Phelloterin (BioDeep_00000017353)

Main id: BioDeep_00000000489

Secondary id: BioDeep_00000375979

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs


代谢物信息卡片


7H-Furo[3,2-g][1]benzopyran-7-one, 4-methoxy-9-[(3-methyl-2-buten-1-yl)oxy]-

化学式: C17H16O5 (300.0998)
中文名称: 珊瑚菜素, 黄柏素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=CCOC1=C2C(=C(C3=C1OC(=O)C=C3)OC)C=CO2)C
InChI: InChI=1S/C17H16O5/c1-10(2)6-8-21-17-15-12(7-9-20-15)14(19-3)11-4-5-13(18)22-16(11)17/h4-7,9H,8H2,1-3H3

描述信息

Phellopterin is a member of psoralens.
Phellopterin is a natural product found in Amyris pinnata, Heracleum candolleanum, and other organisms with data available.
A naturally occurring furanocoumarin found in roots of Angelica dahurica and in Seseli elatum (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs.
Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].
Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].
Phellopterin is a natural product isolated from Angelica dahurica. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium[1].

同义名列表

17 个代谢物同义名

7H-Furo[3,2-g][1]benzopyran-7-one, 4-methoxy-9-[(3-methyl-2-buten-1-yl)oxy]-; 7H-Furo[3,2-g][1]benzopyran-7-one,4-methoxy-9-[(3-methyl-2-buten-1-yl)oxy]-; 4-Methoxy-9-[(3-methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one; 7H-Furo(3,2-g)(1)benzopyran-7-one, 4-methoxy-9-((3-methyl-2-butenyl)oxy)-; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-methoxy-9-[(3-methyl-2-butenyl)oxy]-; 4-Methoxy-9-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]chromen-7-one #; 4-methoxy-9-(3-methylbut-2-enoxy)-7-furo[3,2-g][1]benzopyranone; 4-methoxy-9-(3-methylbut-2-enoxy)furo[3,2-g]chromen-7-one; 4-Methoxy-9-prenyloxypsoralen; BMLZFLQMBMYVHG-UHFFFAOYSA-N; UNII-M7UP6XJ2AA; Phellopterin; Phelloptorin; Phelloterin; M7UP6XJ2AA; Phellopterin; Phellopterin



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

41 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 CAT, CYP2D6, PIK3CA, PRPF19, SIRT1, STAT3, TLR4
Peripheral membrane protein 1 GORASP1
Endosome membrane 2 MRC1, TLR4
Endoplasmic reticulum membrane 2 CD4, CYP2D6
Nucleus 4 PRPF19, SIRT1, SPI1, STAT3
cytosol 6 CAT, CD163, CLEC5A, PIK3CA, SIRT1, STAT3
dendrite 1 CADM1
nucleoplasm 4 PRPF19, SIRT1, SPI1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 7 CADM1, CD163, CD4, CD8A, CLEC5A, MRC1, TLR4
Cytoplasmic side 1 GORASP1
lamellipodium 1 PIK3CA
Golgi apparatus membrane 1 GORASP1
Synapse 1 CADM1
cell surface 3 CLEC5A, MRC1, TLR4
Golgi apparatus 1 GORASP1
Golgi membrane 2 GORASP1, INS
plasma membrane 9 CADM1, CD163, CD4, CD8A, CLEC5A, MRC1, PIK3CA, STAT3, TLR4
Membrane 8 CADM1, CAT, CD163, CLEC5A, CYP2D6, PRPF19, SPI1, TLR4
basolateral plasma membrane 1 CADM1
extracellular exosome 1 CAT
endoplasmic reticulum 1 CYP2D6
extracellular space 5 COL2A1, IL10, IL4, IL6, INS
perinuclear region of cytoplasm 2 PIK3CA, TLR4
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, CYP2D6, SIRT1
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 2 CAT, CYP2D6
Microsome membrane 1 CYP2D6
postsynaptic density 1 CADM1
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 6 CADM1, CD163, CD4, CD8A, MRC1, TLR4
Secreted 5 COL2A1, IL10, IL4, IL6, INS
extracellular region 8 CAT, CD163, CD8A, COL2A1, IL10, IL4, IL6, INS
Single-pass membrane protein 3 CADM1, CLEC5A, CYP2D6
[Isoform 2]: Secreted 1 CD8A
mitochondrial matrix 1 CAT
transcription regulator complex 2 SPI1, STAT3
external side of plasma membrane 4 CD163, CD4, CD8A, TLR4
Secreted, extracellular space, extracellular matrix 1 COL2A1
nucleolus 1 SIRT1
Early endosome 2 CD4, TLR4
cell-cell junction 1 CADM1
Single-pass type II membrane protein 1 CLEC5A
heterochromatin 1 SIRT1
Membrane raft 1 CD4
Cytoplasm, cytoskeleton, spindle 1 PRPF19
focal adhesion 1 CAT
spindle 1 PRPF19
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
basement membrane 1 COL2A1
collagen trimer 1 COL2A1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
collagen-containing extracellular matrix 1 COL2A1
nuclear speck 1 PRPF19
nuclear inner membrane 1 SIRT1
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 CD8A, TLR4
neuron projection 1 CADM1
chromatin 3 SIRT1, SPI1, STAT3
phagocytic cup 1 TLR4
spliceosomal complex 1 PRPF19
site of double-strand break 1 PRPF19
fibrillar center 1 SIRT1
nuclear envelope 1 SIRT1
endosome lumen 1 INS
Lipid droplet 1 PRPF19
Nucleus, nucleoplasm 1 PRPF19
specific granule membrane 1 CLEC5A
tertiary granule membrane 1 CLEC5A
euchromatin 1 SIRT1
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 CD4, COL2A1, IL6, INS
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 1 CD163
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
clathrin-coated endocytic vesicle membrane 1 CD4
U2-type catalytic step 1 spliceosome 1 PRPF19
[Isoform 1]: Cell membrane 1 CD8A
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
catalytic step 2 spliceosome 1 PRPF19
Prp19 complex 1 PRPF19
U2-type catalytic step 2 spliceosome 1 PRPF19
T cell receptor complex 2 CD4, CD8A
collagen type II trimer 1 COL2A1
collagen type XI trimer 1 COL2A1
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Soluble CD163]: Secreted 1 CD163
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Jialing Zou, Yanjuan Duan, Yi Wang, Aijun Liu, Yuanran Chen, Dongjie Guo, Wanjun Guo, Shuang Li, Zhou Su, Yang Wu, Hanzhi Lu, Yu Deng, Jianyong Zhu, Fulun Li. Phellopterin cream exerts an anti-inflammatory effect that facilitates diabetes-associated cutaneous wound healing via SIRT1. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Dec; 107(?):154447. doi: 10.1016/j.phymed.2022.154447. [PMID: 36150345]
  • Xun Chen, Yujin Zhang, Junxia Pei, Xin Zeng, Yixi Yang, YaMei Zhang, Fulun Li, Yu Deng. Phellopterin alleviates atopic dermatitis-like inflammation and suppresses IL-4-induced STAT3 activation in keratinocytes. International immunopharmacology. 2022 Nov; 112(?):109270. doi: 10.1016/j.intimp.2022.109270. [PMID: 36179418]
  • Unwoo Kang, Ah-Reum Han, Yangkang So, Chang Hyun Jin, Seung Mok Ryu, Dongho Lee, Eun Kyoung Seo. Furanocoumarins from the Roots of Angelica dahurica with Inhibitory Activity against Intracellular Reactive Oxygen Species Accumulation. Journal of natural products. 2019 09; 82(9):2601-2607. doi: 10.1021/acs.jnatprod.9b00547. [PMID: 31464439]
  • Lili Li, Jiaxing Chen, Xiaoyan Yang, Yingtao Zhang, Donghui Yang. In vivo metabolite profiles of isoimperatorin and phellopterin in rats analyzed using HPLC coupled with diode array detector and electrospray ionization ion trap time-of-flight mass spectrometry technique. Biomedical chromatography : BMC. 2018 Aug; 32(8):e4236. doi: 10.1002/bmc.4236. [PMID: 29516524]
  • Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MedChemComm. 2018 Feb; 9(2):371-382. doi: 10.1039/c7md00388a. [PMID: 30108931]
  • Guo-Ying Zuo, Chun-Juan Wang, Jun Han, Yu-Qing Li, Gen-Chun Wang. Synergism of coumarins from the Chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Dec; 23(14):1814-1820. doi: 10.1016/j.phymed.2016.11.001. [PMID: 27912884]
  • Magdalena Walasek, Agnieszka Grzegorczyk, Anna Malm, Krystyna Skalicka-Woźniak. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food chemistry. 2015 Nov; 186(?):133-8. doi: 10.1016/j.foodchem.2015.02.011. [PMID: 25976802]
  • Ping-ping Song, Ye Lv, Zeng-lai Xu, Qiong Wang, Nian-he Wang. [Chemical constituents of Angelica nitida roots]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Jan; 37(1):55-7. doi: . [PMID: 25090703]
  • Zhigang Liu, Minyan Jiang, Xiumei Lu, Feng Qin, Yang Song, Jing Wen, Famei Li. Simultaneous determination of pimpinellin, isopimpinellin and phellopterin in rat plasma by a validated UPLC-MS/MS and its application to a pharmacokinetic study after administration of Toddalia asiatica extract. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Apr; 891-892(?):102-8. doi: 10.1016/j.jchromb.2012.02.022. [PMID: 22418072]
  • Yuma Iwai, Kouki Murakami, Yasuyuki Gomi, Toshihiro Hashimoto, Yoshinori Asakawa, Yoshinobu Okuno, Toyokazu Ishikawa, Dai Hatakeyama, Noriko Echigo, Takashi Kuzuhara. Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts. PloS one. 2011; 6(5):e19825. doi: 10.1371/journal.pone.0019825. [PMID: 21625478]
  • Ivan Vucković, Vlatka Vajs, Miroslava Stanković, Vele Tesević, Slobodan Milosavljević. A new prenylated flavanonol from Seseli annuum roots showing protective effect on human lymphocytes DNA. Chemistry & biodiversity. 2010 Mar; 7(3):698-704. doi: 10.1002/cbdv.200900067. [PMID: 20232332]
  • Yu Fu, Yang Bai, Zhuoma Dawa, Bingru Bai, Lisheng Ding. [Chemical constituents of Incarvillea younghusbandii]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Jan; 35(1):58-62. doi: 10.4268/cjcmm20100112. [PMID: 20349717]
  • Ah Yeon Park, So-Young Park, Jaehyun Lee, Mihye Jung, Jinwoong Kim, Sam Sik Kang, Jeong-Rok Youm, Sang Beom Han. Simultaneous determination of five coumarins in Angelicae dahuricae Radix by HPLC/UV and LC-ESI-MS/MS. Biomedical chromatography : BMC. 2009 Oct; 23(10):1034-43. doi: 10.1002/bmc.1219. [PMID: 19402180]
  • Yuan-Yan Liu, Cun Zhang, Li Li, Yong-Qing Xiao. [Studies on chemical constituents in roots of Heracleum rapula]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Feb; 31(4):309-11. doi: . [PMID: 16706022]
  • Melanie Muller, Maureenx Byres, Marcel Jaspars, Yashodharan Kumarasamy, Moira Middleton, Lutfun Nahar, Mohammad Shoeb, Satyajit D Sarker. 2D NMR spectroscopic analyses of archangelicin from the seeds of Angelica archangelica. Acta pharmaceutica (Zagreb, Croatia). 2004 Dec; 54(4):277-85. doi: . [PMID: 15634612]
  • P Huang, X Z Zheng, M X Lai, W Y Rao, M Nishi, T Nakanishi. [Studies on chemical constituents of Peucedanum medium Dunn var. garcile Dunn ex Shan at Sheh]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2000 Apr; 25(4):222-4. doi: . [PMID: 12512437]
  • Y Kimura, H Okuda. Histamine-release effectors from Angelica dahurica var. dahurica root. Journal of natural products. 1997 Mar; 60(3):249-51. doi: 10.1021/np960407a. [PMID: 9157191]
  • O Bergendorff, K Dekermendjian, M Nielsen, R Shan, R Witt, J Ai, O Sterner. Furanocoumarins with affinity to brain benzodiazepine receptors in vitro. Phytochemistry. 1997 Mar; 44(6):1121-4. doi: 10.1016/s0031-9422(96)00703-0. [PMID: 9055449]
  • K Chen. [Chemical constituents in roots of Ampelopsis sinica (Miq.) W.T. Wang]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1996 May; 21(5):294-5, 319. doi: . [PMID: 9388937]
  • S M Rocha, E L Angerami. [Study of urine pH and density in the rehydration of infants. Introduction to nursing care]. Boletin de la Oficina Sanitaria Panamericana. Pan American Sanitary Bureau. 1978 Feb; 84(2):146-56. doi: NULL. [PMID: 24456]