Allocryptopine (BioDeep_00000332557)

Main id: BioDeep_00000000340

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


7,8-DIMETHOXY-11-METHYL-17,19-DIOXA-11-AZATETRACYCLO[12.7.0.0?,?.0(1)?,(2)?]HENICOSA-1(14),4(9),5,7,15,20-HEXAEN-2-ONE

化学式: C21H23NO5 (369.1576)
中文名称: 别隐品碱
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CN1CCC2=CC3=C(C=C2C(=O)CC4=C(C1)C(=C(C=C4)OC)OC)OCO3
InChI: InChI=1S/C21H23NO5/c1-22-7-6-14-9-19-20(27-12-26-19)10-15(14)17(23)8-13-4-5-18(24-2)21(25-3)16(13)11-22/h4-5,9-10H,6-8,11-12H2,1-3H3

描述信息

Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether.
Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available.
See also: Sanguinaria canadensis root (part of).
IPB_RECORD: 788; CONFIDENCE confident structure
Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].
Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].

同义名列表

44 个代谢物同义名

7,8-DIMETHOXY-11-METHYL-17,19-DIOXA-11-AZATETRACYCLO[12.7.0.0?,?.0(1)?,(2)?]HENICOSA-1(14),4(9),5,7,15,20-HEXAEN-2-ONE; 7,8-dimethoxy-11-methyl-17,19-dioxa-11-azatetracyclo[12.7.0.04,9.016,20]henicosa-1(21),4(9),5,7,14,16(20)-hexaen-2-one; 7,8-dimethoxy-11-methyl-17,19-dioxa-11-azatetracyclo[12.7.0.0 , .0 , ]henicosa-1(14),4(9),5,7,15,20-hexaen-2-one; Benzo(e)(1,3)dioxolo(4,5-k)(3)benzazecin-14(6H)-one, 5,7,8,15-tetrahydro-3,4-dimethoxy-6-methyl-(VAN) (8CI); Benzo(e)(1,3)dioxolo(4,5-k)(3)benzazecin-14(6H)-one, 5,7,8,15-tetrahydro-3,4-dimethoxy-6-methyl- (VAN); 3,4-dimethoxy-6-methyl-5,7,8,15-tetrahydro-[1,3]dioxolo[4,5:4,5]benzo[1,2-g]benzo[c]azecin-14(6H)-one; Benzo(e)(1,3)dioxolo(4,5-k)(3)benzazecin-14(6H)-one, 5,7,8,15-tetrahydro-3,4-dimethoxy-6-methyl-; [1,3]Benzodioxolo[5,6-e][2]benzazecin-14(6H)-one, 5,7,8,15-tetrahydro-3,4-dimethoxy-6-methyl-; 3,4-Dimethoxy-6-methyl-5,7,8,15-tetrahydrobenzo[c][1,3]benzodioxolo[5,6-g]azecin-14(6H)-one #; 5,7,8,15-Tetrahydro-3,4-dimethoxy-6-methylbenzo(e)(1,3)dioxolo(4,5-k)(3)benzazecin-14(6H)-one; 3,4-dimethoxy-6-methyl-5,7,8,15-tetrahydrobenzo(c)(1,3)benzodioxolo(5,6-g)azecin-14(6H)-one; 3,4-Dimethoxy-6-methyl-5,7,8,15-tetrahydrobenzo[c][1,3]benzodioxolo[5,6-g]azecin-14(6H)-one; Benzo[e][1,5-k][3]benzazecin-14(6H)-one, 5,7,8,15-tetrahydro-3,4-dimethoxy-6-methyl- (VAN8C; 5,7,8,15-Tetrahydro-3,4-dimethoxy-6-methyl(1,3)benzodioxolo(5,6-e)(2)benzazecin-14(6H)-one; Allocryptopine; Alpha-Allocryptopine; HYBRYAPKQCZIAE-UHFFFAOYSA-N; Taliktrimin (thalictrimine); .gamma.-Homochelidonine; .beta.-Homochelidonine; .alpha.-Allocryptopine; gamma-Homochelidonine; .beta.-Allocryptopine; alpha-Allocryptopine; beta-Homochelidonine; beta-Allocryptopine; ALLOCRYPTOPINE [MI]; |A-Homochelidonine; .alpha.-Fagarine; UNII-EK27J8ROYB; allo-cryptopine; Allocryptopine; alpha-Fagarine; Allocrytopine; Allocryptopin; Thalictrimine; Oprea1_700961; MEGxp0_001784; Oprea1_535693; ACon1_000293; Taliktrimin; Fagarine I; EK27J8ROYB; a-allocryptopine; Allocryptopine



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

74 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ABCB1, AKT2, BCL2, BCL2L1, CASP9, CDH1, CDH2, CYP1A1, EGFR, GNB5, METTL3, STAT3
Peripheral membrane protein 3 ACHE, CYP1A1, CYP1B1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, CYP1A1, CYP1B1, EGFR
Mitochondrion membrane 1 BCL2L1
Nucleus 9 ACHE, AKT2, BCL2, CASP9, CDH1, EGFR, GNB5, METTL3, STAT3
cytosol 8 AKT2, BCL2, BCL2L1, CASP9, CDH1, GNB5, METTL3, STAT3
dendrite 1 GNB5
nuclear body 1 METTL3
trans-Golgi network 1 CDH1
centrosome 1 BCL2L1
nucleoplasm 6 AKT2, CDH1, METTL3, SCN5A, SCNN1G, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 9 ABCB1, ACHE, CDH1, CDH2, CX3CL1, CX3CR1, EGFR, PTCH1, SCN5A
Cytoplasmic side 1 BCL2L1
lamellipodium 2 CDH1, CDH2
ruffle membrane 2 AKT2, EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 5 ABCB1, CX3CR1, PTCH1, SCN5A, SCNN1G
Synapse 1 ACHE
cell cortex 1 AKT2
cell junction 4 CDH1, CDH2, EGFR, SCN5A
cell surface 7 ABCB1, ACHE, CDH2, CX3CL1, CX3CR1, EGFR, SCN5A
glutamatergic synapse 2 CDH1, EGFR
Golgi apparatus 3 ACHE, CDH1, METTL3
Golgi membrane 1 EGFR
mitochondrial inner membrane 2 BCL2L1, CYP1A1
neuromuscular junction 1 ACHE
neuronal cell body 1 CX3CL1
postsynapse 1 CDH1
presynaptic membrane 1 GNB5
sarcolemma 2 CDH2, SCN5A
Cytoplasm, cytosol 1 BCL2L1
endosome 2 CDH1, EGFR
plasma membrane 13 ABCB1, ACHE, AKT2, BCHE, CDH1, CDH2, CX3CL1, CX3CR1, EGFR, PTCH1, SCN5A, SCNN1G, STAT3
synaptic vesicle membrane 1 BCL2L1
Membrane 11 ABCB1, ACHE, BCL2, CDH1, CDH2, CX3CL1, CYP1B1, EGFR, GNB5, PTCH1, SCN5A
apical plasma membrane 4 ABCB1, CDH2, EGFR, SCNN1G
basolateral plasma membrane 2 CDH2, EGFR
caveola 2 PTCH1, SCN5A
extracellular exosome 3 ABCB1, CDH1, SCNN1G
endoplasmic reticulum 3 BCL2, BCL2L1, SCN5A
extracellular space 4 ACHE, BCHE, CX3CL1, EGFR
perinuclear region of cytoplasm 7 ACHE, CDH1, CX3CL1, CX3CR1, EGFR, PTCH1, SCN5A
adherens junction 2 CDH1, CDH2
apicolateral plasma membrane 1 CDH2
intercalated disc 2 CDH2, SCN5A
mitochondrion 5 BCL2, BCL2L1, CASP9, CYP1A1, CYP1B1
protein-containing complex 3 BCL2, CASP9, EGFR
intracellular membrane-bounded organelle 4 AKT2, CYP1A1, CYP1B1, PTCH1
Microsome membrane 2 CYP1A1, CYP1B1
postsynaptic density 1 CDH2
Single-pass type I membrane protein 4 CDH1, CDH2, CX3CL1, EGFR
Secreted 2 ACHE, BCHE
extracellular region 4 ACHE, BCHE, CDH1, CX3CL1
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 2 BCL2, BCL2L1
neuronal cell body membrane 1 CX3CR1
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
Extracellular side 1 ACHE
transcription regulator complex 1 STAT3
ciliary membrane 1 PTCH1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 4 BCL2, BCL2L1, CDH1, EGFR
external side of plasma membrane 2 CX3CR1, SCNN1G
actin cytoskeleton 1 CDH1
T-tubule 1 SCN5A
Z disc 1 SCN5A
nucleolus 1 SCN5A
midbody 1 PTCH1
Early endosome 1 AKT2
apical part of cell 2 CDH2, PTCH1
cell-cell junction 1 CDH2
postsynaptic membrane 2 GNB5, PTCH1
presynaptic active zone membrane 1 CDH2
Apical cell membrane 2 ABCB1, SCNN1G
Cell membrane, sarcolemma 1 CDH2
Cytoplasm, perinuclear region 1 SCN5A
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 EGFR
pore complex 1 BCL2
focal adhesion 2 CDH2, EGFR
Cell junction, adherens junction 2 CDH1, CDH2
flotillin complex 1 CDH1
basement membrane 1 ACHE
intracellular vesicle 1 EGFR
collagen-containing extracellular matrix 1 CDH2
fascia adherens 1 CDH2
lateral plasma membrane 2 CDH1, SCN5A
nuclear speck 1 METTL3
receptor complex 1 EGFR
neuron projection 3 CDH2, CX3CL1, CX3CR1
chromatin 1 STAT3
axonal growth cone 1 PTCH1
cell projection 1 CX3CL1
Golgi apparatus, trans-Golgi network 1 CDH1
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
heterotrimeric G-protein complex 1 GNB5
sodium channel complex 1 SCNN1G
Nucleus speckle 1 METTL3
side of membrane 1 ACHE
dendritic growth cone 1 PTCH1
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
Cell membrane, sarcolemma, T-tubule 1 SCN5A
synaptic membrane 1 EGFR
plasma membrane raft 1 CDH2
endoplasmic reticulum lumen 2 BCHE, CDH2
endocytic vesicle membrane 1 PTCH1
anaphase-promoting complex 1 CDH1
nuclear envelope lumen 1 BCHE
apoptosome 1 CASP9
cell tip 1 GNB5
GTPase activator complex 1 GNB5
parallel fiber to Purkinje cell synapse 1 GNB5
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 2]: Nucleus 1 CDH1
synaptic cleft 1 ACHE
external side of apical plasma membrane 1 ABCB1
postsynaptic specialization membrane 1 CDH2
apical junction complex 1 CDH1
Cell junction, desmosome 2 CDH1, CDH2
desmosome 2 CDH1, CDH2
catenin complex 2 CDH1, CDH2
voltage-gated sodium channel complex 1 SCN5A
oxidoreductase complex 1 METTL3
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
BAD-BCL-2 complex 1 BCL2
macropinosome membrane 1 CX3CR1
[Isoform H]: Cell membrane 1 ACHE
dendritic tree 1 CX3CR1
caspase complex 1 CASP9
[Processed fractalkine]: Secreted 1 CX3CL1
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
RNA N6-methyladenosine methyltransferase complex 1 METTL3


文献列表

  • Serap Nigdelioglu Dolanbay, Fatma Gonca Kocanci, Belma Aslim. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Aug; 140(?):111690. doi: 10.1016/j.biopha.2021.111690. [PMID: 34004513]
  • K B Pandeya, Aditya Ganeshpurkar, Mahendra Kumar Mishra. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Medical hypotheses. 2020 Nov; 144(?):109905. doi: 10.1016/j.mehy.2020.109905. [PMID: 32535456]
  • Jakob K Reinhardt, Amy M Zimmermann-Klemd, Ombeline Danton, Martin Smieško, Carsten Gründemann, Matthias Hamburger. Compounds from Toddalia asiatica: Immunosuppressant Activity and Absolute Configurations. Journal of natural products. 2020 10; 83(10):3012-3020. doi: 10.1021/acs.jnatprod.0c00564. [PMID: 33001647]
  • Jie Li, Bin Li, Hailiang Huang, Tao Han, Yang Li. Allocryptopine: A Review of Its Properties and Mechanism of Antiarrhythmic Effect. Current protein & peptide science. 2019; 20(10):996-1003. doi: 10.2174/1389203720666190807123609. [PMID: 31389311]
  • Zhu Chen, Zhiwei Liu, Yu Peng, Li Leng, Li Du, Tao Xu, Dongdong Wang. Cardiovascular Diseases and Natural Products. Current protein & peptide science. 2019; 20(10):962-963. doi: 10.2174/138920372010190920124756. [PMID: 31592748]
  • Ke Li, Junfang Li, Jin Su, Xuefeng Xiao, Xiujuan Peng, Feng Liu, Defeng Li, Yi Zhang, Tao Chong, Haiyu Xu, Changxiao Liu, Hongjun Yang. Identification of quality markers of Yuanhu Zhitong tablets based on integrative pharmacology and data mining. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 May; 44(?):212-219. doi: 10.1016/j.phymed.2018.03.002. [PMID: 29551644]
  • Ya-Jun Huang, Pi Cheng, Zhuo-Yi Zhang, Shi-Jie Tian, Zhi-Liang Sun, Jian-Guo Zeng, Zhao-Ying Liu. Biotransformation and tissue distribution of protopine and allocryptopine and effects of Plume Poppy Total Alkaloid on liver drug-metabolizing enzymes. Scientific reports. 2018 01; 8(1):537. doi: 10.1038/s41598-017-18816-7. [PMID: 29323165]
  • Vamshi K Manda, Mohamed A Ibrahim, Olivia R Dale, Mallika Kumarihamy, Stephen J Cutler, Ikhlas A Khan, Larry A Walker, Ilias Muhammad, Shabana I Khan. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids. Planta medica. 2016 Apr; 82(6):551-8. doi: 10.1055/s-0042-103689. [PMID: 27054913]
  • Richard B van Breemen. Development of Safe and Effective Botanical Dietary Supplements. Journal of medicinal chemistry. 2015 Nov; 58(21):8360-72. doi: 10.1021/acs.jmedchem.5b00417. [PMID: 26125082]
  • Jiancheng Zhang, Yu Chen, Jie Yang, Bin Xu, Yi Wen, Guojian Xiang, Guoliang Wei, Chao Zhu, Yanwei Xing, Yang Li. Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine. European journal of pharmacology. 2015 Jan; 746(?):333-43. doi: 10.1016/j.ejphar.2014.09.028. [PMID: 25261036]
  • Xiaomeng Chen, Yingchun Zhang, Shuo Lin, Hongjun Yang, Hongwei Wu, Shaojing Li, Defeng Li, Haiyu Xu. [Study on absorption ingredients of yuanhuzhitong pill by everted intestinal sac method]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Jul; 37(13):2005-11. doi: . [PMID: 23019888]
  • Jiri Vrba, Eva Orolinova, Jitka Ulrichova. Induction of heme oxygenase-1 by Macleaya cordata extract and its constituent sanguinarine in RAW264.7 cells. Fitoterapia. 2012 Mar; 83(2):329-35. doi: 10.1016/j.fitote.2011.11.022. [PMID: 22166397]
  • Yingchun Zhang, Haiyu Xu, Xiaomeng Chen, Chang Chen, Haijun Wang, Fanyun Meng, Hongjun Yang, Luqi Huang. Simultaneous quantification of 17 constituents from Yuanhu Zhitong tablet using rapid resolution liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2011 Nov; 56(3):497-504. doi: 10.1016/j.jpba.2011.06.008. [PMID: 21733652]
  • Dong-Ung Lee, Jong Hee Park, Ludger Wessjohann, Jürgen Schmidt. Alkaloids from Papaver coreanum. Natural product communications. 2011 Nov; 6(11):1593-4. doi: . [PMID: 22224268]
  • Maria Kulp, Olga Bragina, Priit Kogerman, Mihkel Kaljurand. Capillary electrophoresis with LED-induced native fluorescence detection for determination of isoquinoline alkaloids and their cytotoxicity in extracts of Chelidonium majus L. Journal of chromatography. A. 2011 Aug; 1218(31):5298-304. doi: 10.1016/j.chroma.2011.06.016. [PMID: 21726876]
  • Kristýna Pěnčíková, Jana Urbanová, Pavel Musil, Eva Táborská, Jana Gregorová. Seasonal variation of bioactive alkaloid contents in Macleaya microcarpa (Maxim.) Fedde. Molecules (Basel, Switzerland). 2011 Apr; 16(4):3391-401. doi: 10.3390/molecules16043391. [PMID: 21512447]
  • Timothy N C Wells. Natural products as starting points for future anti-malarial therapies: going back to our roots?. Malaria journal. 2011 Mar; 10 Suppl 1(?):S3. doi: 10.1186/1475-2875-10-s1-s3. [PMID: 21411014]
  • Pavel Kosina, Jana Gregorova, Jiri Gruz, Jan Vacek, Milan Kolar, Mathias Vogel, Werner Roos, Kathrin Naumann, Vilim Simanek, Jitka Ulrichova. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia. 2010 Dec; 81(8):1006-12. doi: 10.1016/j.fitote.2010.06.020. [PMID: 20600683]
  • Lucie Cahlíková, Lubomír Opletal, Milan Kurfürst, Katerina Macáková, Andrea Kulhánková, Anna Hostálková. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Natural product communications. 2010 Nov; 5(11):1751-4. doi: . [PMID: 21213973]
  • Li Ouyang, Xiaoli Su, Dingsheng He, Yuanyuan Chen, Ming Ma, Qingji Xie, Shouzhuo Yao. A study on separation and extraction of four main alkaloids in Macleaya cordata (Willd) R. Br. with strip dispersion hybrid liquid membrane. Journal of separation science. 2010 Jul; 33(13):2026-34. doi: 10.1002/jssc.201000103. [PMID: 20512809]
  • Ming Zhong, Ke-Long Huang, Jian-Guo Zeng, Shuang Li, Jin-Ming She, Guiyin Li, Li Zhang. Optimization of microwave-assisted extraction of protopine and allocryptopine from stems of Macleaya cordata (Willd) R. Br. using response surface methodology. Journal of separation science. 2010 Jul; 33(14):2160-7. doi: 10.1002/jssc.201000085. [PMID: 20533346]
  • Tomoya Takemura, Nobuhiro Ikezawa, Kinuko Iwasa, Fumihiko Sato. Metabolic diversification of benzylisoquinoline alkaloid biosynthesis through the introduction of a branch pathway in Eschscholzia californica. Plant & cell physiology. 2010 Jun; 51(6):949-59. doi: 10.1093/pcp/pcq063. [PMID: 20427510]
  • Hao Liu, Jihua Wang, Jianglin Zhao, Shiqiong Lu, Jingguo Wang, Weibo Jiang, Zhanhong Ma, Ligang Zhou. Isoquinoline alkaloids from Macleaya cordata active against plant microbial pathogens. Natural product communications. 2009 Nov; 4(11):1557-60. doi: ". [PMID: 19967990]
  • Ying-Zhuang Chen, Guo-Zhu Liu, Yao Shen, Bo Chen, Jian-Guo Zeng. Analysis of alkaloids in Macleaya cordata (Willd.) R. Br. using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Journal of chromatography. A. 2009 Mar; 1216(11):2104-10. doi: 10.1016/j.chroma.2008.08.066. [PMID: 18774138]
  • Ralitsa Istatkova, Stefan Philipov, Gerelt-Od Yadamsurenghiin, Javzan Samdan, Selenge Dangaa. Alkaloids from Papaver nudicaule L. Natural product research. 2008 May; 22(7):607-11. doi: 10.1080/14786410701605315. [PMID: 18569698]
  • Sonja Sturm, Christoph Seger, Markus Godejohann, Manfred Spraul, Hermann Stuppner. Conventional sample enrichment strategies combined with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance analysis allows analyte identification from a single minuscule Corydalis solida plant tuber. Journal of chromatography. A. 2007 Sep; 1163(1-2):138-44. doi: 10.1016/j.chroma.2007.06.029. [PMID: 17628575]
  • Sonja Sturm, Christoph Seger, Hermann Stuppner. Analysis of Central European Corydalis species by nonaqueous capillary electrophoresis-electrospray ion trap mass spectrometry. Journal of chromatography. A. 2007 Aug; 1159(1-2):42-50. doi: 10.1016/j.chroma.2007.02.108. [PMID: 17395190]
  • K Morteza-Semnani, Gh Amin, M R Shidfar, H Hadizadeh, A Shafiee. Antifungal activity of the methanolic extract and alkaloids of Glaucium oxylobum. Fitoterapia. 2003 Jul; 74(5):493-6. doi: 10.1016/s0367-326x(03)00113-8. [PMID: 12837370]
  • Yuh-Chwen Chang, Pei-Wen Hsieh, Fang-Rong Chang, Ru-Rong Wu, Chih-Chuang Liaw, Kuo-Hsiung Lee, Yang-Chang Wu. Two new protopines argemexicaines A and B and the anti-HIV alkaloid 6-acetonyldihydrochelerythrine from formosan Argemone mexicana. Planta medica. 2003 Feb; 69(2):148-52. doi: 10.1055/s-2003-37710. [PMID: 12624820]
  • Tadaaki Satou, Nobuaki Akao, Rinako Matsuhashi, Kazuo Koike, Koichiro Fujita, Tamotsu Nikaido. Inhibitory effect of isoquinoline alkaloids on movement of second-stage larvae of Toxocara canis. Biological & pharmaceutical bulletin. 2002 Dec; 25(12):1651-4. doi: 10.1248/bpb.25.1651. [PMID: 12499659]
  • F R Stermitz, J Tawara-Matsuda, P Lorenz, P Mueller, L Zenewicz, K Lewis. 5'-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. Journal of natural products. 2000 Aug; 63(8):1146-9. doi: 10.1021/np990639k. [PMID: 10978214]