L-Octanoylcarnitine (BioDeep_00000405366)

Main id: BioDeep_00000003501

 

PANOMIX_OTCML-2023


代谢物信息卡片


(3R)-3-(octanoyloxy)-4-(trimethylazaniumyl)butanoate

化学式: C15H29NO4 (287.2096)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
InChI: InChI=1S/C15H29NO4/c1-5-6-7-8-9-10-15(19)20-13(11-14(17)18)12-16(2,3)4/h13H,5-12H2,1-4H3/t13-/m1/s1

描述信息

L-Octanoylcarnitine is a plasma metabolite and a physiologically active form of octanoylcarnitine. L-Octanoylcarnitine can be used for the research of breast cancer[1][2][3].

同义名列表

2 个代谢物同义名

L-Octanoylcarnitine; (3R)-3-(octanoyloxy)-4-(trimethylazaniumyl)butanoate



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ACADL, ACADM, AFP, AK4, ALB, CAT, HIF1A, PTPN1, SLC22A5
Peripheral membrane protein 4 CPT2, CRAT, NDUFS4, PTPN1
Endoplasmic reticulum membrane 1 PTPN1
Mitochondrion membrane 1 SLC25A20
Nucleus 4 ACADM, ALB, CS, HIF1A
cytosol 8 ALB, CAT, CRAT, HCCS, HIF1A, PTPN1, SLC22A5, SLC25A20
mitochondrial membrane 2 ACADL, ACADM
nuclear body 1 HIF1A
centrosome 1 ALB
nucleoplasm 3 ATP2B1, CPT2, HIF1A
RNA polymerase II transcription regulator complex 1 HIF1A
Cell membrane 2 ATP2B1, SLC22A5
Lipid-anchor 1 HCCS
Cytoplasmic side 1 PTPN1
Multi-pass membrane protein 3 ATP2B1, SLC22A5, SLC25A20
Synapse 1 ATP2B1
glutamatergic synapse 2 ATP2B1, PTPN1
Golgi apparatus 1 ALB
Golgi membrane 1 INS
mitochondrial inner membrane 6 ATAD3A, CPT2, CRAT, HCCS, NDUFS4, SLC25A20
postsynapse 1 PTPN1
presynaptic membrane 1 ATP2B1
plasma membrane 3 ATP2B1, GCG, SLC22A5
synaptic vesicle membrane 1 ATP2B1
Membrane 8 ATAD3A, ATP2B1, CAT, CS, HCCS, PTPN1, SLC22A5, SLC25A20
apical plasma membrane 1 SLC22A5
axon 1 ACADM
basolateral plasma membrane 1 ATP2B1
extracellular exosome 5 ALB, ATP2B1, CAT, CS, SLC22A5
endoplasmic reticulum 4 ALB, CRAT, PTPN1, SLC22A5
extracellular space 5 AFP, ALB, CTF1, GCG, INS
mitochondrion 11 ACADL, ACADM, AK4, ATAD3A, CAT, CPT2, CRAT, CS, HCCS, NDUFS4, SLC25A20
protein-containing complex 4 ALB, CAT, HIF1A, PTPN1
intracellular membrane-bounded organelle 2 ATP2B1, CAT
Secreted 4 AFP, ALB, GCG, INS
extracellular region 5 ALB, CAT, CTF1, GCG, INS
Single-pass membrane protein 1 ATAD3A
Mitochondrion matrix 4 ACADL, ACADM, AK4, CS
mitochondrial matrix 6 ACADL, ACADM, AK4, CAT, CS, PTPN1
anchoring junction 1 ALB
motile cilium 1 HIF1A
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nucleolus 1 CPT2
axon cytoplasm 1 HIF1A
Early endosome 1 PTPN1
Apical cell membrane 1 SLC22A5
Mitochondrion inner membrane 5 ATAD3A, CPT2, CRAT, HCCS, NDUFS4
Matrix side 3 CPT2, CRAT, NDUFS4
focal adhesion 1 CAT
mitochondrial nucleoid 1 ATAD3A
Peroxisome 2 CAT, CRAT
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, CRAT
peroxisomal membrane 1 CAT
lateral plasma membrane 1 ATP2B1
nuclear speck 1 HIF1A
ciliary basal body 1 ALB
chromatin 1 HIF1A
cell projection 1 ATP2B1
centriole 1 ALB
mitochondrial crista 1 PTPN1
[Isoform 1]: Mitochondrion 1 CRAT
brush border membrane 1 SLC22A5
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 1 ATP2B1
Endomembrane system 1 PTPN1
endosome lumen 2 INS, PTPN1
sorting endosome 1 PTPN1
Nucleus speckle 1 HIF1A
euchromatin 1 HIF1A
Presynaptic cell membrane 1 ATP2B1
basal plasma membrane 1 SLC22A5
respiratory chain complex I 1 NDUFS4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 AFP, ALB, GCG, INS
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
mitochondrial envelope 1 SLC25A20
immunological synapse 1 ATP2B1
Basal cell membrane 1 SLC22A5
[Isoform 3]: Endoplasmic reticulum 1 SLC22A5
[Glucagon-like peptide 1]: Secreted 1 GCG
catalase complex 1 CAT
photoreceptor ribbon synapse 1 ATP2B1
cytoplasmic side of endoplasmic reticulum membrane 1 PTPN1
Mitochondrion matrix, mitochondrion nucleoid 1 ATAD3A
[Isoform 2]: Peroxisome 1 CRAT
ciliary transition fiber 1 ALB


文献列表

  • Yu-Yu Li, Jia Xu, Xue-Cheng Sun, Hong-Yu Li, Kai Mu. Newborn screening and genetic variation of medium chain acyl-CoA dehydrogenase deficiency in the Chinese population. Journal of pediatric endocrinology & metabolism : JPEM. 2022 Oct; 35(10):1264-1271. doi: 10.1515/jpem-2022-0394. [PMID: 36068006]
  • Emmalie A Jager, Myrthe M Kuijpers, Annet M Bosch, Margot F Mulder, Estela R Gozalbo, Gepke Visser, Maaike de Vries, Monique Williams, Hans R Waterham, Francjan J van Spronsen, Peter C J I Schielen, Terry G J Derks. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. Journal of inherited metabolic disease. 2019 09; 42(5):890-897. doi: 10.1002/jimd.12102. [PMID: 31012112]
  • Yanhan Li, Ruoxin Zhu, Yi Liu, Jinqing Song, Jing Xu, Yanling Yang. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Six cases in the Chinese population. Pediatrics international : official journal of the Japan Pediatric Society. 2019 Jun; 61(6):551-557. doi: 10.1111/ped.13872. [PMID: 31033143]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Paul E Minkler, Maria S K Stoll, Stephen T Ingalls, Charles L Hoppel. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS. Molecular genetics and metabolism. 2017 04; 120(4):363-369. doi: 10.1016/j.ymgme.2017.02.006. [PMID: 28190699]
  • Patricia L Hall, Angela Wittenauer, Arthur Hagar. Newborn screening for medium chain acyl-CoA dehydrogenase deficiency: performance improvement by monitoring a new ratio. Molecular genetics and metabolism. 2014 Dec; 113(4):274-7. doi: 10.1016/j.ymgme.2014.10.007. [PMID: 25454677]
  • Anelise M Tonin, Mateus Grings, Lisiane A Knebel, Ângela Zanatta, Alana P Moura, César A J Ribeiro, Guilhian Leipnitz, Moacir Wajner. Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in medium-chain acyl-CoA dehydrogenase deficiency. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2012 Aug; 30(5):383-90. doi: 10.1016/j.ijdevneu.2012.03.238. [PMID: 22472139]
  • S Larsen, N Stride, M Hey-Mogensen, C N Hansen, J L Andersen, S Madsbad, D Worm, J W Helge, F Dela. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes. Diabetologia. 2011 Jun; 54(6):1427-36. doi: 10.1007/s00125-011-2098-4. [PMID: 21424396]
  • Emily H Smith, Cheryl Thomas, David McHugh, Dimitar Gavrilov, Kimiyo Raymond, Piero Rinaldo, Silvia Tortorelli, Dietrich Matern, W Edward Highsmith, Devin Oglesbee. Allelic diversity in MCAD deficiency: the biochemical classification of 54 variants identified during 5 years of ACADM sequencing. Molecular genetics and metabolism. 2010 Jul; 100(3):241-50. doi: 10.1016/j.ymgme.2010.04.001. [PMID: 20434380]
  • E M Maier, J Pongratz, A C Muntau, B Liebl, U Nennstiel-Ratzel, U Busch, R Fingerhut, B Olgemöller, A A Roscher, W Röschinger. Dissection of biochemical borderline phenotypes in carriers and genetic variants of medium-chain acyl-CoA dehyrogenase deficiency: implications for newborn screening [corrected]. Clinical genetics. 2009 Aug; 76(2):179-87. doi: 10.1111/j.1399-0004.2009.01217.x. [PMID: 19780764]
  • William J Rhead. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: a global perspective. Journal of inherited metabolic disease. 2006 Apr; 29(2-3):370-7. doi: 10.1007/s10545-006-0292-1. [PMID: 16763904]
  • D R de Assis, R C Maria, G C Ferreira, P F Schuck, A Latini, C S Dutra-Filho, C M D Wannmacher, A T S Wyse, M Wajner. Na+, K+ ATPase activity is markedly reduced by cis-4-decenoic acid in synaptic plasma membranes from cerebral cortex of rats. Experimental neurology. 2006 Jan; 197(1):143-9. doi: 10.1016/j.expneurol.2005.09.002. [PMID: 16203000]
  • E Schmidt-Sommerfeld, D Penn, M Duran, M J Bennett, R Santer, C A Stanley. Detection of inborn errors of fatty acid oxidation from acylcarnitine analysis of plasma and blood spots with the radioisotopic exchange-high-performance liquid chromatographic method. The Journal of pediatrics. 1993 May; 122(5 Pt 1):708-14. doi: 10.1016/s0022-3476(06)80009-0. [PMID: 8496747]
  • J L Van Hove, W Zhang, S G Kahler, C R Roe, Y T Chen, N Terada, D H Chace, A K Iafolla, J H Ding, D S Millington. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. American journal of human genetics. 1993 May; 52(5):958-66. doi: NULL. [PMID: 8488845]
  • E Schmidt-Sommerfeld, D Penn, P Rinaldo, D Kossak, B U Li, Z H Huang, D A Gage. Urinary medium-chain acylcarnitines in medium-chain acyl-CoA dehydrogenase deficiency, medium-chain triglyceride feeding and valproic acid therapy: sensitivity and specificity of the radioisotopic exchange/high performance liquid chromatography method. Pediatric research. 1992 Jun; 31(6):545-51. doi: 10.1203/00006450-199206000-00002. [PMID: 1635814]
  • M R Muci, G V Gnoni. Short-term effects of triiodothyronine on exogenous and de novo synthesized fatty acids in rat hepatocytes. Biochemistry international. 1991 Dec; 25(5):807-13. doi: . [PMID: 1804101]
  • M Duran, D Ketting, R van Vossen, T E Beckeringh, L Dorland, L Bruinvis, S K Wadman. Octanoylglucuronide excretion in patients with a defective oxidation of medium-chain fatty acids. Clinica chimica acta; international journal of clinical chemistry. 1985 Nov; 152(3):253-60. doi: 10.1016/0009-8981(85)90100-7. [PMID: 4064333]
  • M Duran, G Mitchell, J B de Klerk, J P de Jager, M Hofkamp, L Bruinvis, D Ketting, J M Saudubray, S K Wadman. Octanoic acidemia and octanoylcarnitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. The Journal of pediatrics. 1985 Sep; 107(3):397-404. doi: 10.1016/s0022-3476(85)80514-x. [PMID: 4032135]
  • J M Amatruda, D H Lockwood, S Margolis, L A Kiesow. [14C]palmitate uptake in isolated rat liver mitochondria: effects of fasting, diabetes mellitus, and inhibitors of carnitine acyltransferase. Journal of lipid research. 1978 Aug; 19(6):688-94. doi: . [PMID: 99482]