Lithocholic acid (BioDeep_00000398594)

Main id: BioDeep_00000003608

Secondary id: BioDeep_00000018694

natural product PANOMIX_OTCML-2023 Bile acids BioNovoGene_Lab2019


代谢物信息卡片


3ALPHA-HYDROXY-5-BETA-CHOLANATE

化学式: C24H40O3 (376.2977)
中文名称: 石胆酸
谱图信息: 最多检出来源 Homo sapiens(blood) 24.08%

分子结构信息

SMILES: CC(CCC(=O)O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)O)C)C
InChI: InChI=1S/C24H40O3/c1-15(4-9-22(26)27)19-7-8-20-18-6-5-16-14-17(25)10-12-23(16,2)21(18)11-13-24(19,20)3/h15-21,25H,4-14H2,1-3H3,(H,26,27)

描述信息

A monohydroxy-5beta-cholanic acid with a alpha-hydroxy substituent at position 3. It is a bile acid obtained from chenodeoxycholic acid by bacterial action.
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
D013501 - Surface-Active Agents > D003902 - Detergents
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.575
Lithocholic acid is a toxic secondary bile acid that can promote intrahepatic cholestasis and promote tumorigenesis.

同义名列表

4 个代谢物同义名

Lithocholic acid; 3ALPHA-HYDROXY-5-BETA-CHOLANATE; 3α-Hydroxy-5β-cholanic acid; Lithocholic acid



数据库引用编号

58 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ALB, CASP3, CYP3A4, HPGDS, VDR
Endoplasmic reticulum membrane 2 CYP3A4, CYP7A1
Nucleus 5 ALB, CASP3, NR1H4, NR1I2, VDR
cytosol 5 ALB, CASP3, GPT, HPGDS, VDR
nuclear body 1 NR1I2
centrosome 1 ALB
nucleoplasm 5 CASP3, HPGDS, NR1H4, NR1I2, VDR
RNA polymerase II transcription regulator complex 2 NR1H4, VDR
Cell membrane 5 ABCB11, EPHA2, GPRC5A, KCNMA1, TNF
lamellipodium 1 EPHA2
ruffle membrane 1 EPHA2
Multi-pass membrane protein 5 ABCB11, ABCC2, ABCC3, GPRC5A, KCNMA1
cell surface 4 ABCB11, ABCC2, EPHA2, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 1 ALB
Golgi membrane 2 ABCB11, INS
mitochondrial inner membrane 1 CYP24A1
neuronal cell body 2 CASP3, TNF
endosome 1 ABCB11
plasma membrane 8 ABCB11, ABCC2, ABCC3, EPHA2, GCG, GPRC5A, KCNMA1, TNF
Membrane 6 ABCB11, ABCC2, ABCC3, CYP3A4, EPHA2, KCNMA1
apical plasma membrane 3 ABCB11, ABCC2, KCNMA1
basolateral plasma membrane 1 ABCC3
caveola 1 KCNMA1
extracellular exosome 4 ABCB11, ALB, GPRC5A, GPT
endoplasmic reticulum 1 ALB
extracellular space 5 ALB, GCG, IL6, INS, TNF
intercellular canaliculus 2 ABCB11, ABCC2
mitochondrion 1 CYP24A1
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 4 CYP3A4, CYP7A1, GPRC5A, HPGDS
Microsome membrane 2 CYP3A4, CYP7A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 EPHA2
Secreted 4 ALB, GCG, IL6, INS
extracellular region 5 ALB, GCG, IL6, INS, TNF
Single-pass membrane protein 2 CYP7A1, EPHA2
anchoring junction 1 ALB
transcription regulator complex 1 NR1I2
external side of plasma membrane 1 TNF
nucleolus 1 GPRC5A
recycling endosome 2 ABCB11, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 GPRC5A
postsynaptic membrane 1 KCNMA1
Apical cell membrane 2 ABCB11, ABCC2
Cell projection, ruffle membrane 1 EPHA2
Membrane raft 1 TNF
Cell junction, focal adhesion 1 EPHA2
focal adhesion 1 EPHA2
receptor complex 4 EPHA2, GPRC5A, NR1H4, VDR
ciliary basal body 1 ALB
chromatin 3 NR1H4, NR1I2, VDR
phagocytic cup 1 TNF
[Isoform 3]: Nucleus 1 NR1H4
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 1 ABCC3
Recycling endosome membrane 1 ABCB11
endosome lumen 1 INS
leading edge membrane 1 EPHA2
Cytoplasmic vesicle membrane 1 GPRC5A
euchromatin 1 NR1H4
intermediate filament cytoskeleton 1 NR1I2
basal plasma membrane 1 ABCC3
voltage-gated potassium channel complex 1 KCNMA1
secretory granule lumen 2 GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, GCG, IL6, INS
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
tight junction 1 EPHA2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
[Isoform 2]: Nucleus 1 NR1H4
[Isoform 1]: Nucleus 1 NR1H4
Basal cell membrane 1 ABCC3
death-inducing signaling complex 1 CASP3
[Isoform 4]: Nucleus 1 NR1H4
intracellular canaliculus 1 ABCB11
lamellipodium membrane 1 EPHA2
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Cell projection, lamellipodium membrane 1 EPHA2
interleukin-6 receptor complex 1 IL6
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Song Chen, Zongren Hu, Jianbang Tang, Haipeng Zhu, Yuhua Zheng, Jiedong Xiao, Youhua Xu, Yao Wang, Yi Luo, Xiaoying Mo, Yalan Wu, Jianwen Guo, Yongliang Zhang, Huanhuan Luo. High temperature and humidity in the environment disrupt bile acid metabolism, the gut microbiome, and GLP-1 secretion in mice. Communications biology. 2024 Apr; 7(1):465. doi: 10.1038/s42003-024-06158-w. [PMID: 38632312]
  • Han-En Tsai, Chia-Ling Chen, Tzu-Ting Chang, Chih-Wei Fu, Wei-Chia Chen, Ser John Lynon P Perez, Pei-Wen Hsiao, Ming-Hong Tai, Wen-Shan Li. Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis. International journal of molecular sciences. 2024 Apr; 25(8):. doi: 10.3390/ijms25084283. [PMID: 38673867]
  • Shu Dai, Rui Wu, Ke Fu, Yanzhi Li, Chenghao Yao, Yanfang Liu, Fang Zhang, Shenglin Zhang, Yiling Guo, Yuxin Yao, Yunxia Li. Exploring the effect and mechanism of cucurbitacin B on cholestatic liver injury based on network pharmacology and experimental verification. Journal of ethnopharmacology. 2024 Mar; 322(?):117584. doi: 10.1016/j.jep.2023.117584. [PMID: 38104874]
  • Anita Wnętrzak, Dawid Szymczuk, Anna Chachaj-Brekiesz, Patrycja Dynarowicz-Latka, Dawid Lupa, Ewelina W Lipiec, Paulina Laszuk, Aneta D Petelska, Karolina H Markiewicz, Agnieszka Z Wilczewska. Lithocholic acid-based oligomers as drug delivery candidates targeting model of lipid raft. Biochimica et biophysica acta. Biomembranes. 2024 Feb; ?(?):184294. doi: 10.1016/j.bbamem.2024.184294. [PMID: 38316379]
  • Ang Li, Fei Li, Wei Song, Zi-Li Lei, Qian-Qian Sha, Shao-Yuan Liu, Chang-Yin Zhou, Xue Zhang, Xiao-Zhen Li, Heide Schatten, Teng Zhang, Qing-Yuan Sun, Xiang-Hong Ou. Gut microbiota-bile acid-vitamin D axis plays an important role in determining oocyte quality and embryonic development. Clinical and translational medicine. 2023 10; 13(10):e1236. doi: 10.1002/ctm2.1236. [PMID: 37846137]
  • Yue Li, Qian Wang, Jingyi Jin, Bo Tan, Jie Ren, Guochao Song, Bin Zou, Fengyi Weng, Dongming Yan, Furong Qiu. 15,16-dihydrotanshinone I in Danshen ethanol extract aggravated cholestasis by inhibiting Cyp3a11 mediated bile acids hydroxylation. Toxicology letters. 2023 Feb; 377(?):62-70. doi: 10.1016/j.toxlet.2023.02.005. [PMID: 36804361]
  • Weijian Li, Zeyu Wang, Ruirong Lin, Shuai Huang, Huijie Miao, Lu Zou, Ke Liu, Xuya Cui, Ziyi Wang, Yijian Zhang, Chengkai Jiang, Shimei Qiu, Jiyao Ma, Wenguang Wu, Yingbin Liu. Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism. Biochemical pharmacology. 2022 11; 205(?):115253. doi: 10.1016/j.bcp.2022.115253. [PMID: 36176239]
  • Priyanka Verma, Amit Arora, Kajal Rana, Devashish Mehta, Raunak Kar, Vikas Verma, C V Srikanth, Veena S Patil, Avinash Bajaj. Gemini lipid nanoparticle (GLNP)-mediated oral delivery of TNF-α siRNA mitigates gut inflammation via inhibiting the differentiation of CD4+ T cells. Nanoscale. 2022 Oct; 14(39):14717-14731. doi: 10.1039/d1nr05644a. [PMID: 36169577]
  • Hajime Takei, Seiko Narushima, Mitsuyoshi Suzuki, Genta Kakiyama, Takahiro Sasaki, Tsuyoshi Murai, Yuichiro Yamashiro, Hiroshi Nittono. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. Journal of lipid research. 2022 10; 63(10):100275. doi: 10.1016/j.jlr.2022.100275. [PMID: 36089004]
  • Zhoushan Feng, Chunhong Jia, Xiaojun Lin, Hu Hao, Sitao Li, Fei Li, Qiliang Cui, Yaoyong Chen, Fan Wu, Xin Xiao. The inhibition of enterocyte proliferation by lithocholic acid exacerbates necrotizing enterocolitis through downregulating the Wnt/β-catenin signalling pathway. Cell proliferation. 2022 May; 55(5):e13228. doi: 10.1111/cpr.13228. [PMID: 35441471]
  • Mark D Muthiah, Ekaterina Smirnova, Puneet Puri, Naga Chalasani, Vijay H Shah, Calvin Kiani, Stephanie Taylor, Faridoddin Mirshahi, Arun J Sanyal. Development of Alcohol-Associated Hepatitis Is Associated With Specific Changes in Gut-Modified Bile Acids. Hepatology communications. 2022 05; 6(5):1073-1089. doi: 10.1002/hep4.1885. [PMID: 34984859]
  • Jae Won Lee, Elise S Cowley, Patricia G Wolf, Heidi L Doden, Tsuyoshi Murai, Kelly Yovani Olivos Caicedo, Lindsey K Ly, Furong Sun, Hajime Takei, Hiroshi Nittono, Steven L Daniel, Isaac Cann, H Rex Gaskins, Karthik Anantharaman, João M P Alves, Jason M Ridlon. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut microbes. 2022 Jan; 14(1):2132903. doi: 10.1080/19490976.2022.2132903. [PMID: 36343662]
  • Yuko Sato, Koji Atarashi, Damian R Plichta, Yasumichi Arai, Satoshi Sasajima, Sean M Kearney, Wataru Suda, Kozue Takeshita, Takahiro Sasaki, Shoki Okamoto, Ashwin N Skelly, Yuki Okamura, Hera Vlamakis, Youxian Li, Takeshi Tanoue, Hajime Takei, Hiroshi Nittono, Seiko Narushima, Junichiro Irie, Hiroshi Itoh, Kyoji Moriya, Yuki Sugiura, Makoto Suematsu, Nobuko Moritoki, Shinsuke Shibata, Dan R Littman, Michael A Fischbach, Yoshifumi Uwamino, Takashi Inoue, Akira Honda, Masahira Hattori, Tsuyoshi Murai, Ramnik J Xavier, Nobuyoshi Hirose, Kenya Honda. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021 11; 599(7885):458-464. doi: 10.1038/s41586-021-03832-5. [PMID: 34325466]
  • Xuan Qin, Yuanjin Zhang, Jian Lu, Shengbo Huang, Zongjun Liu, Xin Wang. CYP3A deficiency alters bile acid homeostasis and leads to changes in hepatic susceptibility in rats. Toxicology and applied pharmacology. 2021 10; 429(?):115703. doi: 10.1016/j.taap.2021.115703. [PMID: 34461081]
  • Arijit A Adhikari, Deepti Ramachandran, Snehal N Chaudhari, Chelsea E Powell, Wei Li, Megan D McCurry, Alexander S Banks, A Sloan Devlin. A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases. ACS chemical biology. 2021 08; 16(8):1401-1412. doi: 10.1021/acschembio.1c00192. [PMID: 34279901]
  • Fanzhi Kong, Xiaoyu Niu, Mingde Liu, Qiuhong Wang. Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Veterinary microbiology. 2021 Jun; 257(?):109097. doi: 10.1016/j.vetmic.2021.109097. [PMID: 33933854]
  • Vedagopuram Sreekanth, Animesh Kar, Sandeep Kumar, Sanjay Pal, Poonam Yadav, Yamini Sharma, Varsha Komalla, Harsh Sharma, Radhey Shyam, Ravi Datta Sharma, Arnab Mukhopadhyay, Sagar Sengupta, Ujjaini Dasgupta, Avinash Bajaj. Bile Acid Tethered Docetaxel-Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes. Angewandte Chemie (International ed. in English). 2021 03; 60(10):5394-5399. doi: 10.1002/anie.202015173. [PMID: 33258265]
  • Elliot D Mock, Ioli Kotsogianni, Wouter P F Driever, Carmen S Fonseca, Jelle M Vooijs, Hans den Dulk, Constant A A van Boeckel, Mario van der Stelt. Structure-Activity Relationship Studies of Pyrimidine-4-Carboxamides as Inhibitors of N-Acylphosphatidylethanolamine Phospholipase D. Journal of medicinal chemistry. 2021 01; 64(1):481-515. doi: 10.1021/acs.jmedchem.0c01441. [PMID: 33382264]
  • Wenyu Wang, Sijing Zeng, Ming Hu, Zhongqiu Liu, Lingzhi Gong. The Function of Multidrug Resistance-associated Protein 3 in the Transport of Bile Acids under Normal Physiological and Lithocholic Acid-induced Cholestasis Conditions. Current drug metabolism. 2021; 22(5):353-362. doi: 10.2174/1389200222666210118101715. [PMID: 33461458]
  • Heidi L Doden, Patricia G Wolf, H Rex Gaskins, Karthik Anantharaman, João M P Alves, Jason M Ridlon. Completion of the gut microbial epi-bile acid pathway. Gut microbes. 2021 Jan; 13(1):1-20. doi: 10.1080/19490976.2021.1907271. [PMID: 33938389]
  • Julian Trah, Jonas Arand, Jun Oh, Laia Pagerols-Raluy, Magdalena Trochimiuk, Birgit Appl, Hannah Heidelbach, Deirdre Vincent, Moin A Saleem, Konrad Reinshagen, Anne K Mühlig, Michael Boettcher. Lithocholic bile acid induces apoptosis in human nephroblastoma cells: a non-selective treatment option. Scientific reports. 2020 11; 10(1):20349. doi: 10.1038/s41598-020-77436-w. [PMID: 33230229]
  • Lihua Li, Fan Yang, Rongjun Jia, Pengfei Yan, Liman Ma. Velvet antler polypeptide prevents the disruption of hepatic tight junctions via inhibiting oxidative stress in cholestatic mice and liver cell lines. Food & function. 2020 Nov; 11(11):9752-9763. doi: 10.1039/d0fo01899f. [PMID: 33073799]
  • Ya-Ru Xue, Sheng Yao, Qian Liu, Zhao-Liang Peng, Qiang-Qiang Deng, Bo Liu, Zheng-Hua Ma, Le Wang, Hu Zhou, Yang Ye, Guo-Yu Pan. Dihydro-stilbene gigantol relieves CCl4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta pharmacologica Sinica. 2020 Nov; 41(11):1433-1445. doi: 10.1038/s41401-020-0406-6. [PMID: 32404983]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Qiong Li, Meng Li, Fenghua Li, Wenjun Zhou, Yanqi Dang, Li Zhang, Guang Ji. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice. Journal of ethnopharmacology. 2020 Aug; 258(?):112896. doi: 10.1016/j.jep.2020.112896. [PMID: 32325178]
  • Gangming Xu, Manyun Dai, Xiuting Zheng, Hante Lin, Aiming Liu, Julin Yang. Cholestatic models induced by lithocholic acid and α‑naphthylisothiocyanate: Different etiological mechanisms for liver injury but shared JNK/STAT3 signaling. Molecular medicine reports. 2020 08; 22(2):1583-1593. doi: 10.3892/mmr.2020.11210. [PMID: 32626965]
  • Nobuhiro Hashimoto, Isao Matsui, Satoshi Ishizuka, Kazunori Inoue, Ayumi Matsumoto, Karin Shimada, Shota Hori, Dong Geun Lee, Seiichi Yasuda, Yusuke Katsuma, Sachio Kajimoto, Yohei Doi, Satoshi Yamaguchi, Keiichi Kubota, Tatsufumi Oka, Yusuke Sakaguchi, Yoshitsugu Takabatake, Takayuki Hamano, Yoshitaka Isaka. Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independent manner. Kidney international. 2020 06; 97(6):1164-1180. doi: 10.1016/j.kint.2020.01.032. [PMID: 32354638]
  • Susbin Raj Wagle, Daniel Walker, Bozica Kovacevic, Ahmed Gedawy, Momir Mikov, Svetlana Golocorbin-Kon, Armin Mooranian, Hani Al-Salami. Micro-Nano formulation of bile-gut delivery: rheological, stability and cell survival, basal and maximum respiration studies. Scientific reports. 2020 05; 10(1):7715. doi: 10.1038/s41598-020-64355-z. [PMID: 32382021]
  • Armin Mooranian, Nassim Zamani, Corina M Ionescu, Ryu Takechi, Giuseppe Luna, Momir Mikov, Svetlana Goločorbin-Kon, Božica Kovačević, Hani Al-Salami. Oral gavage of nano-encapsulated conjugated acrylic acid-bile acid formulation in type 1 diabetes altered pharmacological profile of bile acids, and improved glycaemia and suppressed inflammation. Pharmacological reports : PR. 2020 Apr; 72(2):368-378. doi: 10.1007/s43440-019-00030-z. [PMID: 32048259]
  • Dong-Shun Li, Quan-Fei Huang, Li-Huan Guan, Hui-Zhen Zhang, Xi Li, Kai-Li Fu, Yi-Xin Chen, Jian-Bo Wan, Min Huang, Hui-Chang Bi. Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis. Chinese journal of natural medicines. 2020 Mar; 18(3):211-218. doi: 10.1016/s1875-5364(20)30023-6. [PMID: 32245591]
  • Shigeru Nishida, Michiyasu Ishizawa, Shigeaki Kato, Makoto Makishima. Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. Journal of nutritional science and vitaminology. 2020; 66(4):370-374. doi: 10.3177/jnsv.66.370. [PMID: 32863311]
  • Shicheng Fan, Conghui Liu, Yiming Jiang, Yue Gao, Yixin Chen, Kaili Fu, Xinpeng Yao, Min Huang, Huichang Bi. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. Journal of ethnopharmacology. 2019 Dec; 245(?):112103. doi: 10.1016/j.jep.2019.112103. [PMID: 31336134]
  • Issey Takehara, Nobuaki Watanabe, Daiki Mori, Osamu Ando, Hiroyuki Kusuhara. Effect of Rifampicin on the Plasma Concentrations of Bile Acid-O-Sulfates in Monkeys and Human Liver-Transplanted Chimeric Mice With or Without Bile Flow Diversion. Journal of pharmaceutical sciences. 2019 08; 108(8):2756-2764. doi: 10.1016/j.xphs.2019.03.021. [PMID: 30905707]
  • Fedja Farowski, Philipp Solbach, Anastasia Tsakmaklis, Susanne Brodesser, M Rebeca Cruz Aguilar, Oliver A Cornely, Katja Dettmer, Paul G Higgins, Sebastian Suerbaum, Nathalie Jazmati, Peter J Oefner, Maria J G T Vehreschild. Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2019 07; 51(7):944-951. doi: 10.1016/j.dld.2019.01.012. [PMID: 30770201]
  • Mari Takahara, Rie Wakabayashi, Naoki Fujimoto, Kosuke Minamihata, Masahiro Goto, Noriho Kamiya. Enzymatic Cell-Surface Decoration with Proteins using Amphiphilic Lipid-Fused Peptide Substrates. Chemistry (Weinheim an der Bergstrasse, Germany). 2019 May; 25(30):7315-7321. doi: 10.1002/chem.201900370. [PMID: 30840777]
  • Satoshi Endo, Namiki Miyagi, Toshiyuki Matsunaga, Akira Ikari. Rabbit dehydrogenase/reductase SDR family member 11 (DHRS11): Its identity with acetohexamide reductase with broad substrate specificity and inhibitor sensitivity, different from human DHRS11. Chemico-biological interactions. 2019 May; 305(?):12-20. doi: 10.1016/j.cbi.2019.03.026. [PMID: 30926317]
  • Bin Huang, Qiang Zhao, Jing-Hui Zhou, Gang Xu. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Applied microbiology and biotechnology. 2019 Mar; 103(6):2665-2674. doi: 10.1007/s00253-019-09668-4. [PMID: 30734123]
  • Guolin Zhao, Muhanad Elhafiz, Jingwei Jiang, Debanjan Das, Zhijian Li, Wang Zhou, Sisi Fan, Changling Wang, Ziqiao Yuan, Dengqiu Xu, Zhenzhou Jiang, Luyong Zhang, Tao Wang. Adaptive homeostasis of the vitamin D-vitamin D nuclear receptor axis in 8-methoxypsoralen-induced hepatotoxicity. Toxicology and applied pharmacology. 2019 01; 362(?):150-158. doi: 10.1016/j.taap.2018.11.002. [PMID: 30419252]
  • Hui Ma, Qi Kang, Tao Wang, Jianhong Xiao, Li Yu. Liquid crystals-based sensor for the detection of lithocholic acid coupled with competitive host-guest inclusion. Colloids and surfaces. B, Biointerfaces. 2019 Jan; 173(?):178-184. doi: 10.1016/j.colsurfb.2018.09.071. [PMID: 30292930]
  • Suchun Li, Miaojuan Qiu, Yonglun Kong, Xiaoduo Zhao, Hyo-Jung Choi, Maria Reich, Brady H Bunkelman, Qiaojuan Liu, Shan Hu, Mengke Han, Haixia Xie, Avi Z Rosenberg, Verena Keitel, Tae-Hwan Kwon, Moshe Levi, Chunling Li, Weidong Wang. Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2-Mediated Water Homeostasis. Journal of the American Society of Nephrology : JASN. 2018 11; 29(11):2658-2670. doi: 10.1681/asn.2018030271. [PMID: 30305310]
  • Adel Qlayel Alkhedaide. Preventive effect of Juniperus procera extract on liver injury induced by lithocholic acid. Cellular and molecular biology (Noisy-le-Grand, France). 2018 Oct; 64(13):63-68. doi: . [PMID: 30403597]
  • Stefanie Staats, Gerald Rimbach, Axel Kuenstner, Simon Graspeuntner, Jan Rupp, Hauke Busch, Christian Sina, Ignacio R Ipharraguerre, Anika E Wagner. Lithocholic Acid Improves the Survival of Drosophila Melanogaster. Molecular nutrition & food research. 2018 10; 62(20):e1800424. doi: 10.1002/mnfr.201800424. [PMID: 30051966]
  • Michiyasu Ishizawa, Daisuke Akagi, Makoto Makishima. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. International journal of molecular sciences. 2018 07; 19(7):. doi: 10.3390/ijms19071975. [PMID: 29986424]
  • Jing Han, Xinyu Chen, Liming Zhao, Junjie Fu, Lidan Sun, Ying Zhang, Feng Zhou, Yingying Fei. Lithocholic Acid-Based Peptide Delivery System for an Enhanced Pharmacological and Pharmacokinetic Profile of Xenopus GLP-1 Analogs. Molecular pharmaceutics. 2018 07; 15(7):2840-2856. doi: 10.1021/acs.molpharmaceut.8b00336. [PMID: 29799205]
  • Dan Wang, Li Bie, Yanbin Su, Haoran Xu, Fengrong Zhang, Yanwen Su, Bo Zhang. Effect of lithocholic acid on biologically active α,β-unsaturated aldehydes induced by H2O2 in glioma mitochondria for use in glioma treatment. International journal of molecular medicine. 2018 Jun; 41(6):3195-3202. doi: 10.3892/ijmm.2018.3530. [PMID: 29512691]
  • Xiaolun Sun, Kathryn Winglee, Raad Z Gharaibeh, Josee Gauthier, Zhen He, Prabhanshu Tripathi, Dorina Avram, Steven Bruner, Anthony Fodor, Christian Jobin. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology. 2018 05; 154(6):1751-1763.e2. doi: 10.1053/j.gastro.2018.01.042. [PMID: 29408609]
  • Iván L Csanaky, Andrew J Lickteig, Curtis D Klaassen. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicology and applied pharmacology. 2018 03; 343(?):48-61. doi: 10.1016/j.taap.2018.02.005. [PMID: 29452137]
  • Trang H Luu, Jean-Marie Bard, Delphine Carbonnelle, Chloé Chaillou, Jean-Michel Huvelin, Christine Bobin-Dubigeon, Hassan Nazih. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cellular oncology (Dordrecht). 2018 Feb; 41(1):13-24. doi: 10.1007/s13402-017-0353-5. [PMID: 28993998]
  • Serena Mostarda, Daniela Passeri, Andrea Carotti, Bruno Cerra, Carolina Colliva, Tiziana Benicchi, Antonio Macchiarulo, Roberto Pellicciari, Antimo Gioiello. Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification. European journal of medicinal chemistry. 2018 Jan; 144(?):349-358. doi: 10.1016/j.ejmech.2017.12.034. [PMID: 29275233]
  • Takuya Kuno, Mio Hirayama-Kurogi, Shingo Ito, Sumio Ohtsuki. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific reports. 2018 01; 8(1):1253. doi: 10.1038/s41598-018-19545-1. [PMID: 29352187]
  • Dina S El-Agamy, Hamdi H Almaramhy, Nishat Ahmed, Bsmah Bojan, Waad D Alrohily, Mohamed A Elkablawy. Anti-Inflammatory Effects of Vardenafil Against Cholestatic Liver Damage in Mice: a Mechanistic Study. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 47(2):523-534. doi: 10.1159/000489986. [PMID: 29794447]
  • Ahmad Sharanek, Audrey Burban, Lydie Humbert, Christiane Guguen-Guillouzo, Dominique Rainteau, André Guillouzo. Progressive and Preferential Cellular Accumulation of Hydrophobic Bile Acids Induced by Cholestatic Drugs Is Associated with Inhibition of Their Amidation and Sulfation. Drug metabolism and disposition: the biological fate of chemicals. 2017 12; 45(12):1292-1303. doi: 10.1124/dmd.117.077420. [PMID: 28928138]
  • Vedagopuram Sreekanth, Nihal Medatwal, Sanjay Pal, Sandeep Kumar, Sagar Sengupta, Avinash Bajaj. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Molecular pharmaceutics. 2017 08; 14(8):2649-2659. doi: 10.1021/acs.molpharmaceut.7b00105. [PMID: 28665132]
  • Anna Leonov, Anthony Arlia-Ciommo, Simon D Bourque, Olivia Koupaki, Pavlo Kyryakov, Paméla Dakik, Mélissa McAuley, Younes Medkour, Karamat Mohammad, Tamara Di Maulo, Vladimir I Titorenko. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget. 2017 May; 8(19):30672-30691. doi: 10.18632/oncotarget.16766. [PMID: 28410198]
  • Xiao-Hong Yu, Jing Sun, Yan Wang, Ya-Bin Zhou. Biomarkers of unstable angina pectoris and yangxin decoction intervention: An exploratory metabonomics study of blood plasma. Medicine. 2017 May; 96(21):e6998. doi: 10.1097/md.0000000000006998. [PMID: 28538412]
  • Ana M Marchionatti, Adriana Pérez, María A Rivoira, Valeria A Rodríguez, Nori G Tolosa de Talamoni. Lithocholic acid: a new emergent protector of intestinal calcium absorption under oxidant conditions. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2017 04; 95(2):273-279. doi: 10.1139/bcb-2016-0164. [PMID: 28318299]
  • Nobutomo Ikarashi, Sosuke Ogawa, Ryuta Hirobe, Risako Kon, Yoshiki Kusunoki, Marin Yamashita, Nanaho Mizukami, Miho Kaneko, Nobuyuki Wakui, Yoshiaki Machida, Kiyoshi Sugiyama. Epigallocatechin gallate induces a hepatospecific decrease in the CYP3A expression level by altering intestinal flora. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2017 Mar; 100(?):211-218. doi: 10.1016/j.ejps.2017.01.022. [PMID: 28115221]
  • Runbin Sun, Na Yang, Bo Kong, Bei Cao, Dong Feng, Xiaoyi Yu, Chun Ge, Jingqiu Huang, Jianliang Shen, Pei Wang, Siqi Feng, Fei Fei, Jiahua Guo, Jun He, Nan Aa, Qiang Chen, Yang Pan, Justin D Schumacher, Chung S Yang, Grace L Guo, Jiye Aa, Guangji Wang. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway. Molecular pharmacology. 2017 Feb; 91(2):110-122. doi: 10.1124/mol.116.106617. [PMID: 27932556]
  • Stefanie Baldofski, Holger Hoffmann, Andreas Lehmann, Stefan Breitfeld, Leif-Alexander Garbe, Rudolf J Schneider. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water. Journal of environmental management. 2016 Nov; 182(?):612-619. doi: 10.1016/j.jenvman.2016.08.023. [PMID: 27544648]
  • Monika Rau, Bruno Stieger, Maria J Monte, Johannes Schmitt, Daniel Jahn, Isabelle Frey-Wagner, Tina Raselli, Jose J G Marin, Beat Müllhaupt, Gerhard Rogler, Andreas Geier. Alterations in Enterohepatic Fgf15 Signaling and Changes in Bile Acid Composition Depend on Localization of Murine Intestinal Inflammation. Inflammatory bowel diseases. 2016 10; 22(10):2382-9. doi: 10.1097/mib.0000000000000879. [PMID: 27580383]
  • Carla Colombo, Andrea Crosignani, Gianfranco Alicandro, Wujuan Zhang, Arianna Biffi, Valentina Motta, Fabiola Corti, Kenneth D R Setchell. Long-Term Ursodeoxycholic Acid Therapy Does Not Alter Lithocholic Acid Levels in Patients with Cystic Fibrosis with Associated Liver Disease. The Journal of pediatrics. 2016 10; 177(?):59-65.e1. doi: 10.1016/j.jpeds.2016.05.008. [PMID: 27297203]
  • Noriko Masubuchi, Masahiro Sugihara, Tomonori Sugita, Katsushi Amano, Masanori Nakano, Tomokazu Matsuura. Oxidative stress markers, secondary bile acids and sulfated bile acids classify the clinical liver injury type: Promising diagnostic biomarkers for cholestasis. Chemico-biological interactions. 2016 Aug; 255(?):83-91. doi: 10.1016/j.cbi.2015.08.016. [PMID: 26325587]
  • Krzysztof Dziedzic, Artur Szwengiel, Danuta Górecka, Elżbieta Gujska, Joanna Kaczkowska, Agnieszka Drożdżyńska, Jarosław Walkowiak. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content. Plant foods for human nutrition (Dordrecht, Netherlands). 2016 Jun; 71(2):151-7. doi: 10.1007/s11130-016-0537-6. [PMID: 26924312]
  • Hang Zeng, Dongshun Li, Xiaoling Qin, Pan Chen, Huasen Tan, Xuezhen Zeng, Xi Li, Xiaomei Fan, Yiming Jiang, Yawen Zhou, Yixin Chen, Ying Wang, Min Huang, Huichang Bi. Hepatoprotective Effects of Schisandra sphenanthera Extract against Lithocholic Acid-Induced Cholestasis in Male Mice Are Associated with Activation of the Pregnane X Receptor Pathway and Promotion of Liver Regeneration. Drug metabolism and disposition: the biological fate of chemicals. 2016 Mar; 44(3):337-42. doi: 10.1124/dmd.115.066969. [PMID: 26658429]
  • Ahmad Sharanek, Audrey Burban, Lydie Humbert, Pamela Bachour-El Azzi, Neuza Felix-Gomes, Dominique Rainteau, Andre Guillouzo. Cellular Accumulation and Toxic Effects of Bile Acids in Cyclosporine A-Treated HepaRG Hepatocytes. Toxicological sciences : an official journal of the Society of Toxicology. 2015 Oct; 147(2):573-87. doi: 10.1093/toxsci/kfv155. [PMID: 26198044]
  • F-Nora Vögtle, Michael Keller, Asli A Taskin, Susanne E Horvath, Xue Li Guan, Claudia Prinz, Magdalena Opalińska, Carina Zorzin, Martin van der Laan, Markus R Wenk, Rolf Schubert, Nils Wiedemann, Martin Holzer, Chris Meisinger. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. The Journal of cell biology. 2015 Sep; 210(6):951-60. doi: 10.1083/jcb.201506085. [PMID: 26347140]
  • Su Jong Yu, Seyeon Bae, Jae Seung Kang, Jung-Hwan Yoon, Eun Ju Cho, Jeong-Hoon Lee, Yoon Jun Kim, Wang Jae Lee, Chung Yong Kim, Hyo-Suk Lee. Hepatoprotective effect of vitamin C on lithocholic acid-induced cholestatic liver injury in Gulo(-/-) mice. European journal of pharmacology. 2015 Sep; 762(?):247-55. doi: 10.1016/j.ejphar.2015.06.008. [PMID: 26057690]
  • Claudiu Saracut, Calin Molnar, Cristian Russu, Nicoleta Todoran, Laurian Vlase, Sabin Turdean, Septimiu Voidazan, Constantin Copotoiu. Secondary bile acids effects in colon pathology. Experimental mice study. Acta cirurgica brasileira. 2015 Sep; 30(9):624-31. doi: 10.1590/s0102-865020150090000007. [PMID: 26465107]
  • Xianxie Zhang, Zengchun Ma, Qiande Liang, Xianglin Tang, Donghua Hu, Canglong Liu, Hongling Tan, Chengrong Xiao, Boli Zhang, Yuguang Wang, Yue Gao. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. Journal of ethnopharmacology. 2015 Apr; 164(?):357-67. doi: 10.1016/j.jep.2015.01.047. [PMID: 25660334]
  • Krzysztof Dziedzic, Danuta Górecka, Artur Szwengiel, Paulina Smoczyńska, Katarzyna Czaczyk, Patrycja Komolka. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Food & function. 2015 Mar; 6(3):1011-20. doi: 10.1039/c4fo00946k. [PMID: 25677572]
  • Antoni Caimari, Francesc Puiggròs, Manuel Suárez, Anna Crescenti, Sirle Laos, Juan Antonio Ruiz, Virginia Alonso, Josep Moragas, Josep Maria Del Bas, Lluís Arola. The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet. Food chemistry. 2015 Jan; 167(?):138-44. doi: 10.1016/j.foodchem.2014.06.072. [PMID: 25148970]
  • Jing-Chun Han, Jian Yu, Ya-Jie Gao. Lipidomics investigation of reversal effect of glycyrrhizin (GL) towards lithocholic acid (LCA)-induced alteration of phospholipid profiles. Pharmaceutical biology. 2014 Dec; 52(12):1624-8. doi: 10.3109/13880209.2014.900810. [PMID: 25289528]
  • Xingguo Cheng, Youcai Zhang, Curtis D Klaassen. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum. The Journal of pharmacology and experimental therapeutics. 2014 Oct; 351(1):105-13. doi: 10.1124/jpet.114.216796. [PMID: 25034404]
  • Chia-Wen Hsu, Jinghua Zhao, Ruili Huang, Jui-Hua Hsieh, Jon Hamm, Xiaoqing Chang, Keith Houck, Menghang Xia. Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Scientific reports. 2014 Sep; 4(?):6437. doi: 10.1038/srep06437. [PMID: 25257666]
  • Anthony Arlia-Ciommo, Amanda Piano, Veronika Svistkova, Sadaf Mohtashami, Vladimir I Titorenko. Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. International journal of molecular sciences. 2014 Sep; 15(9):16522-43. doi: 10.3390/ijms150916522. [PMID: 25238416]
  • Yorio Maeda, Mayumi Funagayama, Akio Shinohara, Chihiro Koshimoto, Hidemi Furusawa, Hiroshi Nakahara, Yukiko Yamaguchi, Tomokazu Saitoh, Takashi Yamamoto, Kansei Komaki. Influence of human serum albumin on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase. Journal of physiology and biochemistry. 2014 Sep; 70(3):849-55. doi: 10.1007/s13105-014-0353-0. [PMID: 25108556]
  • Manuela R Martinefski, Mario D Contin, Myrian R Rodriguez, Estefanía M Geréz, Mónica L Galleano, Silvia E Lucangioli, Liliana G Bianciotti, Valeria P Tripodi. Coenzyme Q in pregnant women and rats with intrahepatic cholestasis. Liver international : official journal of the International Association for the Study of the Liver. 2014 Aug; 34(7):1040-8. doi: 10.1111/liv.12323. [PMID: 24118985]
  • Benjamin L Woolbright, Feng Li, Yuchao Xie, Anwar Farhood, Peter Fickert, Michael Trauner, Hartmut Jaeschke. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicology letters. 2014 Jul; 228(1):56-66. doi: 10.1016/j.toxlet.2014.04.001. [PMID: 24742700]
  • Qiaoling Du, Youhua Zhang, Youdong Pan, Tao Duan. Lithocholic acid-induced placental tumor necrosis factor-α upregulation and syncytiotrophoblast cell apoptosis in intrahepatic cholestasis of pregnancy. Hepatology research : the official journal of the Japan Society of Hepatology. 2014 May; 44(5):532-41. doi: 10.1111/hepr.12150. [PMID: 23627780]
  • Pan Chen, Hang Zeng, Yongtao Wang, Xiaomei Fan, Chenshu Xu, Rongrong Deng, Xunian Zhou, Huichang Bi, Min Huang. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug metabolism and disposition: the biological fate of chemicals. 2014 May; 42(5):844-52. doi: 10.1124/dmd.113.056549. [PMID: 24510383]
  • Jie Cheng, Zhong-Ze Fang, Jung-Hwan Kim, Kristopher W Krausz, Naoki Tanaka, John Y L Chiang, Frank J Gonzalez. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. Journal of lipid research. 2014 Mar; 55(3):455-65. doi: 10.1194/jlr.m044420. [PMID: 24343899]
  • Michelle T Burstein, Vladimir I Titorenko. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology. Redox biology. 2014; 2(?):305-7. doi: 10.1016/j.redox.2014.01.011. [PMID: 24563847]
  • Ja-Young Lee, Hisashi Arai, Yusuke Nakamura, Satoru Fukiya, Masaru Wada, Atsushi Yokota. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. Journal of lipid research. 2013 Nov; 54(11):3062-9. doi: 10.1194/jlr.m039834. [PMID: 23729502]
  • Carlos A Penno, Stuart A Morgan, Anna Vuorinen, Daniela Schuster, Gareth G Lavery, Alex Odermatt. Impaired oxidoreduction by 11β-hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid. Journal of lipid research. 2013 Oct; 54(10):2874-83. doi: 10.1194/jlr.m042499. [PMID: 23933573]
  • Alessandro Barge, Marina Caporaso, Giancarlo Cravotto, Katia Martina, Paolo Tosco, Silvio Aime, Carla Carrera, Eliana Gianolio, Giorgio Pariani, Davide Corpillo. Design and Synthesis of a γ(1)β(8)-Cyclodextrin Oligomer: A New Platform with Potential Application as a Dendrimeric Multicarrier. Chemistry (Weinheim an der Bergstrasse, Germany). 2013 Sep; 19(36):12086-92. doi: 10.1002/chem.201301215. [PMID: 23873698]
  • Martin Perreault, Louis Gauthier-Landry, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Moshe Finel, Olivier Barbier. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Drug metabolism and disposition: the biological fate of chemicals. 2013 Sep; 41(9):1616-20. doi: 10.1124/dmd.113.052613. [PMID: 23756265]
  • Manish Singh, Ashima Singh, Somanath Kundu, Sandhya Bansal, Avinash Bajaj. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. Biochimica et biophysica acta. 2013 Aug; 1828(8):1926-37. doi: 10.1016/j.bbamem.2013.04.003. [PMID: 23590996]
  • Marta Dubreuil, Silvia Ruiz-Gaspà, Nuria Guañabens, Pilar Peris, Luisa Alvarez, Ana Monegal, Andrés Combalia, Albert Parés. Ursodeoxycholic acid increases differentiation and mineralization and neutralizes the damaging effects of bilirubin on osteoblastic cells. Liver international : official journal of the International Association for the Study of the Liver. 2013 Aug; 33(7):1029-38. doi: 10.1111/liv.12153. [PMID: 23560764]
  • Hiroyuki Masuno, Teikichi Ikura, Daisuke Morizono, Isamu Orita, Sachiko Yamada, Masato Shimizu, Nobutoshi Ito. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives. Journal of lipid research. 2013 Aug; 54(8):2206-2213. doi: 10.1194/jlr.m038307. [PMID: 23723390]
  • Adam Beach, Vincent R Richard, Anna Leonov, Michelle T Burstein, Simon D Bourque, Olivia Koupaki, Mylène Juneau, Rachel Feldman, Tatiana Iouk, Vladimir I Titorenko. Mitochondrial membrane lipidome defines yeast longevity. Aging. 2013 Jul; 5(7):551-74. doi: 10.18632/aging.100578. [PMID: 23924582]
  • Zaki Utama, Yukako Okazaki, Hiroyuki Tomotake, Norihisa Kato. Tempe consumption modulates fecal secondary bile acids, mucins, immunoglobulin A, enzyme activities, and cecal microflora and organic acids in rats. Plant foods for human nutrition (Dordrecht, Netherlands). 2013 Jun; 68(2):177-83. doi: 10.1007/s11130-013-0357-x. [PMID: 23645422]
  • Kazuaki Yoneno, Tadakazu Hisamatsu, Katsuyoshi Shimamura, Nobuhiko Kamada, Riko Ichikawa, Mina T Kitazume, Maiko Mori, Michihide Uo, Yuka Namikawa, Katsuyoshi Matsuoka, Toshiro Sato, Kazutaka Koganei, Akira Sugita, Takanori Kanai, Toshifumi Hibi. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology. 2013 May; 139(1):19-29. doi: 10.1111/imm.12045. [PMID: 23566200]
  • Choong Hwan Lee, Jiyoung Kim, Su Young Ahn, Sun Young Lee. Metabolomic study of a diagnostic model for the metabolites of stool fat. The Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi. 2013 Jan; 61(1):9-16. doi: 10.4166/kjg.2013.61.1.9. [PMID: 23354344]
  • Shailendra Kapoor. Vitamin B6 and its effect on systemic carcinogenesis. Journal of nutritional science and vitaminology. 2013; 59(4):365. doi: 10.3177/jnsv.59.365. [PMID: 24064739]
  • Martin Perreault, Andrzej Białek, Jocelyn Trottier, Mélanie Verreault, Patrick Caron, Piotr Milkiewicz, Olivier Barbier. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction. PloS one. 2013; 8(11):e80994. doi: 10.1371/journal.pone.0080994. [PMID: 24244729]
  • Masataka Tajima, Nobutomo Ikarashi, Shintaro Igeta, Takahiro Toda, Makoto Ishii, Yoshikazu Tanaka, Yoshiaki Machida, Wataru Ochiai, Harumi Yamada, Kiyoshi Sugiyama. Different diets cause alterations in the enteric environment and trigger changes in the expression of hepatic cytochrome P450 3A, a drug-metabolizing enzyme. Biological & pharmaceutical bulletin. 2013; 36(4):624-34. doi: 10.1248/bpb.b12-01005. [PMID: 23370405]
  • Farzad Alemi, Daniel P Poole, Jonathan Chiu, Kristina Schoonjans, Fiore Cattaruzza, John R Grider, Nigel W Bunnett, Carlos U Corvera. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology. 2013 Jan; 144(1):145-54. doi: 10.1053/j.gastro.2012.09.055. [PMID: 23041323]
  • Tsutomu Matsubara, Naoki Tanaka, Misako Sato, Dong Wook Kang, Kristopher W Krausz, Kathleen C Flanders, Kazuo Ikeda, Hans Luecke, Lalage M Wakefield, Frank J Gonzalez. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. Journal of lipid research. 2012 Dec; 53(12):2698-707. doi: 10.1194/jlr.m031773. [PMID: 23034213]
  • Valeria Tripodi, Mario Contin, María Alejandra Fernández, Abraham Lemberg. Bile acids content in brain of common duct ligated rats. Annals of hepatology. 2012 Nov; 11(6):930-4. doi: 10.1016/s1665-2681(19)31420-6. [PMID: 23111582]