(+)-Gallocatechin (BioDeep_00000229919)

 

Secondary id: BioDeep_00000002602, BioDeep_00000272695, BioDeep_00000292493

human metabolite PANOMIX_OTCML-2023 Antitumor activity BioNovoGene_Lab2019


代谢物信息卡片


4-{1-Butyl-9-[1-(4,6-dimethyl-pyrimidine-5-carbonyl)-4-methyl-piperidin-4-yl]-2-oxo-3,0-diaza-spiro[5.5]undec-3-ylmethyl}-piperidine-1-carboxylic acid methyl ester

化学式: C15H14O7 (306.0739)
中文名称: 儿茶素, 右旋没食子儿茶素, 没食子儿茶素、棓儿茶酸, (+)-没食子儿茶素
谱图信息: 最多检出来源 Homo sapiens(plant) 11.02%

分子结构信息

SMILES: c1(cc(c2c(c1)O[C@@H]([C@H](C2)O)c1cc(c(c(c1)O)O)O)O)O
InChI: InChI=1S/C15H14O7/c16-7-3-9(17)8-5-12(20)15(22-13(8)4-7)6-1-10(18)14(21)11(19)2-6/h1-4,12,15-21H,5H2/t12-,15+/m0/s1

描述信息

Gallocatechin is a catechin that is a flavan substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7 (the trans isomer). It is isolated from Acacia mearnsii. It has a role as a metabolite. It is a catechin and a flavan-3,3,4,5,5,7-hexol.
(+)-Gallocatechin is a natural product found in Saxifraga cuneifolia, Quercus dentata, and other organisms with data available.
See also: Cianidanol (related); Crofelemer (monomer of); Green tea leaf (part of).
Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape.
(+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical.
A gallocatechin that has (2R,3S)-configuration. It is found in green tea and bananas.
(+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
(+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
(+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
(+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

同义名列表

44 个代谢物同义名

4-{1-Butyl-9-[1-(4,6-dimethyl-pyrimidine-5-carbonyl)-4-methyl-piperidin-4-yl]-2-oxo-3,0-diaza-spiro[5.5]undec-3-ylmethyl}-piperidine-1-carboxylic acid methyl ester; 2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-; 2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-; 2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, trans-(+-)-; 2H-1-Benzopyran-3,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R-trans-); 2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-; (2R*,3S*)- 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol; 2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-,(2R,3S)-; (2R*,3S*)-3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol; rel-(2R,3S)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol; (2R,3S)-3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol; (2R,3S)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol; (2R*,3S*)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol; (2R,3S)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol; (2R,3S)-2-(3,4,5-Trihydroxy-phenyl)-1-benzopyran-3,5,7-triol; (2R,3S)-2-(3,4,5-Trihydroxy-phenyl)-chroman-3,5,7-triol; (2R,3S)-2-(3,4,5-trihydroxyphenyl)chromane-3,5,7-triol; (2R,3S)-2-(3,4,5-Trihydroxyphenyl)chroman-3,5,7-triol; (+)-trans-3,3,4,5,5,7-Hexahydroxyflavan; (2R,3S)-flavan-3,3,4,5,5,7-hexol; (2R,3S)-flavan-3,5,7,3,4,5-hexol; gallocatechol, (2S-trans)-isomer; gallocatechol, (2R-trans)-isomer; gallocatechol, (2R-cis)-isomer; (2R,3S)-(+)-gallocatechin; (2R,3S)-gallocatechin; Gallocatechol, (+-)-; (+-)-Gallocatechin; (+-)-Gallocatechol; (+)-Gallocatechin; (+)-gallocatechol; Epigallocatechin; epigallocatechol; dl-Gallocatechin; d-Gallocatechol; d-Gallocatechin; MEGxp0_000240; gallocatechol; gallocatechin; NCI60_026203; ACon1_000994; NSC 674038; Casuarin; (+)-Gallocatechin



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

186 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ABCB1, BCL2, CASP3, CAT, MAPK14, PIK3CA, PTGS1, PTGS2, TYR, XDH
Peripheral membrane protein 2 PTGS1, PTGS2
Endoplasmic reticulum membrane 3 BCL2, PTGS1, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 4 BCL2, CASP3, CLK1, MAPK14
cytosol 6 BCL2, CASP3, CAT, MAPK14, PIK3CA, XDH
mitochondrial membrane 1 ABCG2
nucleoplasm 3 ABCG2, CASP3, MAPK14
Cell membrane 3 ABCB1, ABCG2, TNF
lamellipodium 1 PIK3CA
Multi-pass membrane protein 2 ABCB1, ABCG2
cell surface 2 ABCB1, TNF
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 1 PTGS1
Golgi membrane 1 INS
lysosomal membrane 2 EGF, GAA
neuronal cell body 2 CASP3, TNF
Lysosome 2 GAA, TYR
plasma membrane 6 ABCB1, ABCG2, EGF, GAA, PIK3CA, TNF
Membrane 6 ABCB1, ABCG2, BCL2, CAT, EGF, GAA
apical plasma membrane 2 ABCB1, ABCG2
caveola 1 PTGS2
extracellular exosome 6 ABCB1, ARSF, CAT, EGF, GAA, PTGS1
Lysosome membrane 1 GAA
endoplasmic reticulum 2 BCL2, PTGS2
extracellular space 7 EGF, IL10, IL4, IL6, INS, TNF, XDH
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 2 PIK3CA, TYR
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, MAPK14
protein-containing complex 3 BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 4 CAT, GAA, PTGS1, TYR
Microsome membrane 2 PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 6 ARSF, GAA, IL10, IL4, IL6, INS
extracellular region 9 CAT, EGF, GAA, IL10, IL4, IL6, INS, MAPK14, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 CAT
photoreceptor outer segment 1 PTGS1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Melanosome membrane 1 TYR
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 2 ABCB1, ABCG2
Membrane raft 2 ABCG2, TNF
pore complex 1 BCL2
focal adhesion 1 CAT
Peroxisome 2 CAT, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 2 PTGS1, PTGS2
phagocytic cup 1 TNF
brush border membrane 1 ABCG2
spindle pole 1 MAPK14
Endomembrane system 1 PTGS1
endosome lumen 1 INS
tertiary granule membrane 1 GAA
Melanosome 1 TYR
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ARSF, IL6, INS, PTGS2
platelet alpha granule lumen 1 EGF
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 EGF
ficolin-1-rich granule membrane 1 GAA
external side of apical plasma membrane 2 ABCB1, ABCG2
death-inducing signaling complex 1 CASP3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Guoping Lai, Mingchun Wen, Zongde Jiang, Feng Zhou, Hui-Xia Huo, Mengting Zhu, Zisheng Han, Zixin Zhao, Chi-Tang Ho, Liang Zhang. Novel Oxidation Oligomer of Chlorogenic Acid and (-)-Epigallocatechin and Its Quantitative Analysis during the Processing of Keemun Black Tea. Journal of agricultural and food chemistry. 2023 Oct; 71(42):15745-15753. doi: 10.1021/acs.jafc.3c04571. [PMID: 37816159]
  • Md Ashrafur Rahman, Arif Anzum Shuvo, Md Mehedi Hasan Apu, Monisha Rani Bhakta, Farzana Islam, Md Atiqur Rahman, Md Rabiul Islam, Hasan Mahmud Reza. Combination of epigallocatechin 3 gallate and curcumin improves D-galactose and normal-aging associated memory impairment in mice. Scientific reports. 2023 08; 13(1):12681. doi: 10.1038/s41598-023-39919-4. [PMID: 37542120]
  • Yuan Cheng, Xin Li, Ming-Ya Fang, Qing-Jing Ye, Zhi-Miao Li, Golam Jalal Ahammed. Systemic H2O2 signaling mediates epigallocatechin-3-gallate-induced cadmium tolerance in tomato. Journal of hazardous materials. 2022 09; 438(?):129511. doi: 10.1016/j.jhazmat.2022.129511. [PMID: 35809367]
  • Jean-Marc Brillouet, Charles Romieu, Roberto Bacilieri, Peter Nick, Anna Trias-Blasi, Erika Maul, Katalin Solymosi, Peter Teszlák, Jiang-Fu Jiang, Lei Sun, Danielle Ortolani, Jason P Londo, Ben Gutierrez, Bernard Prins, Marc Reynders, Frank Van Caekenberghe, David Maghradze, Cecile Marchal, Amir Sultan, Jean-Francois Thomas, Daniel Scherberich, Helene Fulcrand, Laurent Roumeas, Guillaume Billerach, Vugar Salimov, Mirza Musayev, Muhammad Ejaz Ul Islam Dar, Jean-Benoit Peltier, Michel Grisoni. Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves. Annals of botany. 2022 09; 130(2):159-171. doi: 10.1093/aob/mcac077. [PMID: 35700109]
  • Ayan Pradhan, Shilpa Sengupta, Ritika Sengupta, Mitali Chatterjee. Attenuation of methotrexate induced hepatotoxicity by epigallocatechin 3-gallate. Drug and chemical toxicology. 2022 Jun; ?(?):1-9. doi: 10.1080/01480545.2022.2085738. [PMID: 35698845]
  • Vendidandala Nagarjuna Reddy, Shaik Nyamathulla, Khomaizon Abdul Kadir Pahirulzaman, Seri Intan Mokhtar, Nelli Giribabu, Visweswara Rao Pasupuleti. Gallocatechin-silver nanoparticles embedded in cotton gauze patches accelerated wound healing in diabetic rats by promoting proliferation and inhibiting apoptosis through the Wnt/β-catenin signaling pathway. PloS one. 2022; 17(6):e0268505. doi: 10.1371/journal.pone.0268505. [PMID: 35737691]
  • Motofumi Kumazoe, Kanako Takamatsu, Fuyumi Horie, Ren Yoshitomi, Hiroki Hamagami, Hiroshi Tanaka, Yoshinori Fujimura, Hirofumi Tachibana. Methylated (-)-epigallocatechin 3-O-gallate potentiates the effect of split vaccine accompanied with upregulation of Toll-like receptor 5. Scientific reports. 2021 11; 11(1):23101. doi: 10.1038/s41598-021-02346-4. [PMID: 34845235]
  • Diogo Alexandre Siebert, Camila Jeriane Paganelli, Gustavo Silva Queiroz, Michele Debiasi Alberton. Anti-inflammatory activity of the epicuticular wax and its isolated compounds catechin and gallocatechin from Eugenia brasiliensis Lam. (Myrtaceae) leaves. Natural product research. 2021 Nov; 35(22):4720-4723. doi: 10.1080/14786419.2019.1710707. [PMID: 31913074]
  • Ping Xiang, Qiufang Zhu, Marat Tukhvatshin, Bosi Cheng, Meng Tan, Jianghong Liu, Xingjian Wang, Jiaxin Huang, Shuilian Gao, Dongyi Lin, Yue Zhang, Liangyu Wu, Jinke Lin. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC plant biology. 2021 Oct; 21(1):478. doi: 10.1186/s12870-021-03260-7. [PMID: 34670494]
  • Sunanta Wangkarn, Kate Grudpan, Chartchai Khanongnuch, Thanawat Pattananandecha, Sutasinee Apichai, Chalermpong Saenjum. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules (Basel, Switzerland). 2021 Oct; 26(19):. doi: 10.3390/molecules26196052. [PMID: 34641598]
  • E S Prasedya, A Frediansyah, N W R Martyasari, B K Ilhami, A S Abidin, H Padmi, Fahrurrozi, A B Juanssilfero, S Widyastuti, A L Sunarwidhi. Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Scientific reports. 2021 09; 11(1):17876. doi: 10.1038/s41598-021-95769-y. [PMID: 34504117]
  • Jiaqi Ma, Qimeng Yao, Xuemin Chen, Chenyan Lv, Jiachen Zang, Guanghua Zhao. Weak Binding of Epigallocatechin to α-Lactalbumin Greatly Improves Its Stability and Uptake by Caco-2 Cells. Journal of agricultural and food chemistry. 2021 Aug; 69(30):8482-8491. doi: 10.1021/acs.jafc.1c03427. [PMID: 34286590]
  • Mica Cabrera, Faizah Taher, Alendre Llantada, Quyen Do, Tyeshia Sapp, Monika Sommerhalter. Effect of Water Hardness on Catechin and Caffeine Content in Green Tea Infusions. Molecules (Basel, Switzerland). 2021 Jun; 26(12):. doi: 10.3390/molecules26123485. [PMID: 34201178]
  • Rie Mukai, Takashi Fukuda, Asami Ohnishi, Takeshi Nikawa, Mutsuki Furusawa, Junji Terao. Chocolate as a food matrix reduces the bioavailability of galloylated catechins from green tea in healthy women. Food & function. 2021 Jan; 12(1):408-416. doi: 10.1039/d0fo02485f. [PMID: 33393957]
  • Stéphanie Andrade, Joana Angélica Loureiro, Maria Carmo Pereira. Green tea extract-biomembrane interaction study: The role of its two major components, (-)-epigallocatechin gallate and (-)-epigallocatechin. Biochimica et biophysica acta. Biomembranes. 2021 01; 1863(1):183476. doi: 10.1016/j.bbamem.2020.183476. [PMID: 32946887]
  • Pascale Goupil, Elodie Peghaire, Razik Benouaret, Claire Richard, Mohamad Sleiman, Hicham El Alaoui, Ayhan Kocer. Relationships between Plant Defense Inducer Activities and Molecular Structure of Gallomolecules. Journal of agricultural and food chemistry. 2020 Dec; 68(52):15409-15417. doi: 10.1021/acs.jafc.0c05719. [PMID: 33337882]
  • Tingting Chen, Yanfei Yang, Shajun Zhu, Yapeng Lu, Li Zhu, Yanqing Wang, Xiaoyong Wang. Inhibition of Aβ aggregates in Alzheimer's disease by epigallocatechin and epicatechin-3-gallate from green tea. Bioorganic chemistry. 2020 12; 105(?):104382. doi: 10.1016/j.bioorg.2020.104382. [PMID: 33137558]
  • Jen-Ying Hsu, Hui-Hsuan Lin, Ting-Shuan Li, Chaio-Yun Tseng, Yueching Wong, Jing-Hsien Chen. Anti-Melanogenesis Effects of Lotus Seedpod In Vitro and In Vivo. Nutrients. 2020 Nov; 12(11):. doi: 10.3390/nu12113535. [PMID: 33218008]
  • Mabozou Kpemissi, Adrian-Valentin Potârniche, Povi Lawson-Evi, Kossi Metowogo, Mamatchi Melila, Pare Dramane, Marian Taulescu, Vivek Chandramohan, Doddamavattur Shivalingaiah Suhas, Tumbadi Adinarayanashetty Puneeth, Vijaya Kumar S, Laurian Vlase, Sanda Andrei, Kwashie Eklu-Gadegbeku, Bogdan Sevastre, Veeresh Prabhakar Veerapur. Nephroprotective effect of Combretum micranthum G. Don in nicotinamide-streptozotocin induced diabetic nephropathy in rats: In-vivo and in-silico experiments. Journal of ethnopharmacology. 2020 Oct; 261(?):113133. doi: 10.1016/j.jep.2020.113133. [PMID: 32673708]
  • Yaqiong Wu, Tongli Wang, Yue Xin, Guibin Wang, Li-An Xu. Overexpression of GbF3'5'H1 Provides a Potential to Improve the Content of Epicatechin and Gallocatechin. Molecules (Basel, Switzerland). 2020 Oct; 25(20):. doi: 10.3390/molecules25204836. [PMID: 33092253]
  • Francesco Balestri, Giulio Poli, Carlotta Pineschi, Roberta Moschini, Mario Cappiello, Umberto Mura, Tiziano Tuccinardi, Antonella Del Corso. Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules. 2020 07; 10(7):. doi: 10.3390/biom10071003. [PMID: 32640594]
  • Qian Wu, Shimiao Tang, Liang Zhang, Jinsong Xiao, Qing Luo, Yuanyuan Chen, Mengzhou Zhou, Nianjie Feng, Chao Wang. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media. Food & function. 2020 Jun; 11(6):5396-5408. doi: 10.1039/c9fo02887k. [PMID: 32469349]
  • Chendi Zhan, Yujie Chen, Yiming Tang, Guanghong Wei. Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ42 Protofibril. ACS chemical neuroscience. 2020 06; 11(12):1841-1851. doi: 10.1021/acschemneuro.0c00277. [PMID: 32441920]
  • Yaqiong Wu, Tongli Wang, Yue Xin, Guibin Wang, Li-An Xu. Overexpression of the GbF3'H1 Gene Enhanced the Epigallocatechin, Gallocatechin, and Catechin Contents in Transgenic Populus. Journal of agricultural and food chemistry. 2020 Jan; 68(4):998-1006. doi: 10.1021/acs.jafc.9b07008. [PMID: 31910001]
  • Jing Xia, Dan Wang, Pei Liang, De Zhang, Xiaoqing Du, Dejiang Ni, Zhi Yu. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophysical chemistry. 2020 01; 256(?):106282. doi: 10.1016/j.bpc.2019.106282. [PMID: 31756664]
  • Yinyin Liao, Xiumin Fu, Haiyun Zhou, Wei Rao, Lanting Zeng, Ziyin Yang. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food chemistry. 2019 Sep; 292(?):204-210. doi: 10.1016/j.foodchem.2019.04.055. [PMID: 31054666]
  • Bihui Liu, Jing Zhang, Peng Sun, Ruokun Yi, Xiaoyan Han, Xin Zhao. Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice. Biomolecules. 2019 09; 9(9):. doi: 10.3390/biom9090435. [PMID: 31480575]
  • Chaozhen Zeng, Haiyan Lin, Zhixiang Liu, Zhonghua Liu. Analysis of Young Shoots of 'Anji Baicha' (Camellia sinensis) at Three Developmental Stages Using Nontargeted LC-MS-Based Metabolomics. Journal of food science. 2019 Jul; 84(7):1746-1757. doi: 10.1111/1750-3841.14657. [PMID: 31206686]
  • Ye Jiao, Jialiang He, Zhiyong He, Daming Gao, Fang Qin, Mingyong Xie, Maomao Zeng, Jie Chen. Formation of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine during black tea processing. Food research international (Ottawa, Ont.). 2019 07; 121(?):738-745. doi: 10.1016/j.foodres.2018.12.051. [PMID: 31108804]
  • Hualing Wu, Wenjie Huang, Zhongjian Chen, Zhuang Chen, Jingfang Shi, Qian Kong, Shili Sun, Xiaohui Jiang, Dong Chen, Shijuan Yan. GC-MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food research international (Ottawa, Ont.). 2019 06; 120(?):330-338. doi: 10.1016/j.foodres.2019.02.039. [PMID: 31000247]
  • Mimin Zhang, Kenichiro Otake, Yumiko Miyauchi, Masayuki Yagi, Yoshikazu Yonei, Takuya Miyakawa, Masaru Tanokura. Comprehensive NMR analysis of two kinds of post-fermented tea and their anti-glycation activities in vitro. Food chemistry. 2019 Mar; 277(?):735-743. doi: 10.1016/j.foodchem.2018.11.028. [PMID: 30502210]
  • Hsien-Chun Tseng, Pei-Min Tsai, Ying-Hsiang Chou, Yueh-Chun Lee, Hui-Hsuan Lin, Jing-Hsien Chen. In Vitro and In Vivo Protective Effects of Flavonoid-Enriched Lotus Seedpod Extract on Lipopolysaccharide-Induced Hepatic Inflammation. The American journal of Chinese medicine. 2019; 47(1):153-176. doi: 10.1142/s0192415x19500083. [PMID: 30612458]
  • Tomohito Sano, Hideki Horie, Akiko Matsunaga, Yuhei Hirono. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. Journal of the science of food and agriculture. 2018 Dec; 98(15):5666-5676. doi: 10.1002/jsfa.9112. [PMID: 29722013]
  • Sara Matić, Milena Jadrijević-Mladar Takač, Monika Barbarić, Bono Lučić, Koraljka Gall Trošelj, Višnja Stepanić. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins-In Silico Analysis. Journal of pharmaceutical sciences. 2018 11; 107(11):2957-2964. doi: 10.1016/j.xphs.2018.07.026. [PMID: 30077700]
  • Anu Tuominen, Maarit Karonen. Variability between organs of proanthocyanidins in Geranium sylvaticum analyzed by off-line 2-dimensional HPLC-MS. Phytochemistry. 2018 Jun; 150(?):106-117. doi: 10.1016/j.phytochem.2018.03.004. [PMID: 29579735]
  • Rashik Ahmed, Giuseppe Melacini. A solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors. Chemical communications (Cambridge, England). 2018 May; 54(37):4644-4652. doi: 10.1039/c8cc01380b. [PMID: 29658548]
  • Rui Yang, Jing Tian, Desheng Wang, Chris Blanchard, Zhongkai Zhou. Chitosan binding onto the epigallocatechin-loaded ferritin nanocage enhances its transport across Caco-2 cells. Food & function. 2018 Apr; 9(4):2015-2024. doi: 10.1039/c8fo00097b. [PMID: 29541738]
  • Jeong-Eun Park, Tae-Eun Kim, Kwang-Hee Shin. Quantitative Analysis of Four Catechins from Green Tea Extract in Human Plasma Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Pharmacokinetic Studies. Molecules (Basel, Switzerland). 2018 04; 23(4):. doi: 10.3390/molecules23040984. [PMID: 29690635]
  • Almuth Hammerbacher, Bettina Raguschke, Louwrance P Wright, Jonathan Gershenzon. Gallocatechin biosynthesis via a flavonoid 3',5'-hydroxylase is a defense response in Norway spruce against infection by the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Phytochemistry. 2018 Apr; 148(?):78-86. doi: 10.1016/j.phytochem.2018.01.017. [PMID: 29421514]
  • Yunru Peng, Qilu Meng, Jie Zhou, Bo Chen, Junjun Xi, Piaopiao Long, Liang Zhang, Ruyan Hou. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food chemistry. 2018 Mar; 242(?):527-532. doi: 10.1016/j.foodchem.2017.09.094. [PMID: 29037724]
  • Rosina Cabrera, Damian López-Peña, Ali Asaff, Martín Esqueda, Elisa M Valenzuela-Soto. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings. International journal of medicinal mushrooms. 2018; 20(3):291-303. doi: 10.1615/intjmedmushrooms.2018025816. [PMID: 29717673]
  • Zhihong Gong, Si Chen, Jiangtao Gao, Meihong Li, Xiaxia Wang, Jun Lin, Xiaomin Yu. [Isolation and purification of seven catechin compounds from fresh tea leaves by semi-preparative liquid chromatography]. Se pu = Chinese journal of chromatography. 2017 Nov; 35(11):1192-1197. doi: 10.3724/sp.j.1123.2017.08002. [PMID: 29372766]
  • Wojciech Koch, Wirginia Kukula-Koch, Kazimierz Głowniak. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time. Journal of AOAC International. 2017 Nov; 100(6):1694-1699. doi: 10.5740/jaoacint.17-0235. [PMID: 28707612]
  • Jin Liang, Hua Yan, Xiulan Wang, Yibin Zhou, Xueling Gao, Pradeep Puligundla, Xiaochun Wan. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food chemistry. 2017 Sep; 231(?):19-24. doi: 10.1016/j.foodchem.2017.02.106. [PMID: 28449996]
  • Murat Zor, Sevtap Aydin, Nadide Deniz Güner, Nurşen Başaran, Arif Ahmet Başaran. Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds. BMC complementary and alternative medicine. 2017 Apr; 17(1):229. doi: 10.1186/s12906-017-1732-1. [PMID: 28446228]
  • Rui Fang, Sally P Redfern, Don Kirkup, Elaine A Porter, Geoffrey C Kite, Leon A Terry, Mark J Berry, Monique S J Simmonds. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food chemistry. 2017 Apr; 220(?):517-526. doi: 10.1016/j.foodchem.2016.09.047. [PMID: 27855934]
  • Angelo Zinellu, Salvatore Sotgia, Bastianina Scanu, Dionigia Arru, Annalisa Cossu, Anna Maria Posadino, Roberta Giordo, Arduino A Mangoni, Gianfranco Pintus, Ciriaco Carru. N- and S-homocysteinylation reduce the binding of human serum albumin to catechins. European journal of nutrition. 2017 Mar; 56(2):785-791. doi: 10.1007/s00394-015-1125-5. [PMID: 26658763]
  • Dong-Mei Fan, Kai Fan, Cui-Ping Yu, Ya-Ting Lu, Xiao-Chang Wang. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Journal of Zhejiang University. Science. B. 2017 Feb; 18(2):99-108. doi: 10.1631/jzus.b1600044. [PMID: 28124839]
  • Shunsuke Miyauchi, Tsutomu Yonetani, Takayuki Yuki, Ayako Tomio, Takeshi Bamba, Eiichiro Fukusaki. Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry. Journal of bioscience and bioengineering. 2017 Feb; 123(2):197-202. doi: 10.1016/j.jbiosc.2016.07.017. [PMID: 27568369]
  • Batsukh Odonbayar, Toshihiro Murata, Javzan Batkhuu, Kosho Yasunaga, Rina Goto, Kenroh Sasaki. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase. Journal of natural products. 2016 Dec; 79(12):3065-3071. doi: 10.1021/acs.jnatprod.6b00720. [PMID: 28006914]
  • Sónia A O Santos, Carla Vilela, João F Camacho, Nereida Cordeiro, Manuela Gouveia, Carmen S R Freire, Armando J D Silvestre. Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.). Food chemistry. 2016 Nov; 211(?):845-52. doi: 10.1016/j.foodchem.2016.05.123. [PMID: 27283704]
  • Keiko Unno, Ayane Hara, Aimi Nakagawa, Kazuaki Iguchi, Megumi Ohshio, Akio Morita, Yoriyuki Nakamura. Anti-stress effects of drinking green tea with lowered caffeine and enriched theanine, epigallocatechin and arginine on psychosocial stress induced adrenal hypertrophy in mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Nov; 23(12):1365-1374. doi: 10.1016/j.phymed.2016.07.006. [PMID: 27765356]
  • Ning Li, Ying Wang, Xuezheng Li, Hong Zhang, Di Zhou, Wenli Wang, Wei Li, Xiangrong Zhang, Xinyu Li, Yue Hou, Dali Meng. Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorganic & medicinal chemistry letters. 2016 10; 26(20):5018-5023. doi: 10.1016/j.bmcl.2016.08.094. [PMID: 27623545]
  • Agnieszka Nowak, Agata Czyzowska, Magdalena Efenberger, Lucjan Krala. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food microbiology. 2016 Oct; 59(?):142-9. doi: 10.1016/j.fm.2016.06.004. [PMID: 27375255]
  • Nemanja S Stanisavljević, Marija D Ilić, Ivana Z Matić, Živko S Jovanović, Tihomir Čupić, Dragana Č Dabić, Maja M Natić, Živoslav Lj Tešić. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities. Nutrition and cancer. 2016 Aug; 68(6):988-1000. doi: 10.1080/01635581.2016.1190019. [PMID: 27348025]
  • Maria Kyraleou, Yorgos Kotseridis, Stefanos Koundouras, Kleopatra Chira, Pierre-Louis Teissedre, Stamatina Kallithraka. Effect of irrigation regime on perceived astringency and proanthocyanidin composition of skins and seeds of Vitis vinifera L. cv. Syrah grapes under semiarid conditions. Food chemistry. 2016 Jul; 203(?):292-300. doi: 10.1016/j.foodchem.2016.02.052. [PMID: 26948617]
  • Aafreen Fathima, Jonnalagadda Raghava Rao. Selective toxicity of Catechin-a natural flavonoid towards bacteria. Applied microbiology and biotechnology. 2016 Jul; 100(14):6395-6402. doi: 10.1007/s00253-016-7492-x. [PMID: 27052380]
  • Xiao-li Guan, Yong-lin Huang, Ya-feng Wang, Dian-peng Li. [Study on the Chemical Constituents of Litchi chinensis Pericarp( Ⅱ)]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2016 Jun; 39(6):1291-5. doi: . [PMID: 30156800]
  • Kátia Wolff Cordeiro, Josyelen Lousada Felipe, Kauê Franco Malange, Pâmela Rafaela do Prado, Patrícia de Oliveira Figueiredo, Fernanda Rodrigues Garcez, Karine de Cássia Freitas, Walmir Silva Garcez, Mônica Cristina Toffoli-Kadri. Anti-inflammatory and antinociceptive activities of Croton urucurana Baillon bark. Journal of ethnopharmacology. 2016 May; 183(?):128-135. doi: 10.1016/j.jep.2016.02.051. [PMID: 26944237]
  • Zehua Liu, Ziwen Luo, Caixia Jia, Dongmei Wang, Dengwu Li. Synergistic Effects of Potentilla fruticosa L. Leaves Combined with Green Tea Polyphenols in a Variety of Oxidation Systems. Journal of food science. 2016 May; 81(5):C1091-101. doi: 10.1111/1750-3841.13292. [PMID: 27061936]
  • Ryusuke Takechi, Helman Alfonso, Naoko Hiramatsu, Akari Ishisaka, Akira Tanaka, La'Belle Tan, Andy H Lee. Elevated plasma and urinary concentrations of green tea catechins associated with improved plasma lipid profile in healthy Japanese women. Nutrition research (New York, N.Y.). 2016 Mar; 36(3):220-6. doi: 10.1016/j.nutres.2015.11.010. [PMID: 26923508]
  • Ying-Na Zhang, Jun-Feng Yin, Jian-Xin Chen, Fang Wang, Qi-Zhen Du, Yong-Wen Jiang, Yong-Quan Xu. Improving the sweet aftertaste of green tea infusion with tannase. Food chemistry. 2016 Feb; 192(?):470-6. doi: 10.1016/j.foodchem.2015.07.046. [PMID: 26304374]
  • Le Wang, Yue Zhu, Peng Wang, Qiang Fan, Yao Wu, Qing-Zhong Peng, Gui-Xian Xia, Jia-He Wu. Functional Characterization of a Dihydroflavanol 4-Reductase from the Fiber of Upland Cotton (Gossypium hirsutum). Molecules (Basel, Switzerland). 2016 Jan; 21(2):32. doi: 10.3390/molecules21020032. [PMID: 26821011]
  • Jessie Godsey, Oliver Grundmann. Review of Various Herbal Supplements as Complementary Treatments for Oral Cancer. Journal of dietary supplements. 2016; 13(5):538-50. doi: 10.3109/19390211.2015.1122693. [PMID: 26863913]
  • Silvia Wein, Birgit Beyer, Annika Gohlke, Ralf Blank, Cornelia C Metges, Siegfried Wolffram. Systemic Absorption of Catechins after Intraruminal or Intraduodenal Application of a Green Tea Extract in Cows. PloS one. 2016; 11(7):e0159428. doi: 10.1371/journal.pone.0159428. [PMID: 27427946]
  • Yu Zhang, Jian-Nan Ma, Chun-Li Ma, Zhi Qi, Chao-Mei Ma. Simultaneous quantification of ten constituents of Xanthoceras sorbifolia Bunge using UHPLC-MS methods and evaluation of their radical scavenging, DNA scission protective, and α-glucosidase inhibitory activities. Chinese journal of natural medicines. 2015 Nov; 13(11):873-880. doi: 10.1016/s1875-5364(15)30092-3. [PMID: 26614463]
  • Akiko Takagaki, Fumio Nanjo. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats. Journal of agricultural and food chemistry. 2015 Sep; 63(37):8262-6. doi: 10.1021/acs.jafc.5b03676. [PMID: 26323573]
  • Amani Taamalli, David Arráez-Román, Leila Abaza, Ihsan Iswaldi, Alberto Fernández-Gutiérrez, Mokhtar Zarrouk, Antonio Segura-Carretero. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochemical analysis : PCA. 2015 Sep; 26(5):320-30. doi: 10.1002/pca.2566. [PMID: 25982347]
  • Mohd Farhan, Atif Zafar, Sandesh Chibber, Husain Yar Khan, Hussain Arif, S M Hadi. Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: A structure activity study. Archives of biochemistry and biophysics. 2015 Aug; 580(?):31-40. doi: 10.1016/j.abb.2015.06.019. [PMID: 26142371]
  • Lesley M Butler, Joyce Yongxu Huang, Renwei Wang, Mao-Jun Lee, Chung S Yang, Yu-Tang Gao, Jian-Min Yuan. Urinary biomarkers of catechins and risk of hepatocellular carcinoma in the Shanghai Cohort Study. American journal of epidemiology. 2015 Mar; 181(6):397-405. doi: 10.1093/aje/kwu304. [PMID: 25713334]
  • Mara Mirasoli, Roberto Gotti, Massimo Di Fusco, Alberto Leoni, Carolina Colliva, Aldo Roda. Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage. Talanta. 2014 Nov; 129(?):32-8. doi: 10.1016/j.talanta.2014.04.044. [PMID: 25127562]
  • Akiko Takagaki, Yuko Kato, Fumio Nanjo. Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin. Archives of microbiology. 2014 Oct; 196(10):681-95. doi: 10.1007/s00203-014-1006-y. [PMID: 24947740]
  • Yanmang Cui, Xingbin Yang, Xinshan Lu, Jinwen Chen, Yan Zhao. Protective effects of polyphenols-enriched extract from Huangshan Maofeng green tea against CCl4-induced liver injury in mice. Chemico-biological interactions. 2014 Sep; 220(?):75-83. doi: 10.1016/j.cbi.2014.06.018. [PMID: 24973642]
  • John van Duynhoven, Justin J J van der Hooft, Ferdinand A van Dorsten, Sonja Peters, Martin Foltz, Victoria Gomez-Roldan, Jacques Vervoort, Ric C H de Vos, Doris M Jacobs. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. Journal of proteome research. 2014 May; 13(5):2668-78. doi: 10.1021/pr5001253. [PMID: 24673575]
  • Suk-Nam Kang, Jong Seok Lee, Joung-Hyun Park, Jae-Hyeon Cho, Jae-Hong Park, Kwang-Keun Cho, Ok-Hwan Lee, Il-Suk Kim. In vitro anti-osteoporosis properties of diverse Korean Drynariae rhizoma phenolic extracts. Nutrients. 2014 Apr; 6(4):1737-51. doi: 10.3390/nu6041737. [PMID: 24763116]
  • Haiyan Xie, Jing-Rong Wang, Lee-Fong Yau, Yong Liu, Liang Liu, Quan-Bin Han, Zhongzhen Zhao, Zhi-Hong Jiang. Catechins and procyanidins of Ginkgo biloba show potent activities towards the inhibition of β-amyloid peptide aggregation and destabilization of preformed fibrils. Molecules (Basel, Switzerland). 2014 Apr; 19(4):5119-34. doi: 10.3390/molecules19045119. [PMID: 24759072]
  • Maria-Magdalena Mocanu, Constanţa Ganea, Laura Georgescu, Tímea Váradi, Dilip Shrestha, Irina Baran, Eva Katona, Peter Nagy, János Szöllősi. Epigallocatechin 3-O-gallate induces 67 kDa laminin receptor-mediated cell death accompanied by downregulation of ErbB proteins and altered lipid raft clustering in mammary and epidermoid carcinoma cells. Journal of natural products. 2014 Feb; 77(2):250-7. doi: 10.1021/np4007712. [PMID: 24456004]
  • Thea Magrone, Vittorio Pugliese, Sergio Fontana, Emilio Jirillo. Human use of Leucoselect® Phytosome® with special reference to inflammatory-allergic pathologies in frail elderly patients. Current pharmaceutical design. 2014; 20(6):1011-9. doi: 10.2174/138161282006140220144411. [PMID: 23701566]
  • Yue-Hua Xiao, Qian Yan, Hui Ding, Ming Luo, Lei Hou, Mi Zhang, Dan Yao, Hou-Sheng Liu, Xin Li, Jia Zhao, Yan Pei. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PloS one. 2014; 9(1):e86344. doi: 10.1371/journal.pone.0086344. [PMID: 24466041]
  • A Suedee, S Tewtrakul, P Panichayupakaranant. Anti-HIV-1 integrase activity of Mimusops elengi leaf extracts. Pharmaceutical biology. 2014 Jan; 52(1):58-61. doi: 10.3109/13880209.2013.810649. [PMID: 24033292]
  • Chunjian Zhao, Chunying Li, Shuaihua Liu, Lei Yang. The galloyl catechins contributing to main antioxidant capacity of tea made from Camellia sinensis in China. TheScientificWorldJournal. 2014; 2014(?):863984. doi: 10.1155/2014/863984. [PMID: 25243234]
  • Seok-Yeong Yu, Young-Jun Lee, Jong-Dai Kim, Suk-Nam Kang, Seong-Kap Lee, Jung-Young Jang, Hyo-Ku Lee, Jeong-Ho Lim, Ok-Hwan Lee. Phenolic composition, antioxidant activity and anti-adipogenic effect of hot water extract from safflower (Carthamus tinctorius L.) seed. Nutrients. 2013 Nov; 5(12):4894-907. doi: 10.3390/nu5124894. [PMID: 24288028]
  • Lan-Sook Lee, Namhyouck Lee, Young Ho Kim, Chang-Ho Lee, Sang Pil Hong, Yeo-Won Jeon, Young-Eon Kim. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules (Basel, Switzerland). 2013 Oct; 18(11):13530-45. doi: 10.3390/molecules181113530. [PMID: 24184822]
  • Xiao-Qiang Chen, Xian-Bo Wang, Rong-Fa Guan, Jue Tu, Zhao-Hui Gong, Na Zheng, Jie-Hong Yang, Yu-Yan Zhang, Miao-Miao Ying. Blood anticoagulation and antiplatelet activity of green tea (-)-epigallocatechin (EGC) in mice. Food & function. 2013 Oct; 4(10):1521-5. doi: 10.1039/c3fo60088b. [PMID: 24056410]
  • Zhen-Zhen Zhang, Xia-Ning Che, Qiu-Hong Pan, Xiao-Xi Li, Chang-Qing Duan. Transcriptional activation of flavan-3-ols biosynthesis in grape berries by UV irradiation depending on developmental stage. Plant science : an international journal of experimental plant biology. 2013 Jul; 208(?):64-74. doi: 10.1016/j.plantsci.2013.03.013. [PMID: 23683931]
  • Yang-Hee Hong, Eun Young Jung, Kwang-Soon Shin, Kwang-Won Yu, Un Jae Chang, Hyung Joo Suh. Tannase-converted green tea catechins and their anti-wrinkle activity in humans. Journal of cosmetic dermatology. 2013 Jun; 12(2):137-43. doi: 10.1111/jocd.12038. [PMID: 23725307]
  • Takahiro Tsujita, Tomoyoshi Shintani, Hiroaki Sato. α-Amylase inhibitory activity from nut seed skin polyphenols. 1. Purification and characterization of almond seed skin polyphenols. Journal of agricultural and food chemistry. 2013 May; 61(19):4570-6. doi: 10.1021/jf400691q. [PMID: 23614772]
  • Jae-Hwan Chung, Sol Kim, Sang-Jun Lee, Jin-Oh Chung, Yu-Jin Oh, Soon-Mi Shim. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins. Journal of food science. 2013 May; 78(5):C685-90. doi: 10.1111/1750-3841.12112. [PMID: 23551173]
  • Jung Sun Park, Pham Ngoc Khoi, Young Eun Joo, Young Han Lee, Sven A Lang, Oliver Stoeltzing, Young Do Jung. EGCG inhibits recepteur d'origine nantais expression by suppressing Egr-1 in gastric cancer cells. International journal of oncology. 2013 Mar; 42(3):1120-6. doi: 10.3892/ijo.2013.1775. [PMID: 23337910]
  • Sarah Egert, Jane Tereszczuk, Silvia Wein, Manfred James Müller, Jan Frank, Gerald Rimbach, Siegfried Wolffram. Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylated catechins from green tea in humans. European journal of nutrition. 2013 Feb; 52(1):281-8. doi: 10.1007/s00394-012-0330-8. [PMID: 22366739]
  • Souvik Roy, Santanu Sannigrahi, Balaram Ghosh, Priyanka Pusp, Tathagata Roy. Combination therapy of dexamethasone with epigallocatechin enhances tibiotarsal bone articulation and modulates oxidative status correlates with cartilage cytokines expression in the early phase of experimental arthritis. European journal of pharmacology. 2013 Jan; 698(1-3):444-54. doi: 10.1016/j.ejphar.2012.11.004. [PMID: 23183110]
  • Yang-Hee Hong, Eun Young Jung, Yooheon Park, Kwang-Soon Shin, Tae Young Kim, Kwang-Won Yu, Un Jae Chang, Hyung Joo Suh. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts. Bioscience, biotechnology, and biochemistry. 2013; 77(1):22-9. doi: 10.1271/bbb.120373. [PMID: 23291774]
  • Zhiyu Wang, Dongmei Wang, Shouwei Han, Neng Wang, Feizhi Mo, Tjing Yung Loo, Jiangang Shen, Hui Huang, Jianping Chen. Bioactivity-guided identification and cell signaling technology to delineate the lactate dehydrogenase A inhibition effects of Spatholobus suberectus on breast cancer. PloS one. 2013; 8(2):e56631. doi: 10.1371/journal.pone.0056631. [PMID: 23457597]
  • K Koga, M Hisamura, T Kanetaka, K Yoshino, Y Matsuo, T Tanaka. Proanthocyanidin oligomers isolated from Salacia reticulata leaves potently inhibit pancreatic lipase activity. Journal of food science. 2013 Jan; 78(1):H105-11. doi: 10.1111/1750-3841.12001. [PMID: 23278351]
  • Miya Kamihira-Ishijima, Hiromi Nakazawa, Atsushi Kira, Akira Naito, Tsutomu Nakayama. Inhibitory mechanism of pancreatic amyloid fibril formation: formation of the complex between tea catechins and the fragment of residues 22-27. Biochemistry. 2012 Dec; 51(51):10167-74. doi: 10.1021/bi3012274. [PMID: 23205879]
  • Takushi Sasaki, Ryo Kamata, Shunji Ueno, Takeharu Kaneda, Kyosuke Temma. Green tea catechins increase the force of contraction in isolated guinea pig atrial muscle preparations by increasing the amplitude of intracellular Ca2+ concentration. The Journal of veterinary medical science. 2012 Dec; 74(12):1603-8. doi: 10.1292/jvms.12-0254. [PMID: 22864409]
  • Souvik Roy, Santanu Sannigrahi, Ram Prasad Vaddepalli, Balaram Ghosh, Priyanka Pusp. A novel combination of methotrexate and epigallocatechin attenuates the overexpression of pro-inflammatory cartilage cytokines and modulates antioxidant status in adjuvant arthritic rats. Inflammation. 2012 Aug; 35(4):1435-47. doi: 10.1007/s10753-012-9457-2. [PMID: 22453361]
  • Qiu-Sha Li, Heng Xi, Guo-Zhu Han, Chang-Yuan Wang, Li Lü, Ling-Li Zou, Nan Li. [Integrated pharmacokinetic study of multiple effective components of tea polyphenols and its correlation with anti-free radical pharmacodynamics in rats]. Yao xue xue bao = Acta pharmaceutica Sinica. 2012 Jul; 47(7):863-9. doi: NULL. [PMID: 22993849]
  • Denisa Margina, Mihaela Ilie, Gina Manda, Ionela Neagoe, Magdalena Mocanu, Diana Ionescu, Daniela Gradinaru, Constanţa Ganea. Quercetin and epigallocatechin gallate effects on the cell membranes biophysical properties correlate with their antioxidant potential. General physiology and biophysics. 2012 Mar; 31(1):47-55. doi: 10.4149/gpb_2012_005. [PMID: 22447830]