PERILLALDEHYDE (BioDeep_00001868109)

Main id: BioDeep_00000004944

 

PANOMIX_OTCML-2023


代谢物信息卡片


dl-Perillaldehyde

化学式: C10H14O (150.1045)
中文名称: 紫苏醛
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=C)C1CCC(=CC1)C=O
InChI: InChI=1S/C10H14O/c1-8(2)10-5-3-9(7-11)4-6-10/h3,7,10H,1,4-6H2,2H3

描述信息

同义名列表

4 个代谢物同义名

dl-Perillaldehyde; PERILLALDEHYDE; Perillyl aldehyde; Perillaldehyde



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

23 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AHR, AKT1, CASP3, CAT, FNTA, KEAP1, MAPK8, NFE2L2, NLRP3, PIK3CA, TP53, TXN
Peripheral membrane protein 2 CYP1B1, GORASP1
Endoplasmic reticulum membrane 2 CYP1B1, HMOX1
Nucleus 10 AHR, AKT1, CASP3, HMOX1, KEAP1, MAPK8, NFE2L2, NLRP3, TP53, TXN
cytosol 14 AHR, AKT1, CASP3, CAT, COX10, FNTA, HMOX1, KEAP1, MAPK8, NFE2L2, NLRP3, PIK3CA, TP53, TXN
mitochondrial membrane 1 COX10
centrosome 2 NFE2L2, TP53
nucleoplasm 9 AHR, AKT1, CASP3, HMOX1, KEAP1, MAPK8, NFE2L2, TP53, TXN
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 2 AKT1, TNF
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 1 COX10
Golgi apparatus membrane 2 GORASP1, NLRP3
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 2 GORASP1, NFE2L2
Golgi membrane 2 GORASP1, NLRP3
mitochondrial inner membrane 1 COX10
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 NFE2L2, NLRP3
plasma membrane 6 AKT1, FNTA, IFNLR1, NFE2L2, PIK3CA, TNF
Membrane 8 AKT1, CAT, COX10, CYP1B1, HMOX1, IFNLR1, NLRP3, TP53
axon 1 MAPK8
extracellular exosome 2 CAT, TXN
endoplasmic reticulum 4 HMOX1, KEAP1, NLRP3, TP53
extracellular space 3 HMOX1, IL6, TNF
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 5 CAT, COX10, CYP1B1, NLRP3, TP53
protein-containing complex 4 AHR, AKT1, CAT, TP53
intracellular membrane-bounded organelle 2 CAT, CYP1B1
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 IFNLR1
Secreted 3 IL6, NLRP3, TXN
extracellular region 6 CAT, DNAH9, IL6, NLRP3, TNF, TXN
mitochondrial outer membrane 1 HMOX1
Mitochondrion matrix 1 TP53
mitochondrial matrix 3 CAT, COX10, TP53
transcription regulator complex 2 AHR, TP53
centriolar satellite 1 KEAP1
motile cilium 1 DNAH9
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
nucleolus 2 COX10, TP53
midbody 1 KEAP1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
microtubule 1 DNAH9
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
axoneme 1 DNAH9
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
ciliary basal body 1 AKT1
chromatin 3 AHR, NFE2L2, TP53
mediator complex 1 NFE2L2
microtubule associated complex 1 FNTA
phagocytic cup 1 TNF
actin filament 1 KEAP1
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
site of double-strand break 1 TP53
Cul3-RING ubiquitin ligase complex 1 KEAP1
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
aryl hydrocarbon receptor complex 1 AHR
germ cell nucleus 1 TP53
replication fork 1 TP53
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 IL6
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
cytochrome complex 1 COX10
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
CAAX-protein geranylgeranyltransferase complex 1 FNTA
protein farnesyltransferase complex 1 FNTA
interleukin-28 receptor complex 1 IFNLR1
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
distal portion of axoneme 1 DNAH9


文献列表

  • Jiahui Wei, Zhengjia Liu, Hongbin Sun, Lei Xu. Perillaldehyde ameliorates lipopolysaccharide-induced acute lung injury via suppressing the cGAS/STING signaling pathway. International immunopharmacology. 2024 Mar; 130(?):111641. doi: 10.1016/j.intimp.2024.111641. [PMID: 38368770]
  • Zi-Yong Chu, Yu-Long Li, Lin Wang, Shu-Yun Wei, Sheng-Qiang Yang, Hong Zeng. Perillaldehyde: A promising antibacterial agent for the treatment of pneumonia caused by Acinetobacter baumannii infection. International immunopharmacology. 2024 Jan; 126(?):111311. doi: 10.1016/j.intimp.2023.111311. [PMID: 38043271]
  • Guanbo Wang, Yadi Wang, Kunchun Wang, Haonan Zhao, Mengjie Liu, Wenxing Liang, Delong Li. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Microbiology spectrum. 2023 06; 11(3):e0052623. doi: 10.1128/spectrum.00526-23. [PMID: 37191530]
  • Yaling Yin, Qianqian Niu, Hongyan Hou, Huadong Que, Shan Mi, Jinfang Yang, Zitian Li, Huanhuan Wang, Yanan Yu, Moli Zhu, Heqin Zhan, Qianqian Wang, Peng Li. PAE ameliorates doxorubicin-induced cardiotoxicity via suppressing NHE1 phosphorylation and stimulating PI3K/AKT phosphorylation. International immunopharmacology. 2022 Dec; 113(Pt A):109274. doi: 10.1016/j.intimp.2022.109274. [PMID: 36252472]
  • Jiayin Zhao, Ke Liu, Ruitong Wang, Taihong Liu, Zhenfeng Wu, Liping Ding, Yu Fang. Dual-Mode Optical Sensor Array for Detecting and Identifying Perillaldehyde in Solution Phase and Plant Leaf with Smartphone. ACS applied materials & interfaces. 2022 Nov; 14(47):53323-53330. doi: 10.1021/acsami.2c16469. [PMID: 36382999]
  • Elena Catanzaro, Eleonora Turrini, Tessa Kerre, Simon Sioen, Ans Baeyens, Alessandra Guerrini, Mohamed Lamin Abdi Bellau, Gianni Sacchetti, Guglielmo Paganetto, Dmitri V Krysko, Carmela Fimognari. Perillaldehyde is a new ferroptosis inducer with a relevant clinical potential for acute myeloid leukemia therapy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Oct; 154(?):113662. doi: 10.1016/j.biopha.2022.113662. [PMID: 36800294]
  • Zhuoyuan Lin, Sheng Huang, Xitao LingHu, Yixiao Wang, Bin Wang, Shaowen Zhong, Shangyan Xie, Xiaohong Xu, Aorigele Yu, Atsushi Nagai, Yuta Kobayashi, Qingde Wa, Shuai Huang. Perillaldehyde inhibits bone metastasis and receptor activator of nuclear factor-κB ligand (RANKL) signaling-induced osteoclastogenesis in prostate cancer cell lines. Bioengineered. 2022 02; 13(2):2710-2719. doi: 10.1080/21655979.2021.2001237. [PMID: 34738877]
  • Thi Kim Loan Nguyen, Myung-Min Oh. Physiological and biochemical responses of green and red perilla to LED-based light. Journal of the science of food and agriculture. 2021 Jan; 101(1):240-252. doi: 10.1002/jsfa.10636. [PMID: 33460178]
  • Fei Zhou, Ou Dai, Cheng Peng, Liang Xiong, Hui Ao, Fei Liu, Qin-Mei Zhou. Pro-Angiogenic Effects of Essential Oil from Perilla frutescens and Its Main Component (Perillaldehyde) on Zebrafish Embryos and Human Umbilical Vein Endothelial Cells. Drug design, development and therapy. 2021; 15(?):4985-4999. doi: 10.2147/dddt.s336826. [PMID: 34924753]
  • Michiru Kimura, Michiho Ito. Bioconversion of essential oil components of Perilla frutescens by Saccharomyces cerevisiae. Journal of natural medicines. 2020 Jan; 74(1):189-199. doi: 10.1007/s11418-019-01363-y. [PMID: 31576496]
  • Ji-Xiao Zhu, Wei-Qiong Hu, Shu-Qi Dong, Li-Tao Yi, Jin-Xiang Zeng, Min Li. Hippocampal BDNF signaling is required for the antidepressant effects of perillaldehyde. Pharmacological reports : PR. 2019 Jun; 71(3):430-437. doi: 10.1016/j.pharep.2019.01.009. [PMID: 31003153]
  • Yichen Song, Ruoxi Sun, Zhouye Ji, Xiaoxi Li, Qiang Fu, Shiping Ma. Perilla aldehyde attenuates CUMS-induced depressive-like behaviors via regulating TXNIP/TRX/NLRP3 pathway in rats. Life sciences. 2018 Aug; 206(?):117-124. doi: 10.1016/j.lfs.2018.05.038. [PMID: 29800538]
  • Masakazu Hara, Naoya Yamauchi, Yoshiki Sumita. Monoterpenes induce the heat shock response in Arabidopsis. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2018 Apr; 73(5-6):177-184. doi: 10.1515/znc-2017-0116. [PMID: 29197862]
  • Takuya Uemura, Takuya Yashiro, Rei Oda, Naoki Shioya, Tadaaki Nakajima, Masakazu Hachisu, Shoko Kobayashi, Chiharu Nishiyama, Gen-Ichiro Arimura. Intestinal Anti-Inflammatory Activity of Perillaldehyde. Journal of agricultural and food chemistry. 2018 Apr; 66(13):3443-3448. doi: 10.1021/acs.jafc.8b00353. [PMID: 29533613]
  • Naoya Kitamura, Machiko Nishino, Akihiko Fujii, Kohjiro Hashizume, Junji Nakamura, Hidehiko Kondo, Atsushi Ohuchi, Tadashi Hase, Takatoshi Murase. Perilla extract improves frequent urination in spontaneously hypertensive rats with enhancement of the urothelial presence and anti-inflammatory effects. International journal of urology : official journal of the Japanese Urological Association. 2018 03; 25(3):298-304. doi: 10.1111/iju.13516. [PMID: 29268303]
  • Naser Boroomand, Mohammad Sadat-Hosseini, Mojtaba Moghbeli, Mostafa Farajpour. Phytochemical components, total phenol and mineral contents and antioxidant activity of six major medicinal plants from Rayen, Iran. Natural product research. 2018 Mar; 32(5):564-567. doi: 10.1080/14786419.2017.1315579. [PMID: 28403651]
  • Emmanuel Omari-Siaw, Qilong Wang, Congyong Sun, Zengquan Gu, Yuan Zhu, Xia Cao, Caleb Kesse Firempong, Rita Agyare, Ximing Xu, Jiangnan Yu. Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. International journal of pharmaceutics. 2016 Nov; 513(1-2):68-77. doi: 10.1016/j.ijpharm.2016.08.042. [PMID: 27567929]
  • Jun Tian, Yanzhen Wang, Hong Zeng, Zongyun Li, Peng Zhang, Akalate Tessema, Xue Peng. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. International journal of food microbiology. 2015 Jun; 202(?):27-34. doi: 10.1016/j.ijfoodmicro.2015.02.022. [PMID: 25755082]
  • Naoko Sato-Masumoto, Michiho Ito. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde. Phytochemistry. 2014 Aug; 104(?):12-20. doi: 10.1016/j.phytochem.2014.04.019. [PMID: 24864017]
  • Wei-Wei Ji, Shu-Yuan Wang, Zhan-Qiang Ma, Rui-Peng Li, Shan-Shan Li, Jin-Song Xue, Wei Li, Xing-Xing Niu, Lu Yan, Xian Zhang, Qiang Fu, Rong Qu, Shi-Ping Ma. Effects of perillaldehyde on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacology, biochemistry, and behavior. 2014 Jan; 116(?):1-8. doi: 10.1016/j.pbb.2013.10.026. [PMID: 24201050]
  • Masayuki Mizuno, Hiroya Yurimoto, Hiroyuki Iguchi, Akio Tani, Yasuyoshi Sakai. Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants. Bioscience, biotechnology, and biochemistry. 2013; 77(7):1533-8. doi: 10.1271/bbb.130207. [PMID: 23832351]
  • Lars Duelund, Arnaud Amiot, Alexandra Fillon, Ole G Mouritsen. Influence of the active compounds of Perilla frutescens leaves on lipid membranes. Journal of natural products. 2012 Feb; 75(2):160-6. doi: 10.1021/np200713q. [PMID: 22272932]
  • Yong-Wei Wang, Wei-Cai Zeng, Pei-Yu Xu, Ya-Jia Lan, Rui-Xue Zhu, Kai Zhong, Yi-Na Huang, Hong Gao. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. International journal of molecular sciences. 2012; 13(3):3382-3393. doi: 10.3390/ijms13033382. [PMID: 22489157]
  • Ahmet Parlatan, Cemalettin Sariçoban, Mehmet Musa Ozcan. Chemical composition and antimicrobial activity of the extracts of Kefe cumin (Laser trilobum L.) fruits from different regions. International journal of food sciences and nutrition. 2009 Nov; 60(7):606-17. doi: 10.3109/09637480801993938. [PMID: 19817640]
  • Hiroshi Masutani, Ryoko Otsuki, Yoshimi Yamaguchi, Masahiro Takenaka, Nobue Kanoh, Koji Takatera, Yuji Kunimoto, Junji Yodoi. Fragrant unsaturated aldehydes elicit activation of the Keap1/Nrf2 system leading to the upregulation of thioredoxin expression and protection against oxidative stress. Antioxidants & redox signaling. 2009 May; 11(5):949-62. doi: 10.1089/ars.2008.2292. [PMID: 19123792]
  • Angela Bassoli, Gigliola Borgonovo, Sara Caimi, Leonardo Scaglioni, Gabriella Morini, Aniello Schiano Moriello, Vincenzo Di Marzo, Luciano De Petrocellis. Taste-guided identification of high potency TRPA1 agonists from Perilla frutescens. Bioorganic & medicinal chemistry. 2009 Feb; 17(4):1636-9. doi: 10.1016/j.bmc.2008.12.057. [PMID: 19162486]
  • S Takagi, H Goto, Y Shimada, K Nakagomi, Y Sadakane, Y Hatanaka, K Terasawa. Vasodilative effect of perillaldehyde on isolated rat aorta. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2005 May; 12(5):333-7. doi: 10.1016/j.phymed.2003.08.004. [PMID: 15957366]
  • M O Omolo, D Okinyo, I O Ndiege, W Lwande, A Hassanali. Fumigant toxicity of the essential oils of some African plants against Anopheles gambiae sensu stricto. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2005 Mar; 12(3):241-6. doi: 10.1016/j.phymed.2003.10.004. [PMID: 15830848]
  • Mendel Friedman, Robert Buick, Christopher T Elliott. Antibacterial activities of naturally occurring compounds against antibiotic-resistant Bacillus cereus vegetative cells and spores, Escherichia coli, and Staphylococcus aureus. Journal of food protection. 2004 Aug; 67(8):1774-8. doi: 10.4315/0362-028x-67.8.1774. [PMID: 15330549]
  • I Hierro, A Valero, P Pérez, P González, M M Cabo, M P Montilla, M C Navarro. Action of different monoterpenic compounds against Anisakis simplex s.l. L3 larvae. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2004 Jan; 11(1):77-82. doi: 10.1078/0944-7113-00375. [PMID: 14971725]
  • Sarah A Holstein, Raymond J Hohl. Monoterpene regulation of Ras and Ras-related protein expression. Journal of lipid research. 2003 Jun; 44(6):1209-15. doi: 10.1194/jlr.m300057-jlr200. [PMID: 12671036]
  • Mendel Friedman, Philip R Henika, Robert E Mandrell. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of food protection. 2002 Oct; 65(10):1545-60. doi: 10.4315/0362-028x-65.10.1545. [PMID: 12380738]
  • Paul McGeady, Daniel L Wansley, David A Logan. Carvone and perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth. Journal of natural products. 2002 Jul; 65(7):953-5. doi: 10.1021/np010621l. [PMID: 12141851]
  • P J Boon, D van der Boon, G J Mulder. Cytotoxicity and biotransformation of the anticancer drug perillyl alcohol in PC12 cells and in the rat. Toxicology and applied pharmacology. 2000 Aug; 167(1):55-62. doi: 10.1006/taap.2000.8988. [PMID: 10936079]
  • J Pan, Z Xu, L Ji, Z Zhao, X Tang. [Constituents of essential oils from leaves, stems, and fruits of Perilla frutescens (L.) Britt]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1992 Mar; 17(3):164-5, 192. doi: ". [PMID: 1418538]
  • A Sugaya, T Tsuda, T Obuchi. [Pharmacological studies on Perillae Herba. I. Neuropharmacological action of water extract and perillaldehyde (author's transl)]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1981 Jul; 101(7):642-8. doi: 10.1248/yakushi1947.101.7_642. [PMID: 7320836]
  • . . . . doi: . [PMID: 17192005]