP7A1, CYP8B1, LDLR
mitochondrial matrix 1 CYP27A1
anchoring junction 1 ALB
external side of plasma membrane 1 LDLR
Endosome, multivesicular body 1 APOE
Extracellular vesicle 2 APOA1, APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 2 APOA1, APOE
high-density lipoprotein particle 2 APOA1, APOE
low-density lipoprotein particle 3 APOA1, APOE, LDLR
multivesicular body 1 APOE
very-low-density lipoprotein particle 2 APOA1, APOE
cytoplasmic vesicle 1 APOA1
Early endosome 3 APOA1, APOE, LDLR
Membrane, clathrin-coated pit 1 LDLR
apical part of cell 1 LDLR
clathrin-coated pit 1 LDLR
recycling endosome 1 ABCB11
Apical cell membrane 5 ABCB1, ABCB11, ABCB4, ABCC2, ABCG5
Mitochondrion inner membrane 1 CYP27A1
Membrane raft 1 ABCB4
focal adhesion 1 ABCB4
extracellular matrix 1 APOE
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 2 APOA1, APOE
Late endosome 1 LDLR
receptor complex 3 ABCG5, GPBAR1, LDLR
ciliary basal body 1 ALB
chromatin 1 PPARA
centriole 1 ALB
Secreted, extracellular space 1 APOE
spindle pole 1 ALB
blood microparticle 3 ALB, APOA1, APOE
Basolateral cell membrane 1 ABCC3
Recycling endosome membrane 1 ABCB11
Endomembrane system 1 LDLR
endosome lumen 1 INS
sorting endosome 1 LDLR
Melanosome 1 APOE
Peroxisome membrane 1 HMGCR
basal plasma membrane 1 ABCC3
clathrin-coated vesicle 1 ABCB4
secretory granule lumen 2 APOA1, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, APOA1, APOE, INS
platelet alpha granule lumen 1 ALB
Cytoplasmic vesicle, clathrin-coated vesicle 1 ABCB4
endocytic vesicle 1 APOA1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
ATP-binding cassette (ABC) transporter complex 1 ABCG5
clathrin-coated endocytic vesicle membrane 2 APOE, LDLR
synaptic cleft 1 APOE
Basal cell membrane 1 ABCC3
external side of apical plasma membrane 1 ABCB1
endolysosome membrane 1 LDLR
somatodendritic compartment 1 LDLR
intracellular canaliculus 1 ABCB11
discoidal high-density lipoprotein particle 1 APOE
spherical high-density lipoprotein particle 1 APOA1
endocytic vesicle lumen 2 APOA1, APOE
PCSK9-LDLR complex 1 LDLR
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
ciliary transition fiber 1 ALB


文献列表

  • Rulaiha Taylor, Zhenning Yang, Zakiyah Henry, Gina Capece, Vik Meadows, Katherine Otersen, Veronia Basaly, Anisha Bhattacharya, Stephanie Mera, Peihong Zhou, Laurie Joseph, Ill Yang, Anita Brinker, Brian Buckley, Bo Kong, Grace L Guo. Characterization of individual bile acids in vivo utilizing a novel low bile acid mouse model. Toxicological sciences : an official journal of the Society of Toxicology. 2024 May; 199(2):316-331. doi: 10.1093/toxsci/kfae029. [PMID: 38526215]
  • Annika Wahlström, Ariel Brumbaugh, Wilhelm Sjöland, Lisa Olsson, Hao Wu, Marcus Henricsson, Annika Lundqvist, Kassem Makki, Stanley L Hazen, Göran Bergström, Hanns-Ulrich Marschall, Michael A Fischbach, Fredrik Bäckhed. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism. Nature communications. 2024 May; 15(1):4276. doi: 10.1038/s41467-024-48543-3. [PMID: 38769296]
  • Natsuki Kubota, Shota Hori, Satoshi Ishizuka. Differences in iron balance observed with dietary cholic acid supplementation and marginal iron deficiency in rats. Bioscience, biotechnology, and biochemistry. 2023 Dec; 88(1):79-85. doi: 10.1093/bbb/zbad140. [PMID: 37813822]
  • Guochao Song, Bin Zou, Jing Zhao, Fengyi Weng, Yue Li, Xiaoqing Xu, Shuang Zhang, Dongming Yan, Jingyi Jin, Xin Sun, Chenghai Liu, Furong Qiu. Yinchen decoction protects against cholic acid diet-induced cholestatic liver injury in mice through liver and ileal FXR signaling. Journal of ethnopharmacology. 2023 May; 313(?):116560. doi: 10.1016/j.jep.2023.116560. [PMID: 37149065]
  • Hongxia Liu, Fumika Yokoyama, Satoshi Ishizuka. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2023 Apr; 1868(7):159319. doi: 10.1016/j.bbalip.2023.159319. [PMID: 37075973]
  • Liangchen Zhang, Yaxun Fan, Luciano Galantini, Karin Schillén, Alessandra Del Giudice, Guanqun Du, Yilin Wang. Noncovalent Bile Acid Oligomers as Facial Amphiphilic Antimicrobials. Langmuir : the ACS journal of surfaces and colloids. 2023 01; 39(1):495-506. doi: 10.1021/acs.langmuir.2c02787. [PMID: 36529944]
  • Tomoko Shimoda, Hidehisa Shimizu, Wakana Iwasaki, Hongxia Liu, Yoshie Kamo, Koji Tada, Taketo Hanai, Shota Hori, Ga-Hyun Joe, Yasutake Tanaka, Masao Sato, Hitoshi Miyazaki, Satoshi Ishizuka. A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Bioscience, biotechnology, and biochemistry. 2023 Jan; ?(?):. doi: 10.1093/bbb/zbad004. [PMID: 36623851]
  • Varsha Saini, Devashish Mehta, Siddhi Gupta, Sandeep Kumar, Parul Rani, Kajal Rana, Kajal Rajput, Dolly Jain, Garima Pal, Bharti Aggarwal, Sanjay Pal, Sonu K Gupta, Yashwant Kumar, Vemanna S Ramu, Avinash Bajaj. Targeting Vancomycin-Resistant Enterococci (VRE) Infections and Van Operon-Mediated Drug Resistance Using Dimeric Cholic Acid-Peptide Conjugates. Journal of medicinal chemistry. 2022 11; 65(22):15312-15326. doi: 10.1021/acs.jmedchem.2c01293. [PMID: 36331380]
  • Hager H Shaaban, Ibrahim Alzaim, Ahmed El-Mallah, Rania G Aly, Ahmed F El-Yazbi, Ahmed Wahid. Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life sciences. 2022 Nov; 308(?):120956. doi: 10.1016/j.lfs.2022.120956. [PMID: 36103959]
  • Yushi Chen, Qishen Wang, Haitao Luo, Shanggui Deng, Yongqi Tian, Shaoyun Wang. Mechanisms of the ethanol extract of Gelidium amansii for slow aging in high-fat male Drosophila by metabolomic analysis. Food & function. 2022 Oct; 13(19):10110-10120. doi: 10.1039/d2fo02116a. [PMID: 36102920]
  • Shambhoo Sharan Tripathi, Raushan Kumar, Akalabya Bissoyi, Syed Ibrahim Rizvi. Baicalein maintains redox balance in experimental hyperlipidemic rats. Archives of physiology and biochemistry. 2022 Oct; 128(5):1156-1164. doi: 10.1080/13813455.2020.1760890. [PMID: 32393069]
  • William Gagnon, Véronique Garneau, Jocelyn Trottier, Mélanie Verreault, Charles Couillard, Denis Roy, André Marette, Jean-Philippe Drouin-Chartier, Marie-Claude Vohl, Olivier Barbier. Impact of Blueberry Consumption on the Human Fecal Bileacidome: A Pilot Study of Bile Acid Modulation by Freeze-Dried Blueberry. Nutrients. 2022 Sep; 14(18):. doi: 10.3390/nu14183857. [PMID: 36145234]
  • Adriana Mika, Alicja Pakiet, Orest Szczygielski, Katarzyna Woźniak, Katarzyna Osipowicz, Cezary Kowalewski, Natalia Krześniak, Bartłomiej H Noszczyk, Katarzyna Wertheim-Tysarowska. Fatty acid profiles in various lipid fractions in the female epidermis. Does the body site and age matter?. Acta biochimica Polonica. 2022 Sep; 69(3):657-671. doi: 10.18388/abp.2020_6131. [PMID: 36099640]
  • Li Chen, Tingying Jiao, Weiwei Liu, Yuhong Luo, Jue Wang, Xiaozhen Guo, Xiao Tong, Zemin Lin, Chuying Sun, Kanglong Wang, Yifan He, Yuwei Zhang, Hualing Xu, Jiawen Wang, Jianping Zuo, Qiurong Ding, Shijun He, Frank J Gonzalez, Cen Xie. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell stem cell. 2022 09; 29(9):1366-1381.e9. doi: 10.1016/j.stem.2022.08.008. [PMID: 36055192]
  • Juping Zhang, Neng Wang, Yifeng Zheng, Bowen Yang, Shengqi Wang, Xuan Wang, Bo Pan, Zhiyu Wang. Naringenin in Si-Ni-San formula inhibits chronic psychological stress-induced breast cancer growth and metastasis by modulating estrogen metabolism through FXR/EST pathway. Journal of advanced research. 2022 Jun; ?(?):. doi: 10.1016/j.jare.2022.06.006. [PMID: 35718080]
  • Kenta Maegawa, Haruka Koyama, Satoru Fukiya, Atsushi Yokota, Koichiro Ueda, Satoshi Ishizuka. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats. The British journal of nutrition. 2022 06; 127(11):1621-1630. doi: 10.1017/s0007114521002610. [PMID: 34256877]
  • Jyun-Lin Lee, Yao-Chien Wang, Yu-An Hsu, Chih-Sheng Chen, Rui-Cian Weng, Yen-Pei Lu, Chun-Yu Chuang, Lei Wan. Bisphenol A Coupled with a High-Fat Diet Promotes Hepatosteatosis through Reactive-Oxygen-Species-Induced CD36 Overexpression. Toxics. 2022 Apr; 10(5):. doi: 10.3390/toxics10050208. [PMID: 35622622]
  • Kai-Li Fu, Pan Chen, Yan-Ying Zhou, Yi-Ming Jiang, Yue Gao, Hui-Zhen Zhang, Li-Huan Guan, Cong-Hui Wang, Jun-Ling Liu, Min Huang, Hui-Chang Bi. Hepatic Vps33b deficiency aggravates cholic acid-induced cholestatic liver injury in male mice. Acta pharmacologica Sinica. 2022 Apr; 43(4):933-940. doi: 10.1038/s41401-021-00723-3. [PMID: 34253877]
  • Hee Jeong Chun, Yeon Joo Shim, Young Hye Kwon. Cholic acid supplementation accelerates the progression of nonalcoholic fatty liver disease to the procarcinogenic state in mice fed a high-fat and high-cholesterol diet. The Journal of nutritional biochemistry. 2022 02; 100(?):108869. doi: 10.1016/j.jnutbio.2021.108869. [PMID: 34563665]
  • Yujia Liu, Xiaoyu Lu, Zhenhai Zhang, Shulong Jiang, Huixia Lv. mPEG-Cholic acid/TPGS mixed micelles for combined delivery of paclitaxel and bufalin to treat hepatocellular carcinoma. Pharmaceutical development and technology. 2022 Feb; 27(2):215-227. doi: 10.1080/10837450.2022.2037140. [PMID: 35105263]
  • Alyssa Kriegermeier, Angela Hyon, Meredith Sommars, Susan Hubchak, Brian LeCuyer, Xiaoying Liu, Grant Barish, Richard M Green. Hepatic X-Box Binding Protein 1 and Unfolded Protein Response Is Impaired in Weanling Mice With Resultant Hepatic Injury. Hepatology (Baltimore, Md.). 2021 12; 74(6):3362-3375. doi: 10.1002/hep.32031. [PMID: 34170527]
  • Xuan Qin, Yuanjin Zhang, Jian Lu, Shengbo Huang, Zongjun Liu, Xin Wang. CYP3A deficiency alters bile acid homeostasis and leads to changes in hepatic susceptibility in rats. Toxicology and applied pharmacology. 2021 10; 429(?):115703. doi: 10.1016/j.taap.2021.115703. [PMID: 34461081]
  • Daiki Yoshii, Takenobu Nakagawa, Yoshihiro Komohara, Hiroaki Kawaguchi, Sohsuke Yamada, Akihide Tanimoto. Phenotypic Changes in Macrophage Activation in a Model of Nonalcoholic Fatty Liver Disease using Microminipigs. Journal of atherosclerosis and thrombosis. 2021 Aug; 28(8):844-851. doi: 10.5551/jat.57703. [PMID: 33012740]
  • Haider N Sultani, Ibrahim Morgan, Hidayat Hussain, Andreas H Roos, Haleh H Haeri, Goran N Kaluđerović, Dariush Hinderberger, Bernhard Westermann. Access to New Cytotoxic Triterpene and Steroidal Acid-TEMPO Conjugates by Ugi Multicomponent-Reactions. International journal of molecular sciences. 2021 Jul; 22(13):. doi: 10.3390/ijms22137125. [PMID: 34281176]
  • Jianliang Xu, P Jaya Kausalya, Noémi Van Hul, Matias J Caldez, Shiyi Xu, Alicia Ghia Min Ong, Wan Lu Woo, Safiah Mohamed Ali, Philipp Kaldis, Walter Hunziker. Protective Functions of ZO-2/Tjp2 Expressed in Hepatocytes and Cholangiocytes Against Liver Injury and Cholestasis. Gastroenterology. 2021 05; 160(6):2103-2118. doi: 10.1053/j.gastro.2021.01.027. [PMID: 33465371]
  • Shota Hori, Minako Satake, Ohji Kohmoto, Ryo Takagi, Kazufumi Okada, Satoru Fukiya, Atsushi Yokota, Satoshi Ishizuka. Primary 12α-Hydroxylated Bile Acids Lower Hepatic Iron Concentration in Rats. The Journal of nutrition. 2021 03; 151(3):523-530. doi: 10.1093/jn/nxaa366. [PMID: 33438034]
  • Yanlin Tao, Fang Zheng, Donghong Cui, Fei Huang, Xiaojun Wu. A combination of three plasma bile acids as a putative biomarker for schizophrenia. Acta neuropsychiatrica. 2021 Feb; 33(1):51-54. doi: 10.1017/neu.2020.42. [PMID: 33222705]
  • Johanna Abrigo, Francisco Gonzalez, Francisco Aguirre, Franco Tacchi, Andrea Gonzalez, María Paz Meza, Felipe Simon, Daniel Cabrera, Marco Arrese, Saul Karpen, Claudio Cabello-Verrugio. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. Journal of cellular physiology. 2021 01; 236(1):260-272. doi: 10.1002/jcp.29839. [PMID: 32506638]
  • Sara Hassan Omar, Rihab Osman, Wael Mamdouh, Hend Mohamed Abdel-Bar, Gehanne A S Awad. Bioinspired lipid-polysaccharide modified hybrid nanoparticles as a brain-targeted highly loaded carrier for a hydrophilic drug. International journal of biological macromolecules. 2020 Dec; 165(Pt A):483-494. doi: 10.1016/j.ijbiomac.2020.09.170. [PMID: 32987085]
  • Lu Jiang, Huikuan Chu, Bei Gao, Sonja Lang, Yanhan Wang, Yi Duan, Bernd Schnabl. Transcriptomic Profiling Identifies Novel Hepatic and Intestinal Genes Following Chronic Plus Binge Ethanol Feeding in Mice. Digestive diseases and sciences. 2020 12; 65(12):3592-3604. doi: 10.1007/s10620-020-06461-6. [PMID: 32671585]
  • Bala M Xavier, Aiman A Zein, Angelica Venes, Junmei Wang, Jyh-Yeuan Lee. Transmembrane Polar Relay Drives the Allosteric Regulation for ABCG5/G8 Sterol Transporter. International journal of molecular sciences. 2020 Nov; 21(22):. doi: 10.3390/ijms21228747. [PMID: 33228147]
  • Lin Chen, Caihong Wang, Yuanchu Wu. Cholesterol (Blood lipid) lowering potential of Rosuvastatin chitosan nanoparticles for atherosclerosis: Preclinical study in rabbit model. Acta biochimica Polonica. 2020 Oct; 67(4):495-499. doi: 10.18388/abp.2020_5186. [PMID: 33090754]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Jan Klouda, Karel Nesměrák, Pavel Kočovský, Jiří Barek, Karolina Schwarzová-Pecková. A novel voltammetric approach to the detection of primary bile acids in serum samples. Bioelectrochemistry (Amsterdam, Netherlands). 2020 Aug; 134(?):107539. doi: 10.1016/j.bioelechem.2020.107539. [PMID: 32361665]
  • Shusei Yamamoto, Ikumi Sato, Natsuki Fukuhama, Natsumi Akiyama, Miku Sakai, Shota Kumazaki, Shang Ran, Satoshi Hirohata, Kazuya Kitamori, Yukio Yamori, Shogo Watanabe. Bile acids aggravate nonalcoholic steatohepatitis and cardiovascular disease in SHRSP5/Dmcr rat model. Experimental and molecular pathology. 2020 06; 114(?):104437. doi: 10.1016/j.yexmp.2020.104437. [PMID: 32246926]
  • Manuela Romina Martinefski, Silvina Ema Cocucci, María Beatriz Di Carlo, Hilda Ruda Vega, Silvia Edith Lucangioli, Beatriz Elizabeth Perazzi, Valeria Paula Tripodi. Fetal coenzyme Q10 deficiency in intrahepatic cholestasis of pregnancy. Clinics and research in hepatology and gastroenterology. 2020 06; 44(3):368-374. doi: 10.1016/j.clinre.2019.07.006. [PMID: 31477533]
  • Soojin Lee, Mak-Soon Lee, Eugene Chang, Yoonjin Lee, Jaerin Lee, Jiyeon Kim, Chong-Tai Kim, In-Hwan Kim, Yangha Kim. Mulberry Fruit Extract Promotes Serum HDL-Cholesterol Levels and Suppresses Hepatic microRNA-33 Expression in Rats Fed High Cholesterol/Cholic Acid Diet. Nutrients. 2020 May; 12(5):. doi: 10.3390/nu12051499. [PMID: 32455724]
  • Sangmin You, Ai-Min Cui, Syed F Hashmi, Xinmu Zhang, Christina Nadolny, Yuan Chen, Qiwen Chen, Xin Bush, Zachary Hurd, Winifer Ali, Gang Qin, Ruitang Deng. Dysregulation of bile acids increases the risk for preterm birth in pregnant women. Nature communications. 2020 04; 11(1):2111. doi: 10.1038/s41467-020-15923-4. [PMID: 32355283]
  • Haw-Wen Chen, Chih-Ching Yen, Li-Li Kuo, Chia-Wen Lo, Chin-Shiu Huang, Chih-Chieh Chen, Chong-Kuei Lii. Benzyl isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicology and applied pharmacology. 2020 04; 393(?):114941. doi: 10.1016/j.taap.2020.114941. [PMID: 32126212]
  • James E Heubi, Kenneth D R Setchell. Open-label Phase 3 Continuation Study of Cholic Acid in Patients With Inborn Errors of Bile Acid Synthesis. Journal of pediatric gastroenterology and nutrition. 2020 04; 70(4):423-429. doi: 10.1097/mpg.0000000000002618. [PMID: 31899729]
  • Takahiko Mitsui, Satoru Kira, Tatsuya Ihara, Norifumi Sawada, Hiroshi Nakagomi, Tatsuya Miyamoto, Hiroshi Shimura, Sachiko Tsuchiya, Mie Kanda, Masayuki Takeda. Metabolism of fatty acids and bile acids in plasma is associated with overactive bladder in males: potential biomarkers and targets for novel treatments in a metabolomics analysis. International urology and nephrology. 2020 Feb; 52(2):233-238. doi: 10.1007/s11255-019-02299-8. [PMID: 31587188]
  • Depeng Dai, Yuanhu Pan, CuiPing Zeng, Shenghui Liu, Yi Yan, Xiaoxiong Wu, Zaiyan Xu, Lisheng Zhang. Activated FXR promotes xenobiotic metabolism of T-2 toxin and attenuates oxidative stress in broiler chicken liver. Chemico-biological interactions. 2020 Jan; 316(?):108912. doi: 10.1016/j.cbi.2019.108912. [PMID: 31830458]
  • Lu Wang, Huai-Wu He, Xiang Zhou, Yun Long. Ursodeoxycholic Acid (UDCA) Promotes Lactate Metabolism in Mouse Hepatocytes through Cholic Acid (CA) - Farnesoid X Receptor (FXR) Pathway. Current molecular medicine. 2020; 20(8):661-666. doi: 10.2174/1566524020666200123161340. [PMID: 31971110]
  • Line Zurkinden, Dmitri Sviridov, Bruno Vogt, Genevieve Escher. Downregulation of Cyp7a1 by Cholic Acid and Chenodeoxycholic Acid in Cyp27a1/ApoE Double Knockout Mice: Differential Cardiovascular Outcome. Frontiers in endocrinology. 2020; 11(?):586980. doi: 10.3389/fendo.2020.586980. [PMID: 33193099]
  • Changxiang Li, Xueqian Wang, Juntang Yan, Fafeng Cheng, Xiaona Ma, Congai Chen, Wei Wang, Qingguo Wang. Cholic Acid Protects In Vitro Neurovascular Units against Oxygen and Glucose Deprivation-Induced Injury through the BDNF-TrkB Signaling Pathway. Oxidative medicine and cellular longevity. 2020; 2020(?):1201624. doi: 10.1155/2020/1201624. [PMID: 33101581]
  • Hiroko Yoshioka, Masamichi Watanabe, Fumio Nanba, Toshio Suzuki, Satoru Fukiya, Atsushi Yokota, Toshiya Toda. Administration of Cholic Acid Inhibits Equol Production from Daidzein in Mice. Journal of nutritional science and vitaminology. 2020; 66(6):571-576. doi: 10.3177/jnsv.66.571. [PMID: 33390399]
  • Ali Saeed, Jing Yang, Janette Heegsma, Albert K Groen, Saskia W C van Mil, Coen C Paulusma, Lu Zhou, Bangmao Wang, Klaas Nico Faber. Farnesoid X receptor and bile acids regulate vitamin A storage. Scientific reports. 2019 12; 9(1):19493. doi: 10.1038/s41598-019-55988-w. [PMID: 31862954]
  • Li Ren, Qing Song, Yunhuan Liu, Lihua Zhang, Zhiming Hao, Wenke Feng. Probiotic Lactobacillus rhamnosus GG prevents progesterone metabolite epiallaopregnanolone sulfate-induced hepatic bile acid accumulation and liver injury. Biochemical and biophysical research communications. 2019 11; 520(1):67-72. doi: 10.1016/j.bbrc.2019.09.103. [PMID: 31575408]
  • Suijuan Yue, Dan Zhao, Chunxiu Peng, Chao Tan, Qiuping Wang, Jiashun Gong. Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet. Food & function. 2019 Nov; 10(11):7063-7080. doi: 10.1039/c9fo01334b. [PMID: 31621728]
  • Thibaut Duparc, François Briand, Charlotte Trenteseaux, Jules Merian, Guillaume Combes, Souad Najib, Thierry Sulpice, Laurent O Martinez. Liraglutide improves hepatic steatosis and metabolic dysfunctions in a 3-week dietary mouse model of nonalcoholic steatohepatitis. American journal of physiology. Gastrointestinal and liver physiology. 2019 10; 317(4):G508-G517. doi: 10.1152/ajpgi.00139.2019. [PMID: 31460789]
  • Jessica M Ferrell, Preeti Pathak, Shannon Boehme, Tricia Gilliland, John Y L Chiang. Deficiency of Both Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Exacerbated Liver Fibrosis in Mice. Hepatology (Baltimore, Md.). 2019 09; 70(3):955-970. doi: 10.1002/hep.30513. [PMID: 30664797]
  • Daniele Mandia, Annabelle Chaussenot, Gérard Besson, Foudil Lamari, Giovanni Castelnovo, Jonathan Curot, Fanny Duval, Philippe Giral, Jean-Michel Lecerf, Dominique Roland, Heloise Pierdet, Claire Douillard, Yann Nadjar. Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. Journal of neurology. 2019 Aug; 266(8):2043-2050. doi: 10.1007/s00415-019-09377-y. [PMID: 31115677]
  • Dong Geun Lee, Shota Hori, Ohji Kohmoto, Shinri Kitta, Ryo Yoshida, Yasutake Tanaka, Hidehisa Shimizu, Keisuke Takahashi, Taizo Nagura, Hirokatsu Uchino, Satoru Fukiya, Atsushi Yokota, Satoshi Ishizuka. Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of bile acids in rats fed with a cholic acid-supplemented diet. Bioscience, biotechnology, and biochemistry. 2019 Jul; 83(7):1329-1335. doi: 10.1080/09168451.2019.1597617. [PMID: 30912732]
  • Xia Lu, Zhefeng Fan. Determination of cholic acid in body fluids by β‑cyclodextrin-modified N-doped carbon dot fluorescent probes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2019 Jun; 216(?):342-348. doi: 10.1016/j.saa.2019.03.066. [PMID: 30921656]
  • Sangwon Byun, Hyunkyung Jung, Jinjing Chen, Young-Chae Kim, Dong-Hyun Kim, Bo Kong, Grace Guo, Byron Kemper, Jongsook Kim Kemper. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. The Journal of biological chemistry. 2019 05; 294(22):8732-8744. doi: 10.1074/jbc.ra119.008360. [PMID: 30996006]
  • Vinod S Hegade, Alexandros Pechlivanis, Julie A K McDonald, Douglas Rees, Margaret Corrigan, Gideon M Hirschfield, Simon D Taylor-Robinson, Elaine Holmes, Julian R Marchesi, Stuart Kendrick, David E Jones. Autotaxin, bile acid profile and effect of ileal bile acid transporter inhibition in primary biliary cholangitis patients with pruritus. Liver international : official journal of the International Association for the Study of the Liver. 2019 05; 39(5):967-975. doi: 10.1111/liv.14069. [PMID: 30735608]
  • Femke C C Klouwer, Bart G P Koot, Kevin Berendse, Elles M Kemper, Sacha Ferdinandusse, Kiran V K Koelfat, Martin Lenicek, Frédéric M Vaz, Marc Engelen, Peter L M Jansen, Ronald J A Wanders, Hans R Waterham, Frank G Schaap, Bwee Tien Poll-The. The cholic acid extension study in Zellweger spectrum disorders: Results and implications for therapy. Journal of inherited metabolic disease. 2019 03; 42(2):303-312. doi: 10.1002/jimd.12042. [PMID: 30793331]
  • Shinji Kato, Haruhi Tobe, Hiroki Matsubara, Mariko Sawada, Yasuko Sasaki, Satoru Fukiya, Naoki Morita, Atsushi Yokota. The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131T. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2019 03; 1864(3):403-412. doi: 10.1016/j.bbalip.2018.06.004. [PMID: 29883797]
  • James E Heubi, Kenneth D R Setchell, Kevin E Bove. Inborn Errors of Bile Acid Metabolism. Clinics in liver disease. 2018 11; 22(4):671-687. doi: 10.1016/j.cld.2018.06.006. [PMID: 30266156]
  • Emmanuel Gonzales, Lorenza Matarazzo, Stéphanie Franchi-Abella, Alain Dabadie, Joseph Cohen, Dalila Habes, Sophie Hillaire, Catherine Guettier, Anne-Marie Taburet, Anne Myara, Emmanuel Jacquemin. Cholic acid for primary bile acid synthesis defects: a life-saving therapy allowing a favorable outcome in adulthood. Orphanet journal of rare diseases. 2018 10; 13(1):190. doi: 10.1186/s13023-018-0920-5. [PMID: 30373615]
  • Jamuna Sankar, Ashokkumar Rathinavel, Sakeena Sadullah Mohammed Sadullah, Sivasitamparam Niranjali Devaraj. Oligomeric proanthocyanidins mitigate cholesterol and cholic acid diet-induced hepatic dysfunction in male Sprague Dawley rats. Journal of biochemical and molecular toxicology. 2018 Oct; ?(?):e22234. doi: 10.1002/jbt.22234. [PMID: 30273964]
  • Guoshun Luo, Zhouyang Qian, Rongmao Qiu, Qidong You, Hua Xiang. Lipid reducing activity of novel cholic acid (CA) analogs: Design, synthesis and preliminary mechanism study. Bioorganic chemistry. 2018 10; 80(?):396-407. doi: 10.1016/j.bioorg.2018.07.002. [PMID: 29986186]
  • Alexander L Ticho, Hyunjin Lee, Ravinder K Gill, Pradeep K Dudeja, Seema Saksena, Daesung Lee, Waddah A Alrefai. A novel bioluminescence-based method to investigate uptake of bile acids in living cells. American journal of physiology. Gastrointestinal and liver physiology. 2018 10; 315(4):G529-G537. doi: 10.1152/ajpgi.00133.2018. [PMID: 29927324]
  • Juliana da Trindade Granato, Juliana Alves Dos Santos, Stephane Lima Calixto, Natália Prado da Silva, Jefferson da Silva Martins, Adilson David da Silva, Elaine Soares Coimbra. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Oct; 106(?):1082-1090. doi: 10.1016/j.biopha.2018.07.056. [PMID: 30119174]
  • Hsien-Tsung Yao, Pei-Feng Lee, Chong-Kuei Lii, Yun-Ta Liu, Szu-Han Chen. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food & function. 2018 Sep; 9(9):4876-4887. doi: 10.1039/c8fo00851e. [PMID: 30160281]
  • Paulina M Opyd, Adam Jurgoński, Jerzy Juśkiewicz, Bartosz Fotschki, Jarosław Koza. Comparative Effects of Native and Defatted Flaxseeds on Intestinal Enzyme Activity and Lipid Metabolism in Rats Fed a High-Fat Diet Containing Cholic Acid. Nutrients. 2018 Aug; 10(9):. doi: 10.3390/nu10091181. [PMID: 30154372]
  • Si Yi Lim, Paik Yean Tham, Hilary Yi Ler Lim, Wooi Shin Heng, Ying Ping Chang. Potential Functional Byproducts from Guava Purée Processing. Journal of food science. 2018 Jun; 83(6):1522-1532. doi: 10.1111/1750-3841.14155. [PMID: 29745989]
  • Rong-Hua Zhang, Chao-Ran Li, Hua Yang, Meng-Ning Li, Karl W K Tsim, Ping Li, Wen Gao. An UPLC-MS/MS method for simultaneous determination of multiple constituents in Guizhi Fuling capsule with ultrafast positive/negative ionization switching. Chinese journal of natural medicines. 2018 Apr; 16(4):313-320. doi: 10.1016/s1875-5364(18)30061-x. [PMID: 29703331]
  • Iván L Csanaky, Andrew J Lickteig, Curtis D Klaassen. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicology and applied pharmacology. 2018 03; 343(?):48-61. doi: 10.1016/j.taap.2018.02.005. [PMID: 29452137]
  • Weichun Yang, Ziyi Shen, Sixian Wen, Wei Wang, Minyu Hu. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia. Lipids in health and disease. 2018 Feb; 17(1):13. doi: 10.1186/s12944-018-0660-5. [PMID: 29409499]
  • Serena Mostarda, Daniela Passeri, Andrea Carotti, Bruno Cerra, Carolina Colliva, Tiziana Benicchi, Antonio Macchiarulo, Roberto Pellicciari, Antimo Gioiello. Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification. European journal of medicinal chemistry. 2018 Jan; 144(?):349-358. doi: 10.1016/j.ejmech.2017.12.034. [PMID: 29275233]
  • Enory Almanza-Miranda, Raúl E Piña-Aguilar, Eduardo Ordoñez-Gutiérrez, Mª Teresa Gorraez-de la Mora, Rubén Peña-Vélez. [Colestasis por deficiencia de 3b-Δ5-C27-hidroxiesteroide deshidrogenasa en un paciente con alteración en la síntesis de ácidos biliares]. Boletin medico del Hospital Infantil de Mexico. 2018; 75(5):313-318. doi: 10.24875/bmhim.18000008. [PMID: 30250332]
  • Youcai Zhang, Andrew J Lickteig, Iván L Csanaky, Curtis D Klaassen. Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion. Toxicology and applied pharmacology. 2018 01; 338(?):112-123. doi: 10.1016/j.taap.2017.11.014. [PMID: 29175453]
  • Amrita K Cheema, Khyati Y Mehta, Oluseyi O Fatanmi, Stephen Y Wise, Charles P Hinzman, Josh Wolff, Vijay K Singh. A Metabolomic and Lipidomic Serum Signature from Nonhuman Primates Administered with a Promising Radiation Countermeasure, Gamma-Tocotrienol. International journal of molecular sciences. 2017 Dec; 19(1):. doi: 10.3390/ijms19010079. [PMID: 29283379]
  • Svetlana Golocorbin-Kon, Jelena Calasan, Boris Milijasevic, Sasa Vukmirovic, Mladena Lalic-Popovic, Momir Mikov, Hani Al-Salami. High-Loading Dose of Microencapsulated Gliclazide Formulation Exerted a Hypoglycaemic Effect on Type 1 Diabetic Rats and Incorporation of a Primary Deconjugated Bile Acid, Diminished the Hypoglycaemic Antidiabetic Effect. European journal of drug metabolism and pharmacokinetics. 2017 Dec; 42(6):1005-1011. doi: 10.1007/s13318-017-0415-0. [PMID: 28547295]
  • Pan Chen, Dongshun Li, Yixin Chen, Jiahong Sun, Kaili Fu, Lihuan Guan, Huizhen Zhang, Yiming Jiang, Xi Li, Xuezhen Zeng, Xiao Chen, Min Huang, Huichang Bi. p53-mediated regulation of bile acid disposition attenuates cholic acid-induced cholestasis in mice. British journal of pharmacology. 2017 Dec; 174(23):4345-4361. doi: 10.1111/bph.14035. [PMID: 28910492]
  • Sohsuke Yamada, Hiroaki Kawaguchi, Tomonobu Yamada, Xin Guo, Kei Matsuo, Taiji Hamada, Naoki Miura, Takashi Tasaki, Akihide Tanimoto. Cholic Acid Enhances Visceral Adiposity, Atherosclerosis and Nonalcoholic Fatty Liver Disease in Microminipigs. Journal of atherosclerosis and thrombosis. 2017 Nov; 24(11):1150-1166. doi: 10.5551/jat.39909. [PMID: 28496045]
  • Zhixin Zhang, Hao Gu, Huizhen Zhao, Yuehong Liu, Shuang Fu, Meiling Wang, Wenjuan Zhou, Ziye Xie, Honghong Yu, Zhenghai Huang, Xiaoyan Gao. Pharmacometabolomics in Endogenous Drugs: A New Approach for Predicting the Individualized Pharmacokinetics of Cholic Acid. Journal of proteome research. 2017 10; 16(10):3529-3535. doi: 10.1021/acs.jproteome.7b00218. [PMID: 28841024]
  • V Musolino, M Gliozzi, C Carresi, J Maiuolo, R Mollace, F Bosco, F Scarano, M Scicchitano, A Maretta, E Palma, M Iannone, V M Morittu, S Gratteri, C Muscoli, M Fini, V Mollace. Lipid-lowering effect of bergamot polyphenolic fraction: role of pancreatic cholesterol ester hydrolase. Journal of biological regulators and homeostatic agents. 2017 Oct; 31(4):1087-1093. doi: NULL. [PMID: 29254319]
  • R Li, K Cui, T Wang, S Wang, X Li, J Qiu, G Yu, J Liu, B Wen, K Rao. Hyperlipidemia impairs erectile function in rats by causing cavernosal fibrosis. Andrologia. 2017 Sep; 49(7):. doi: 10.1111/and.12693. [PMID: 27619893]
  • James E Heubi, Kevin E Bove, Kenneth D R Setchell. Oral Cholic Acid Is Efficacious and Well Tolerated in Patients With Bile Acid Synthesis and Zellweger Spectrum Disorders. Journal of pediatric gastroenterology and nutrition. 2017 09; 65(3):321-326. doi: 10.1097/mpg.0000000000001657. [PMID: 28644367]
  • Vedagopuram Sreekanth, Nihal Medatwal, Sanjay Pal, Sandeep Kumar, Sagar Sengupta, Avinash Bajaj. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Molecular pharmaceutics. 2017 08; 14(8):2649-2659. doi: 10.1021/acs.molpharmaceut.7b00105. [PMID: 28665132]
  • Zoltán Giricz, Gábor Koncsos, Tomáš Rajtík, Zoltán V Varga, Tamás Baranyai, Csaba Csonka, Adrián Szobi, Adriana Adameová, Roberta A Gottlieb, Péter Ferdinandy. Hypercholesterolemia downregulates autophagy in the rat heart. Lipids in health and disease. 2017 Mar; 16(1):60. doi: 10.1186/s12944-017-0455-0. [PMID: 28330474]
  • Liying Zhang, Chengjun Song, Guangxin Miao, Lianzhi Zhao, Zhiwei Yan, Jing Li, Youde Wang. Novel Liver-targeted conjugates of Glycogen Phosphorylase Inhibitor PSN-357 for the Treatment of Diabetes: Design, Synthesis, Pharmacokinetic and Pharmacological Evaluations. Scientific reports. 2017 02; 7(?):42251. doi: 10.1038/srep42251. [PMID: 28225016]
  • Ying Li, Chunyan Zhu. Mechanism of hepatic targeting via oral administration of DSPE-PEG-cholic acid-modified nanoliposomes. International journal of nanomedicine. 2017; 12(?):1673-1684. doi: 10.2147/ijn.s125047. [PMID: 28280334]
  • Ryoichi Matsui, Noriyuki Uchida, Masataka Ohtani, Kuniyo Yamada, Arisu Shigeta, Izuru Kawamura, Takuzo Aida, Yasuhiro Ishida. Magnetically Alignable Bicelles with Unprecedented Stability Using Tunable Surfactants Derived from Cholic Acid. Chemphyschem : a European journal of chemical physics and physical chemistry. 2016 Dec; 17(23):3916-3922. doi: 10.1002/cphc.201600897. [PMID: 27553850]
  • Supriya R Kulkarni, Carol J Soroka, Lee R Hagey, James L Boyer. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology (Baltimore, Md.). 2016 12; 64(6):2151-2164. doi: 10.1002/hep.28826. [PMID: 27639250]
  • Mark M Smits, Lennart Tonneijck, Marcel H A Muskiet, Trynke Hoekstra, Mark H H Kramer, Michaela Diamant, Max Nieuwdorp, Albert K Groen, Djuna L Cahen, Daniël H van Raalte. Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients. Diabetes, obesity & metabolism. 2016 12; 18(12):1217-1225. doi: 10.1111/dom.12748. [PMID: 27451030]
  • Kevin Berendse, Femke C C Klouwer, Bart G P Koot, Elles M Kemper, Sacha Ferdinandusse, Kiran V K Koelfat, Martin Lenicek, Frank G Schaap, Hans R Waterham, Frédéric M Vaz, Marc Engelen, Peter L M Jansen, Ronald J A Wanders, Bwee Tien Poll-The. Cholic acid therapy in Zellweger spectrum disorders. Journal of inherited metabolic disease. 2016 11; 39(6):859-868. doi: 10.1007/s10545-016-9962-9. [PMID: 27469511]
  • Dong Zhang, Dongpo Li, Lei Shang, Zhonggui He, Jin Sun. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. International journal of pharmaceutics. 2016 Sep; 511(1):161-169. doi: 10.1016/j.ijpharm.2016.06.139. [PMID: 27377011]
  • Yeonmi Lee, Reika Yoshitsugu, Keidai Kikuchi, Ga-Hyun Joe, Misaki Tsuji, Takuma Nose, Hidehisa Shimizu, Hiroshi Hara, Kimiko Minamida, Kazunori Miwa, Satoshi Ishizuka. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. The British journal of nutrition. 2016 08; 116(4):603-10. doi: 10.1017/s0007114516002270. [PMID: 27464459]
  • Lina Sun, Kevin Beggs, Prachi Borude, Genea Edwards, Bharat Bhushan, Chad Walesky, Nairita Roy, Michael W Manley, Sumedha Gunewardena, Maura O'Neil, Hua Li, Udayan Apte. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. American journal of physiology. Gastrointestinal and liver physiology. 2016 07; 311(1):G91-G104. doi: 10.1152/ajpgi.00027.2015. [PMID: 27151938]
  • Krzysztof Dziedzic, Artur Szwengiel, Danuta Górecka, Elżbieta Gujska, Joanna Kaczkowska, Agnieszka Drożdżyńska, Jarosław Walkowiak. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content. Plant foods for human nutrition (Dordrecht, Netherlands). 2016 Jun; 71(2):151-7. doi: 10.1007/s11130-016-0537-6. [PMID: 26924312]
  • Matthew McMillin, Gabriel Frampton, Matthew Quinn, Samir Ashfaq, Mario de los Santos, Stephanie Grant, Sharon DeMorrow. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure. The American journal of pathology. 2016 Feb; 186(2):312-23. doi: 10.1016/j.ajpath.2015.10.005. [PMID: 26683664]
  • Muthukumaran Jayachandran, Balaji Chandrasekaran, Nalini Namasivayam. Geraniol attenuates fibrosis and exerts anti-inflammatory effects on diet induced atherogenesis by NF-κB signaling pathway. European journal of pharmacology. 2015 Sep; 762(?):102-11. doi: 10.1016/j.ejphar.2015.05.039. [PMID: 26004525]
  • Muthukumaran Jayachandran, Balaji Chandrasekaran, Nalini Namasivayam. Geraniol attenuates oxidative stress by Nrf2 activation in diet-induced experimental atherosclerosis. Journal of basic and clinical physiology and pharmacology. 2015 Jul; 26(4):335-46. doi: 10.1515/jbcpp-2014-0057. [PMID: 25381951]
  • Wujuan Zhang, Pinky Jha, Brian Wolfe, Antimo Gioiello, Roberto Pellicciari, Jianshe Wang, James Heubi, Kenneth D R Setchell. Tandem mass spectrometric determination of atypical 3β-hydroxy-Δ5-bile acids in patients with 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency: application to diagnosis and monitoring of bile acid therapeutic response. Clinical chemistry. 2015 Jul; 61(7):955-63. doi: 10.1373/clinchem.2015.238238. [PMID: 25931455]
  • Jinan Deng, Xiaoyan Lu, Colin Constant, Aristide Dogariu, Jiyu Fang. Design of β-CD-surfactant complex-coated liquid crystal droplets for the detection of cholic acid via competitive host-guest recognition. Chemical communications (Cambridge, England). 2015 May; 51(43):8912-5. doi: 10.1039/c5cc01561h. [PMID: 25892566]
  • Hiroyuki Tsuchiya, Kerry-Ann da Costa, Sangmin Lee, Barbara Renga, Hartmut Jaeschke, Zhihong Yang, Stephen J Orena, Michael J Goedken, Yuxia Zhang, Bo Kong, Margitta Lebofsky, Swetha Rudraiah, Rana Smalling, Grace Guo, Stefano Fiorucci, Steven H Zeisel, Li Wang. Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice. Gastroenterology. 2015 May; 148(5):1012-1023.e14. doi: 10.1053/j.gastro.2015.01.045. [PMID: 25701738]