(+)-Lysergic acid (BioDeep_00001870116)

Main id: BioDeep_00000006527

 


代谢物信息卡片


6-Methyl-9,10-didehydroergoline-8-carboxylic acid

化学式: C16H16N2O2 (268.1212)
中文名称: 麦角酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CN1CC(C=C2C1CC3=CNC4=CC=CC2=C34)C(=O)O
InChI: InChI=1S/C16H16N2O2/c1-18-8-10(16(19)20)5-12-11-3-2-4-13-15(11)9(7-17-13)6-14(12)18/h2-5,7,10,14,17H,6,8H2,1H3,(H,19,20)/t10?,14-/m1/s1

描述信息

同义名列表

3 个代谢物同义名

6-Methyl-9,10-didehydroergoline-8-carboxylic acid; (+)-Lysergic acid; Lysergic acid



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ALB, CYP3A4, FDPS, SLC6A3
Peripheral membrane protein 3 ACHE, HSD17B6, SELENBP1
Endosome membrane 1 SLC6A4
Endoplasmic reticulum membrane 1 CYP3A4
Nucleus 3 ACHE, ALB, SELENBP1
cytosol 4 ALB, FDPS, PHYH, SELENBP1
dendrite 2 HTR2C, SLC18A2
centrosome 2 ALB, SLC18A2
nucleoplasm 1 FDPS
Cell membrane 6 ACHE, GPR34, HTR2C, KCNA5, SLC6A3, SLC6A4
Cell projection, axon 2 SLC18A2, SLC6A3
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 7 GPR34, HTR2C, KCNA5, MMD, SLC18A2, SLC6A3, SLC6A4
Synapse 3 ACHE, HTR2C, SLC6A4
cell surface 4 ACHE, KCNA5, PLG, SLC6A3
glutamatergic synapse 1 PLG
Golgi apparatus 4 ACHE, ALB, KCNA5, MMD
Golgi membrane 1 INS
lysosomal membrane 1 MMD
neuromuscular junction 1 ACHE
neuronal cell body 1 SLC6A3
presynaptic membrane 2 SLC6A3, SLC6A4
synaptic vesicle 1 SLC18A2
Cytoplasm, cytosol 1 SELENBP1
Presynapse 1 SLC6A4
plasma membrane 12 ACHE, F12, GPR174, GPR34, HTR2C, KCNA5, MMD, P2RY10, PLG, SLC18A2, SLC6A3, SLC6A4
synaptic vesicle membrane 1 SLC18A2
terminal bouton 1 SLC18A2
Membrane 10 ACHE, CYP3A4, FDPS, GPR34, KCNA5, MMD, SELENBP1, SLC18A2, SLC6A3, SLC6A4
axon 2 SLC18A2, SLC6A3
extracellular exosome 4 ALB, F12, PLG, SELENBP1
Lysosome membrane 1 MMD
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 ALB, HSD17B6
extracellular space 7 ACHE, ALB, F12, GH1, INS, PLG, SELENBP1
perinuclear region of cytoplasm 2 ACHE, KCNA5
Schaffer collateral - CA1 synapse 1 PLG
intercalated disc 1 KCNA5
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 4 CYP3A4, GPR174, HSD17B6, SLC18A2
Microsome membrane 2 CYP3A4, HSD17B6
Secreted 6 ACHE, ALB, F12, GH1, INS, PLG
extracellular region 6 ACHE, ALB, F12, GH1, INS, PLG
neuronal cell body membrane 1 SLC6A3
mitochondrial matrix 1 FDPS
Extracellular side 1 ACHE
anchoring junction 1 ALB
centriolar satellite 1 GPR174
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 SLC18A2
external side of plasma membrane 1 PLG
Z disc 1 KCNA5
nucleolus 1 SELENBP1
postsynaptic membrane 2 SLC6A3, SLC6A4
Membrane raft 3 KCNA5, SLC6A3, SLC6A4
Cell junction, focal adhesion 1 SLC6A4
focal adhesion 1 SLC6A4
flotillin complex 1 SLC6A3
Peroxisome 2 FDPS, PHYH
basement membrane 1 ACHE
peroxisomal matrix 1 PHYH
collagen-containing extracellular matrix 2 F12, PLG
Cell projection, neuron projection 2 SLC6A3, SLC6A4
neuron projection 2 SLC6A3, SLC6A4
ciliary basal body 1 ALB
Late endosome membrane 1 MMD
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, PLG
Lipid-anchor, GPI-anchor 1 ACHE
fibrillar center 1 SELENBP1
Endomembrane system 1 SLC6A4
endosome lumen 2 GH1, INS
Cell projection, dendrite 1 SLC18A2
side of membrane 1 ACHE
potassium channel complex 1 KCNA5
voltage-gated potassium channel complex 1 KCNA5
secretory granule lumen 1 INS
secretory granule membrane 1 SLC18A2
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 ALB, INS
platelet alpha granule lumen 2 ALB, PLG
axon terminus 1 SLC6A3
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
9+0 non-motile cilium 1 PHYH
synaptic cleft 1 ACHE
dopaminergic synapse 2 SLC18A2, SLC6A3
Cytoplasmic vesicle, secretory vesicle membrane 1 SLC18A2
Rough endoplasmic reticulum 1 F12
intracellular canaliculus 1 KCNA5
growth hormone receptor complex 1 GH1
clathrin-sculpted monoamine transport vesicle membrane 1 SLC18A2
[Isoform H]: Cell membrane 1 ACHE
G protein-coupled serotonin receptor complex 1 HTR2C
serotonergic synapse 1 SLC6A4
ciliary transition fiber 1 ALB


文献列表

  • Abigail M Jones, Chey R Steen, Daniel G Panaccione. Independent Evolution of a Lysergic Acid Amide in Aspergillus Species. Applied and environmental microbiology. 2021 11; 87(24):e0180121. doi: 10.1128/aem.01801-21. [PMID: 34586904]
  • Chey R Steen, Jessi K Sampson, Daniel G Panaccione. A Baeyer-Villiger Monooxygenase Gene Involved in the Synthesis of Lysergic Acid Amides Affects the Interaction of the Fungus Metarhizium brunneum with Insects. Applied and environmental microbiology. 2021 08; 87(17):e0074821. doi: 10.1128/aem.00748-21. [PMID: 34160271]
  • R Bharadwaj, H Jagadeesan, S R Kumar, S Ramalingam. Molecular mechanisms in grass-Epichloë interactions: towards endophyte driven farming to improve plant fitness and immunity. World journal of microbiology & biotechnology. 2020 Jun; 36(7):92. doi: 10.1007/s11274-020-02868-5. [PMID: 32562008]
  • Paige E Bragg, Matthew D Maust, Daniel G Panaccione. Ergot Alkaloid Biosynthesis in the Maize (Zea mays) Ergot Fungus Claviceps gigantea. Journal of agricultural and food chemistry. 2017 Dec; 65(49):10703-10710. doi: 10.1021/acs.jafc.7b04272. [PMID: 29172518]
  • Stephanie L Arnold, Daniel G Panaccione. Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of cloA. Applied and environmental microbiology. 2017 07; 83(14):. doi: 10.1128/aem.00805-17. [PMID: 28476772]
  • Haritha Durairaj, Michael D Steury, Narayanan Parameswaran. Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages. International immunopharmacology. 2015 Apr; 25(2):485-92. doi: 10.1016/j.intimp.2015.02.029. [PMID: 25744603]
  • Sarah L Robinson, Daniel G Panaccione. Heterologous expression of lysergic acid and novel ergot alkaloids in Aspergillus fumigatus. Applied and environmental microbiology. 2014 Oct; 80(20):6465-72. doi: 10.1128/aem.02137-14. [PMID: 25107976]
  • M J M De Lorme, S L Lodge-Ivey, A M Craig. Physiological and digestive effects of Neotyphodium coenophialum-infected tall fescue fed to lambs. Journal of animal science. 2007 May; 85(5):1199-206. doi: 10.2527/jas.2005-430. [PMID: 17296774]
  • C L Schultz, S L Lodge-Ivey, L P Bush, A M Craig, J R Strickland. Effects of initial and extended exposure to an endophyte-infected tall fescue seed diet on faecal and urinary excretion of ergovaline and lysergic acid in mature geldings. New Zealand veterinary journal. 2006 Aug; 54(4):178-84. doi: 10.1080/00480169.2006.36692. [PMID: 16915339]
  • S L Lodge-Ivey, K Walker, T Fleischmann, J E True, A M Craig. Detection of lysergic acid in ruminal fluid, urine, and in endophyte-infected tall fescue using high-performance liquid chromatography. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2006 Jul; 18(4):369-74. doi: 10.1177/104063870601800408. [PMID: 16921876]
  • Birgit M Dietz, Gail B Mahady, Guido F Pauli, Norman R Farnsworth. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Brain research. Molecular brain research. 2005 Aug; 138(2):191-7. doi: 10.1016/j.molbrainres.2005.04.009. [PMID: 15921820]
  • Daniel G Panaccione, Brian A Tapper, Geoffrey A Lane, Elizabeth Davies, Karl Fraser. Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. Journal of agricultural and food chemistry. 2003 Oct; 51(22):6429-37. doi: 10.1021/jf0346859. [PMID: 14558758]
  • J M Schnitzius, N S Hill, C S Thompson, A M Craig. Semiquantitative determination of ergot alkaloids in seed, straw, and digesta samples using a competitive enzyme-linked immunosorbent assay. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2001 May; 13(3):230-7. doi: 10.1177/104063870101300307. [PMID: 11482600]
  • T Watanabe, R Pakala, T Katagiri, C R Benedict. Lipid peroxidation product 4-hydroxy-2-nonenal acts synergistically with serotonin in inducing vascular smooth muscle cell proliferation. Atherosclerosis. 2001 Mar; 155(1):37-44. doi: 10.1016/s0021-9150(00)00526-8. [PMID: 11223424]
  • R Pakala, J T Willerson, C R Benedict. Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation. 1997 Oct; 96(7):2280-6. doi: 10.1161/01.cir.96.7.2280. [PMID: 9337201]
  • S A Brooks, D R Lachno, B D Obermeyer. Automated high-performance liquid chromatographic method for the analysis of two novel ergoline compounds in human plasma. Journal of chromatography. B, Biomedical sciences and applications. 1997 Apr; 691(2):383-8. doi: 10.1016/s0378-4347(96)00438-0. [PMID: 9174275]
  • P Chen, Z Tian, G A Digenis, H H Tai. Enzyme immunoassay of two nicergoline metabolites, 10 alpha-methoxy-9, 10-dihydrolysergol (MDL) and 1-methyl-10 alpha-methoxy-9, 10-dihydrolysergol (MMDL). Research communications in molecular pathology and pharmacology. 1996 Jun; 92(3):315-28. doi: NULL. [PMID: 8827829]
  • A Sioufi, N Sandrenan, J Godbillon. Determination of 10 alpha-methoxy-9,10-dihydrolysergol, a nicergoline metabolite, in human urine by high performance liquid chromatography. Biomedical chromatography : BMC. 1992 Jan; 6(1):9-11. doi: 10.1002/bmc.1130060104. [PMID: 1600376]
  • M L Cohen, C J Parli, R W Fuller. 5-Hydroxytryptamine2 receptor antagonist activity of the acid metabolite (1-isopropyl dihydrolysergic acid) of the ergoline ester, sergolexole (LY281067). The Journal of pharmacology and experimental therapeutics. 1989 Dec; 251(3):1006-11. doi: NULL. [PMID: 2600800]
  • S R VandenBerg, S L Gonias. Covalent complexes of albumin with serotonin, ketanserin and lysergic acid antagonize the activity of serotonin in human platelets. Life sciences. 1989; 44(23):1777-85. doi: 10.1016/0024-3205(89)90565-1. [PMID: 2733551]
  • M L Cohen, R W Fuller, K D Kurz, C J Parli, N R Mason, D B Meyers, J K Smallwood, R E Toomey. Preclinical pharmacology of a new serotonergic receptor antagonist, LY281067. The Journal of pharmacology and experimental therapeutics. 1988 Jan; 244(1):106-12. doi: NULL. [PMID: 3335993]
  • F Erni. Liquid chromatography-mass spectrometry in the pharmaceutical industry: objectives and needs. Journal of chromatography. 1982 Apr; 251(2):141-51. doi: 10.1016/s0021-9673(00)98513-3. [PMID: 7096521]
  • C A Wilson, C E Horth, A McNeilly, P G McDonald. Effect of serotonin and progesterone on induced ovulation in immature rats. The Journal of endocrinology. 1975 Feb; 64(2):337-47. doi: 10.1677/joe.0.0640337. [PMID: 1117243]
  • F SICUTERI. PROPHYLACTIC TREATMENT OF MIGRAINE BY MEANS OF LYSERGIC ACID DERIVATIVES. Triangle; the Sandoz journal of medical science. 1963 Oct; 6(?):116-25. doi: . [PMID: 14087164]
  • C PIOVELLA, A DESILVESTRI. [INTRAVASCULAR ERYTHROCYTE AGGREGATION AND D-1 METHYL-LYSERGIC ACID BUTANOLAMIDE (DESERRIL OR UML 491)]. Cuore e circolazione. 1963 Aug; 47(?):179-85. doi: . [PMID: 14084723]