[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] N-sulfooxybut-3-enimidothioate (BioDeep_00001870522)

Main id: BioDeep_00000003569

 


代谢物信息卡片


[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] N-sulfooxybut-3-enimidothioate

化学式: C10H17NO9S2 (359.0345)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C=CCC(=NOS(=O)(=O)O)SC1C(C(C(C(O1)CO)O)O)O
InChI: InChI=1S/C10H17NO9S2/c1-2-3-6(11-20-22(16,17)18)21-10-9(15)8(14)7(13)5(4-12)19-10/h2,5,7-10,12-15H,1,3-4H2,(H,16,17,18)/t5-,7-,8+,9-,10+/m1/s1



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 17 ANXA5, BCL2, CASP3, CAT, CDK2, CDK4, CDKN1A, HPGDS, IL18, MAPK14, MAPK8, MTOR, NLRP3, NQO1, PIK3CA, PTGS2, TP53
Peripheral membrane protein 3 ANXA5, MTOR, PTGS2
Endoplasmic reticulum membrane 3 BCL2, MTOR, PTGS2
Nucleus 11 BCL2, CASP3, CDK2, CDK4, CDKN1A, MAPK14, MAPK8, MTOR, NLRP3, NQO1, TP53
cytosol 17 ANXA5, BCL2, CASP3, CAT, CDK2, CDK4, CDKN1A, GLS, HPGDS, IL18, MAPK14, MAPK8, MTOR, NLRP3, NQO1, PIK3CA, TP53
dendrite 2 MTOR, NQO1
nuclear body 1 CDKN1A
phagocytic vesicle 1 MTOR
centrosome 2 CDK2, TP53
nucleoplasm 9 CASP3, CDK2, CDK4, CDKN1A, HPGDS, MAPK14, MAPK8, MTOR, TP53
Cell membrane 1 TNF
Cytoplasmic side 1 MTOR
lamellipodium 1 PIK3CA
Golgi apparatus membrane 2 MTOR, NLRP3
Synapse 3 GLS, MAPK8, NQO1
cell surface 1 TNF
glutamatergic synapse 2 CASP3, MAPK14
Golgi membrane 2 MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 3 CASP3, NQO1, TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 4 GLS, IL18, NLRP3, NQO1
Lysosome 1 MTOR
endosome 1 CDK2
plasma membrane 2 PIK3CA, TNF
Membrane 7 ANXA5, BCL2, CAT, MTOR, NLRP3, NQO1, TP53
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 2 ANXA5, CAT
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, NLRP3, PTGS2, TP53
extracellular space 3 CCL2, IL18, TNF
perinuclear region of cytoplasm 2 CDKN1A, PIK3CA
bicellular tight junction 1 CDK4
intercalated disc 1 PIK3CA
mitochondrion 6 BCL2, CAT, GLS, MAPK14, NLRP3, TP53
protein-containing complex 5 BCL2, CAT, CDKN1A, PTGS2, TP53
intracellular membrane-bounded organelle 2 CAT, HPGDS
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 3 CCL2, IL18, NLRP3
extracellular region 7 ANXA5, CAT, CCL2, IL18, MAPK14, NLRP3, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 3 CAT, GLS, TP53
transcription regulator complex 3 CDK2, CDK4, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CDK2, TP53
Nucleus membrane 2 BCL2, CDK4
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CDK4
external side of plasma membrane 2 ANXA5, TNF
nucleolus 3 CDK4, CDKN1A, TP53
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 ANXA5, CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 2 CDK4, TP53
phagocytic cup 1 TNF
[Isoform 1]: Mitochondrion 1 GLS
spindle pole 1 MAPK14
chromosome, telomeric region 1 CDK2
site of double-strand break 1 TP53
nuclear envelope 2 CDK2, MTOR
Endomembrane system 2 MTOR, NLRP3
microtubule organizing center 1 NLRP3
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 1 PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
male germ cell nucleus 1 CDK2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
vesicle membrane 1 ANXA5
Cajal body 1 CDK2
[Isoform 1]: Nucleus 1 TP53
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
condensed chromosome 1 CDK2
[Isoform 3]: Mitochondrion 1 GLS
Cytoplasmic vesicle, phagosome 1 MTOR
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
cyclin-dependent protein kinase holoenzyme complex 3 CDK2, CDK4, CDKN1A
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CDK4
cyclin D2-CDK4 complex 1 CDK4
cyclin D3-CDK4 complex 1 CDK4
PCNA-p21 complex 1 CDKN1A
cyclin A2-CDK2 complex 1 CDK2
cyclin A1-CDK2 complex 1 CDK2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Cong Cong, Xiaohong Yuan, Ying Hu, Wenjing Chen, Yong Wang, Lei Tao. Sinigrin attenuates angiotensin II‑induced kidney injury by inactivating nuclear factor‑κB and extracellular signal‑regulated kinase signaling in vivo and in vitro. International journal of molecular medicine. 2021 Aug; 48(2):. doi: 10.3892/ijmm.2021.4994. [PMID: 34278443]
  • Jilan Nazeam, Esraa Z Mohammed, Mariam Raafat, Mariam Houssein, Asmaa Elkafoury, Dina Hamdy, Lina Jamil. Based on Principles and Insights of COVID-19 Epidemiology, Genome Sequencing, and Pathogenesis: Retrospective Analysis of Sinigrin and ProlixinRX (Fluphenazine) Provides Off-Label Drug Candidates. SLAS discovery : advancing life sciences R & D. 2020 12; 25(10):1123-1140. doi: 10.1177/2472555220950236. [PMID: 32804597]
  • Maria Fernanda Lopez-Rodriguez, Nadia Cymbaluk, Tasha Epp, Bernard Laarveld, Elena Carolina Serrano Recalde, Elemir Simko, Claire Card. Effects of the Glucosinolate Sinigrin in Combination With a Noniodine Supplemented Diet on Serum Iodine and Thyroid Hormone Concentrations in Nonpregnant Mares. Journal of equine veterinary science. 2020 08; 91(?):103110. doi: 10.1016/j.jevs.2020.103110. [PMID: 32684255]
  • Yeon Jeong Jang, Bongkyun Park, Hee-Weon Lee, Hye Jin Park, Hyun Jung Koo, Byung Oh Kim, Eun-Hwa Sohn, Sung Hee Um, Suhkneung Pyo. Sinigrin attenuates the progression of atherosclerosis in ApoE-/- mice fed a high-cholesterol diet potentially by inhibiting VCAM-1 expression. Chemico-biological interactions. 2017 Jun; 272(?):28-36. doi: 10.1016/j.cbi.2017.05.006. [PMID: 28483571]
  • Saurabh Awasthi, N T Saraswathi. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. Journal of biomolecular structure & dynamics. 2016 Oct; 34(10):2224-32. doi: 10.1080/07391102.2015.1110835. [PMID: 26488200]
  • Saurabh Awasthi, N T Saraswathi. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin. International journal of biological macromolecules. 2016 Feb; 83(?):410-5. doi: 10.1016/j.ijbiomac.2015.11.019. [PMID: 26571343]
  • Maria del Carmen Martínez-Ballesta, Beatriz Muries, Diego Ángel Moreno, Raúl Dominguez-Perles, Cristina García-Viguera, Micaela Carvajal. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress. Physiologia plantarum. 2014 Feb; 150(2):145-60. doi: 10.1111/ppl.12082. [PMID: 23837634]
  • Monika Okulicz. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats. Plant foods for human nutrition (Dordrecht, Netherlands). 2010 Sep; 65(3):217-24. doi: 10.1007/s11130-010-0183-3. [PMID: 20809411]
  • Vanessa Rungapamestry, Sylvie Rabot, Zoë Fuller, Brian Ratcliffe, Alan J Duncan. Influence of cooking duration of cabbage and presence of colonic microbiota on the excretion of N-acetylcysteine conjugates of allyl isothiocyanate and bioactivity of phase 2 enzymes in F344 rats. The British journal of nutrition. 2008 Apr; 99(4):773-81. doi: 10.1017/s0007114507841134. [PMID: 17967216]
  • Eun-Sun Hwang, Hyong Joo Lee. Induction of quinone reductase by allylisothiocyanate (AITC) and the N-acetylcysteine conjugate of AITC in Hepa1c1c7 mouse hepatoma cells. BioFactors (Oxford, England). 2006; 26(1):7-15. doi: 10.1002/biof.5520260102. [PMID: 16614479]
  • Gabrielle Rouzaud, Sheila A Young, Alan J Duncan. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004 Jan; 13(1):125-31. doi: 10.1158/1055-9965.epi-085-3. [PMID: 14744743]
  • E-S Hwang, E H Jeffery. Evaluation of urinary N-acetyl cysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2003 Dec; 41(12):1817-25. doi: 10.1016/s0278-6915(03)00235-7. [PMID: 14563407]
  • Cyrille Krul, Christèle Humblot, Catherine Philippe, Martijn Vermeulen, Marleen van Nuenen, Robert Havenaar, Sylvie Rabot. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis. 2002 Jun; 23(6):1009-16. doi: 10.1093/carcin/23.6.1009. [PMID: 12082023]
  • B Combourieu, L Elfoul, A M Delort, S Rabot. Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations. Drug metabolism and disposition: the biological fate of chemicals. 2001 Nov; 29(11):1440-5. doi: . [PMID: 11602519]
  • P J Kelly, A Bones, J T Rossiter. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta. 1998 Oct; 206(3):370-7. doi: 10.1007/s004250050412. [PMID: 9763706]
  • V K Srivastava, D C Hill. Thiocyanate ion formation in rapeseed meals. Canadian journal of biochemistry. 1975 May; 53(5):630-3. doi: 10.1139/o75-085. [PMID: 1139401]