13-Methylmyristic acid (BioDeep_00000017451)

Main id: BioDeep_00000003956

 

human metabolite PANOMIX_OTCML-2023 Endogenous Antitumor activity


代谢物信息卡片


13-Methylmyristic acid, >=98\\% (capillary GC)

化学式: C15H30O2 (242.224568)
中文名称: 13-甲基十四烷酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(CCC(C)C)CCCCCCCCC(=O)O
InChI: InChI=1S/C15H30O2/c1-14(2)12-10-8-6-4-3-5-7-9-11-13-15(16)17/h14H,3-13H2,1-2H3,(H,16,17)

描述信息

Isopentadecanoic acid is a branched-chain saturated fatty acid comprising tetradecanoic (myristic) acid substituted at position 13 by a methyl group. It is a long-chain fatty acid, a branched-chain saturated fatty acid and a methyl-branched fatty acid. It is a conjugate acid of an isopentadecanoate.
13-Methyltetradecanoic acid is a natural product found in Streptomyces manipurensis, Myrmekioderma rea, and other organisms with data available.
13-Methyltetradecanoic Acid is a branched-chain saturated fatty acid that is comprised of tetradecanoic acid with a methyl group on the carbon in the thirteenth position.
13-Methylmyristic acid (CAS# 2485-71-4), also known as 13-methyltetradecanoic acid, iso-pentadecanoic acid, 13-methyltetradecanoic acid, 13-MTD, or 13-MTDA, is an iso-fatty acid. It is used to study the induction of mitochondrial-mediated apoptosis via the AKT and MAPK pathways. 13-MTDA is used for the biosynthesis of methyl-branched polyhydroxyalkanoates
A branched-chain saturated fatty acid comprising tetradecanoic (myristic) acid substituted at position 13 by a methyl group.
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].
13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

同义名列表

27 个代谢物同义名

13-Methylmyristic acid, >=98\\% (capillary GC); Tetradecanoic acid, 13-methyl-; 13-Methyl tetradecanoic acid; 13-methyl-tetradecanoic acid; 13-Methyltetradecanoic acid; 13-Methyl-tetradecansaeure; 13-METHYLTETRADECANOICACID; Subtilopentadecanoic acid; 13-Methyl tetradecanoate; 13-methylmyristic acid; iso-pentadecanoic acid; Isopentadecanoic acid; Isopentadecylic acid; 13-methylmyristate; Isopentadecanoate; Isopentadecylate; UNII-M09T9M1LTY; M09T9M1LTY; FA(i-15:0); iso-C15:0; 15:0 iso; iso-C15; i-C15:0; FA 15:0; i-15:0; 13-Mtd; LeDSF3



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jing Jin, Jiping Chen, Yuzeng Tian, Lili Zou, Longxing Wang, Fang Li. [Determination of undecanoic acid and 13-methyl-tetradecanoic acid connected to the glyceride with internal standard method and its application to the identification of adulteration of illegal cooking oil]. Se pu = Chinese journal of chromatography. 2013 Jun; 31(6):556-60. doi: 10.3724/sp.j.1123.2012.12036. [PMID: 24063195]
  • Tianxin Lin, XinBao Yin, Qingqing Cai, Xinlan Fan, Kewei Xu, Li Huang, Junhua Luo, Jianping Zheng, Jian Huang. 13-Methyltetradecanoic acid induces mitochondrial-mediated apoptosis in human bladder cancer cells. Urologic oncology. 2012 May; 30(3):339-45. doi: 10.1016/j.urolonc.2010.04.011. [PMID: 20843711]
  • Rinat R Ran-Ressler, Ludmila Khailova, Kelly M Arganbright, Camille K Adkins-Rieck, Zeina E Jouni, Omry Koren, Ruth E Ley, J Thomas Brenna, Bohuslav Dvorak. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PloS one. 2011; 6(12):e29032. doi: 10.1371/journal.pone.0029032. [PMID: 22194981]
  • Kyleann K Brooks, Bin Liang, Jennifer L Watts. The influence of bacterial diet on fat storage in C. elegans. PloS one. 2009 Oct; 4(10):e7545. doi: 10.1371/journal.pone.0007545. [PMID: 19844570]
  • Zoey P Zahorodny Duggan, Heather N Koopman, Suzanne M Budge. Distribution and development of the highly specialized lipids in the sound reception systems of dolphins. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 2009 Aug; 179(6):783-98. doi: 10.1007/s00360-009-0360-6. [PMID: 19373476]
  • Fredrick Lindström, Saskia Thurnhofer, Walter Vetter, Gerhard Gröbner. Impact on lipid membrane organization by free branched-chain fatty acids. Physical chemistry chemical physics : PCCP. 2006 Nov; 8(41):4792-7. doi: 10.1039/b607460j. [PMID: 17043723]
  • Myung Soo Park, Se Ra Jung, Kang Hyun Lee, Myung-Sook Lee, Jin Ok Do, Seung Bum Kim, Kyung Sook Bae. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. International journal of systematic and evolutionary microbiology. 2006 Feb; 56(Pt 2):433-438. doi: 10.1099/ijs.0.63825-0. [PMID: 16449453]
  • Sawitree Wongtangtintharn, Hirosuke Oku, Hironori Iwasaki, Masashi Inafuku, Takayoshi Toda, Teruyoshi Yanagita. Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3. Lipids in health and disease. 2005 Nov; 4(?):29. doi: 10.1186/1476-511x-4-29. [PMID: 16305741]
  • Takashi Naka, Nagatoshi Fujiwara, Ikuya Yano, Shinji Maeda, Matsumi Doe, Miki Minamino, Norikazu Ikeda, Yoshiko Kato, Kazuhito Watabe, Yoshio Kumazawa, Ikuko Tomiyasu, Kazuo Kobayashi. Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochimica et biophysica acta. 2003 Dec; 1635(2-3):83-92. doi: 10.1016/j.bbalip.2003.10.010. [PMID: 14729071]
  • N Kadri-Hassani, C L Léger, B Descomps. The fatty acid bimodal action on superoxide anion production by human adherent monocytes under phorbol 12-myristate 13-acetate or diacylglycerol activation can be explained by the modulation of protein kinase C and p47phox translocation. The Journal of biological chemistry. 1995 Jun; 270(25):15111-8. doi: 10.1074/jbc.270.25.15111. [PMID: 7797495]