Mukurozidiol (BioDeep_00000395777)

Main id: BioDeep_00000000318

 

human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs


代谢物信息卡片


7H-Furo[3,2-g][1]benzopyran-7-one, 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-

化学式: C17H18O7 (334.1052)
中文名称: 比克白芷素, 白当归素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)(C(COC1=C2C(=C(C3=C1OC(=O)C=C3)OC)C=CO2)O)O
InChI: InChI=1S/C17H18O7/c1-17(2,20)11(18)8-23-16-14-10(6-7-22-14)13(21-3)9-4-5-12(19)24-15(9)16/h4-7,11,18,20H,8H2,1-3H3

描述信息

Constituent of Japanese drug byakusi obtained from Angelica subspecies Also from lemon oil and other Citrus subspecies [DFC]. (R)-Byakangelicin is found in lemon, citrus, and herbs and spices.
Mukurozidiol is a member of psoralens.
(Rac)-Byakangelicin is a natural product found in Ruta graveolens, Angelica, and other organisms with data available.
(S)-Byakangelicin is found in herbs and spices. (S)-Byakangelicin is a constituent of common rue (Ruta graveolens).
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
(Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1].
(Rac)-Byakangelicin is a racemate of Byakangelicin mainly isolated from the genus Angelica. Byakangelicin is an aldose-reductase inhibitor with an IC50 value of 6.2 μM[1].
Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].
Byakangelicin, one of the active compounds found in the roots of Angelica gigas, can serve as a modulator to improve brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhance therapeutic effects[1]. Byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of agent-agent interactions. Byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones[2].

同义名列表

19 个代谢物同义名

7H-Furo[3,2-g][1]benzopyran-7-one, 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-; 9-[(2R)-2,3-dihydroxy-3-methylbutoxy]-4-methoxyfuro[3,2-g]chromen-7-one; 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxy-7H-furo[3,2-g]chromen-7-one; 9-(2,3-dihydroxy-3-methyl-butoxy)-4-methoxy-furo[3,2-g]chromen-7-one; 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxyfuro[3,2-g]chromen-7-one; 9-(2,3-dihydroxy-3-methylbutoxy)-4-methoxyuro[3,2-g]chromen-7-one; (Rac)-Byakangelicin; (R)-Byakangelicin; byak-angelicin; Byakangellicin; Byankagelicine; Byakangelicin; Biacangelicin; Bjacangelicin; Bjakangelicin; Mukurozidiol; AC1LDCJL; Byakangelicin; Byakangelicin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

30 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ABCB1, AKR1B1, CAPN1, CYP1A1, CYP3A4, ELANE, MAPK8, MYC, PRPF19, PTGS2, TYR
Peripheral membrane protein 2 CYP1A1, PTGS2
Endosome membrane 1 BACE1
Endoplasmic reticulum membrane 4 CYP1A1, CYP1A2, CYP3A4, PTGS2
Nucleus 4 MAPK8, MYC, NR1I2, PRPF19
cytosol 4 AKR1B1, CAPN1, ELANE, MAPK8
dendrite 1 BACE1
nuclear body 1 NR1I2
phagocytic vesicle 1 ELANE
trans-Golgi network 1 BACE1
nucleoplasm 5 AKR1B1, MAPK8, MYC, NR1I2, PRPF19
Cell membrane 3 ABCB1, BACE1, CAPN1
Cell projection, axon 1 BACE1
Multi-pass membrane protein 1 ABCB1
Synapse 2 ACAN, MAPK8
cell surface 3 ABCB1, BACE1, ELANE
glutamatergic synapse 1 ACAN
Golgi apparatus 1 BACE1
lysosomal membrane 1 GAA
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 BACE1
synaptic vesicle 1 BACE1
Lysosome 4 BACE1, CAPN1, GAA, TYR
endosome 1 BACE1
plasma membrane 4 ABCB1, BACE1, CAPN1, GAA
Membrane 7 ABCB1, BACE1, CAPN1, CYP3A4, GAA, MYC, PRPF19
apical plasma membrane 1 ABCB1
axon 2 BACE1, MAPK8
caveola 1 PTGS2
extracellular exosome 6 ABCB1, AKR1B1, CAPN1, ELANE, GAA, HBZ
Lysosome membrane 1 GAA
endoplasmic reticulum 2 BACE1, PTGS2
extracellular space 4 ACAN, AKR1B1, ELANE, IL4
lysosomal lumen 2 ACAN, GAA
perinuclear region of cytoplasm 1 TYR
mitochondrion 4 ABAT, AKR1B1, CAPN1, CYP1A1
protein-containing complex 2 MYC, PTGS2
intracellular membrane-bounded organelle 5 CYP1A1, CYP1A2, CYP3A4, GAA, TYR
Microsome membrane 4 CYP1A1, CYP1A2, CYP3A4, PTGS2
Single-pass type I membrane protein 2 BACE1, TYR
Secreted 2 GAA, IL4
extracellular region 5 ACAN, CAPN1, ELANE, GAA, IL4
hippocampal mossy fiber to CA3 synapse 1 BACE1
mitochondrial matrix 1 ABAT
transcription regulator complex 1 NR1I2
Secreted, extracellular space, extracellular matrix 1 ACAN
multivesicular body 1 BACE1
nucleolus 1 MYC
Melanosome membrane 1 TYR
Early endosome 1 BACE1
Golgi-associated vesicle 1 TYR
recycling endosome 1 BACE1
Apical cell membrane 1 ABCB1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 BACE1
Cytoplasm, cytoskeleton, spindle 1 PRPF19
focal adhesion 1 CAPN1
spindle 1 PRPF19
GABA-ergic synapse 1 ACAN
basement membrane 1 ACAN
collagen-containing extracellular matrix 2 ACAN, ELANE
secretory granule 1 ELANE
nuclear speck 1 PRPF19
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 BACE1
neuron projection 1 PTGS2
chromatin 2 MYC, NR1I2
Golgi apparatus, trans-Golgi network 1 BACE1
Nucleus, nucleolus 1 MYC
spliceosomal complex 1 PRPF19
site of double-strand break 1 PRPF19
nuclear envelope 1 MYC
Endomembrane system 1 BACE1
Lipid droplet 1 PRPF19
Cornified envelope 1 CAPN1
Cytoplasmic vesicle membrane 1 BACE1
Nucleus, nucleoplasm 2 MYC, PRPF19
Cell projection, dendrite 1 BACE1
tertiary granule membrane 1 GAA
Melanosome 1 TYR
intermediate filament cytoskeleton 1 NR1I2
ficolin-1-rich granule lumen 1 CAPN1
Golgi lumen 1 ACAN
endoplasmic reticulum lumen 2 BACE1, PTGS2
transcription repressor complex 1 ELANE
specific granule lumen 1 ELANE
azurophil granule membrane 1 GAA
RNA polymerase II transcription repressor complex 1 MYC
azurophil granule lumen 1 ELANE
perineuronal net 1 ACAN
U2-type catalytic step 1 spliceosome 1 PRPF19
ficolin-1-rich granule membrane 1 GAA
external side of apical plasma membrane 1 ABCB1
basal dendrite 1 MAPK8
catalytic step 2 spliceosome 1 PRPF19
Rough endoplasmic reticulum 1 MYC
Prp19 complex 1 PRPF19
U2-type catalytic step 2 spliceosome 1 PRPF19
Cytoplasmic vesicle, phagosome 1 ELANE
hemoglobin complex 1 HBZ
haptoglobin-hemoglobin complex 1 HBZ
Myc-Max complex 1 MYC
calpain complex 1 CAPN1
autolysosome lumen 1 GAA
perisynaptic extracellular matrix 1 ACAN
Golgi-associated vesicle lumen 1 BACE1
4-aminobutyrate transaminase complex 1 ABAT
nucleoplasmic reticulum 1 MYC


文献列表

  • Alice Nguvoko Kiyonga, Gyeongmin Hong, Hyun Su Kim, Young-Ger Suh, Kiwon Jung. Facile and Rapid Isolation of Oxypeucedanin Hydrate and Byakangelicin from Angelica dahurica by Using [Bmim]Tf2N Ionic Liquid. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26040830. [PMID: 33562719]
  • Baimei Shi, Jianghong Liu, Qian Zhang, Shixiang Wang, Pu Jia, Liujiao Bian, Xiaohui Zheng. Effect of co-administration of Acori Tatarinowii Rhizoma volatile oil on pharmacokinetic fate of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat. Journal of separation science. 2020 Jun; 43(12):2349-2362. doi: 10.1002/jssc.201901250. [PMID: 32222035]
  • Unwoo Kang, Ah-Reum Han, Yangkang So, Chang Hyun Jin, Seung Mok Ryu, Dongho Lee, Eun Kyoung Seo. Furanocoumarins from the Roots of Angelica dahurica with Inhibitory Activity against Intracellular Reactive Oxygen Species Accumulation. Journal of natural products. 2019 09; 82(9):2601-2607. doi: 10.1021/acs.jnatprod.9b00547. [PMID: 31464439]
  • Yoon Young Kang, Jihyeon Song, Jun Yeong Kim, Heesun Jung, Woon-Seok Yeo, Yoongho Lim, Hyejung Mok. Byakangelicin as a modulator for improved distribution and bioactivity of natural compounds and synthetic drugs in the brain. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Sep; 62(?):152963. doi: 10.1016/j.phymed.2019.152963. [PMID: 31128487]
  • Ke Li, Junfang Li, Jin Su, Xuefeng Xiao, Xiujuan Peng, Feng Liu, Defeng Li, Yi Zhang, Tao Chong, Haiyu Xu, Changxiao Liu, Hongjun Yang. Identification of quality markers of Yuanhu Zhitong tablets based on integrative pharmacology and data mining. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 May; 44(?):212-219. doi: 10.1016/j.phymed.2018.03.002. [PMID: 29551644]
  • Zi-Min Yuan, Jing Wang, Tian-Zhu Jia, Jian-Feng Chen. [Determination of four coumarin constituents before and after Angelicae Dahuricae Radix stewed with yellow rice wine and research on its mutual transformation mechanism]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Aug; 41(16):3032-3035. doi: 10.4268/cjcmm20161615. [PMID: 28920344]
  • Ying Xie, Yi Chen, Mei Lin, Jun Wen, Guorong Fan, Yutian Wu. High-performance liquid chromatographic method for the determination and pharmacokinetic study of oxypeucedanin hydrate and byak-angelicin after oral administration of Angelica dahurica extracts in mongrel dog plasma. Journal of pharmaceutical and biomedical analysis. 2007 May; 44(1):166-72. doi: 10.1016/j.jpba.2007.02.002. [PMID: 17344014]
  • Yong-qing Xiao, Li Li, Xiao-lin You, Cun Zhang, Masahiko Taniguci, Kimiye Baba. [Studies on quality standards of radix Angelicae dahuricae]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2004 Jul; 29(7):654-7. doi: ". [PMID: 15503772]
  • Yang Bae Kim, Yong Ho Oh, Il Yeung Park, Kuk Hyun Shin. Crystal structure of byakangelicin (C17H18O7). Archives of pharmacal research. 2002 Jun; 25(3):275-9. doi: 10.1007/bf02976625. [PMID: 12135096]
  • Hyuncheol Oh, Ho-Sub Lee, Taewan Kim, Kyu-Yun Chai, Hun-Taeg Chung, Tae-Oh Kwon, Jung-Yang Jun, Ok-Sam Jeong, Youn-Chul Kim, Young-Gab Yun. Furocoumarins from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells. Planta medica. 2002 May; 68(5):463-4. doi: 10.1055/s-2002-32075. [PMID: 12058329]
  • K Ishihara, M Fukutake, T Asano, Y Mizuhara, Y Wakui, T Yanagisawa, H Kamei, S Ohmori, M Kitada. Simultaneous determination of byak-angelicin and oxypeucedanin hydrate in rat plasma by column-switching high-performance liquid chromatography with ultraviolet detection. Journal of chromatography. B, Biomedical sciences and applications. 2001 Apr; 753(2):309-14. doi: 10.1016/s0378-4347(00)00569-7. [PMID: 11334345]
  • Y Kimura, H Okuda. Histamine-release effectors from Angelica dahurica var. dahurica root. Journal of natural products. 1997 Mar; 60(3):249-51. doi: 10.1021/np960407a. [PMID: 9157191]
  • D L Garver, D M Davis, H Dekirmenjian, S Ericksen, L Gosenfeld, J Haraszti. Dystonic reactions following neuroleptics: time course and proposed mechanisms. Psychopharmacologia. 1976 May; 47(2):199-201. doi: 10.1007/bf00735822. [PMID: 5743]