Glycerol tributanoate (BioDeep_00000009633)
Secondary id: BioDeep_00000419544
human metabolite Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H26O6 (302.1729296)
中文名称: 三丁酸甘油酯
谱图信息:
最多检出来源 Viridiplantae(plant) 53.5%
分子结构信息
SMILES: CCCC(=O)OCC(COC(=O)CCC)OC(=O)CCC
InChI: InChI=1S/C15H26O6/c1-4-7-13(16)19-10-12(21-15(18)9-6-3)11-20-14(17)8-5-2/h12H,4-11H2,1-3H3
描述信息
Flavouring agent. Glycerol tributanoate is found in many foods, some of which are durian, canola, conch, and italian sweet red pepper.
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer
Glycerol tributanoate is a flavouring agent
同义名列表
38 个代谢物同义名
1,3-bis(butanoyloxy)propan-2-yl butanoate; Butanoic acid, 1,2,3-propanetriyl ester; 2,3-Bis(butyryloxy)propyl butyric acid; Butyric acid triester with glycerin; 1,2,3-Propanetriol, tributyric acid; Propane-1,2,3-triyl tributyric acid; Butanoate, 1,2,3-propanetriyl ester; 1,2,3-Propanetriyl tributanoic acid; 2,3-Bis(butyryloxy)propyl butyrate; 1,2,3-Propanetriol, tributyrate; 1,2,3-Propanetriyl tributanoate; Propane-1,2,3-triyl tributyrate; 1,2,3-Tributanoylglycerol; Glycerol tributanoic acid; Glycerol tributyric acid; 1,2,3-Tributyrylglycerol; Glycerin tributyric acid; Glyceryl tributyric acid; Glycerol tributanoate; Glyceryl tributyrate; Glycerin tributyrate; Glycerol tributyrate; Tributyryl glyceride; Butyryl triglyceride; Tributyrl glyceride; Tributyrylglycerol; Glyceroltributyrin; Tri-N-butyrin; Tributyrinine; Tri-butyrin; Tributyroin; NSC 661583; TRIBUTYRIN; FEMA 2223; Kodaflex; Tributin; butyrin; Tributyrin
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:35020
- KEGG: C13870
- PubChem: 6050
- HMDB: HMDB0031094
- Metlin: METLIN69736
- DrugBank: DB12709
- ChEMBL: CHEMBL118722
- Wikipedia: Butyrin
- MetaCyc: CPD-13014
- foodb: FDB003099
- chemspider: 13849665
- CAS: 60-01-5
- PMhub: MS000023435
- PubChem: 854115
- PDB-CCD: NTK
- NIKKAJI: J4.798H
- KNApSAcK: 35020
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
248 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(248)
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
a 1,2-diacyl-sn-glycerol + a phospholipid ⟶ a lysophospholipid + a triacyl-sn-glycerol
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + a phosphatidylcholine ⟶ a 2-lysophosphatidylcholine + a triacyl-sn-glycerol
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- phospholipid remodeling (phosphatidylcholine, yeast):
1-palmitoyl-sn-glycero-3-phosphocholine + palmitoyl-CoA ⟶ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + a phosphatidylcholine ⟶ a 2-lysophosphatidylcholine + a triacyl-sn-glycerol
- phospholipid remodeling (phosphatidylcholine, yeast):
1,2-dipalmitoyl-sn-glycero-3-phosphocholine + H2O ⟶ 1-palmitoyl-sn-glycero-3-phosphocholine + H+ + palmitate
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phospholipid remodeling (phosphatidylcholine, yeast):
1,2-dipalmitoyl-sn-glycero-3-phosphocholine + H2O ⟶ 1-palmitoyl-sn-glycero-3-phosphocholine + H+ + palmitate
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- phospholipid remodeling (phosphatidylcholine, yeast):
1-palmitoyl-sn-glycero-3-phosphocholine + palmitoyl-CoA ⟶ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1-acyl-sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phospholipid remodeling (phosphatidylcholine, yeast):
1-palmitoyl-sn-glycero-3-phosphocholine + palmitoyl-CoA ⟶ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- phospholipid remodeling (phosphatidylcholine, yeast):
1,2-dipalmitoyl-sn-glycero-3-phosphocholine + H2O ⟶ 1-palmitoyl-sn-glycero-3-phosphocholine + H+ + palmitate
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
a 1,2-diacyl-sn-glycerol + a phosphatidylcholine ⟶ a 2-lysophosphatidylcholine + a triacyl-sn-glycerol
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- diacylglycerol and triacylglycerol biosynthesis:
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol biosynthesis (Chlamydomonas):
sn-glycerol 3-phosphate + an acyl-CoA ⟶ a 1-acyl-sn-glycerol 3-phosphate + coenzyme A
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- triacylglycerol degradation:
H2O + a 2-acylglycerol ⟶ H+ + a fatty acid + glycerol
- diacylglycerol and triacylglycerol biosynthesis:
H2O + a phosphatidate ⟶ a 1,2-diacyl-sn-glycerol + phosphate
- triacylglycerol biosynthesis (Chlamydomonas):
H2O + a phosphatidate ⟶ a 1,2-diacyl-sn-glycerol + phosphate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- A Louvado, F J R C Coelho, M Palma, L J Magnoni, F Silva-Brito, R O A Ozório, D F R Cleary, I Viegas, N C M Gomes. Study of the influence of tributyrin-supplemented diets on the gut bacterial communities of rainbow trout (Oncorhynchus mykiss).
Scientific reports.
2024 03; 14(1):5645. doi:
10.1038/s41598-024-55660-y
. [PMID: 38454011] - Ning Yang, Tongtong Lan, Yisa Han, Haifeng Zhao, Chuhui Wang, Zhen Xu, Zhao Chen, Meng Tao, Hui Li, Yang Song, Xuezhen Ma. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice.
PloS one.
2023; 18(7):e0289364. doi:
10.1371/journal.pone.0289364
. [PMID: 37523400] - Tiantian Gu, Mingcai Duan, Jinyu Liu, Li Chen, Yong Tian, Wenwu Xu, Tao Zeng, Lizhi Lu. Effects of Tributyrin Supplementation on Liver Fat Deposition, Lipid Levels and Lipid Metabolism-Related Gene Expression in Broiler Chickens.
Genes.
2022 11; 13(12):. doi:
10.3390/genes13122219
. [PMID: 36553486] - Valentin Mocanu, Heekuk Park, Jerry Dang, Naomi Hotte, Aducio Thiesen, Michael Laffin, Haili Wang, Daniel Birch, Karen Madsen. Timing of Tributyrin Supplementation Differentially Modulates Gastrointestinal Inflammation and Gut Microbial Recolonization Following Murine Ileocecal Resection.
Nutrients.
2021 Jun; 13(6):. doi:
10.3390/nu13062069
. [PMID: 34204288] - Wenjin Guo, Juxiong Liu, Yuanxi Yang, He Ma, Qian Gong, Xingchi Kan, Xin Ran, Yu Cao, Jianfa Wang, Shoupeng Fu, Guiqiu Hu. Rumen-bypassed tributyrin alleviates heat stress by reducing the inflammatory responses of immune cells.
Poultry science.
2021 Jan; 100(1):348-356. doi:
10.1016/j.psj.2020.10.006
. [PMID: 33357699] - Hualiang Liang, Ke Ji, Xianping Ge, Bingwen Xi, Mingchun Ren, Lu Zhang, Xiaoru Chen. Tributyrin Plays an Important Role in Regulating the Growth and Health Status of Juvenile Blunt Snout Bream (Megalobrama amblycephala), as Evidenced by Pathological Examination.
Frontiers in immunology.
2021; 12(?):652294. doi:
10.3389/fimmu.2021.652294
. [PMID: 33912175] - Kleydiane B Dias, Nayra M L Oliveira, Bruno S A F Brasil, Erika C Vieira-Almeida, Fabrício C Paula-Elias, Alex F Almeida. Simultaneous high nutritional single cell oil and lipase production by Candida viswanathii.
Acta scientiarum polonorum. Technologia alimentaria.
2021 Jan; 20(1):93-102. doi:
10.17306/j.afs.0856
. [PMID: 33449523] - Makoto Miyoshi, Makoto Usami, Ayumi Kajita, Motoki Kai, Yuya Nishiyama, Masakazu Shinohara. Effect of Oral Tributyrin Treatment on Lipid Mediator Profiles in Endotoxin-Induced Hepatic Injury.
The Kobe journal of medical sciences.
2020 Dec; 66(4):E129-E138. doi:
. [PMID: 33994516]
- Raffaele Colosimo, Ana-Isabel Mulet-Cabero, Frederick J Warren, Cathrina H Edwards, Tim J A Finnigan, Pete J Wilde. Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion.
Food & function.
2020 Dec; 11(12):10896-10906. doi:
10.1039/d0fo02002h
. [PMID: 33242053] - Yudai Inabu, Kyotaro Murayama, Katsutoshi Inouchi, Toshihisa Sugino. The effect of tributyrin supplementation to milk replacer on plasma glucagon-like peptide 2 concentrations in pre-weaning calves.
Animal science journal = Nihon chikusan Gakkaiho.
2019 Sep; 90(9):1185-1192. doi:
10.1111/asj.13262
. [PMID: 31282115] - Simone Acquistapace, Leena Patel, Amaury Patin, Elizabeth Forbes-Blom, Bernard Cuenoud, Tim J Wooster. Effects of interesterified lipid design on the short/medium chain fatty acid hydrolysis rate and extent (in vitro).
Food & function.
2019 Jul; 10(7):4166-4176. doi:
10.1039/c9fo00671k
. [PMID: 31241123] - Fatma Rmili, Neila Achouri, Nabil Smichi, Najeh Krayem, Ahmed Bayoudh, Youssef Gargouri, Mohamed Chamkha, Ahmed Fendri. Purification and biochemical characterization of an organic solvent-tolerant and detergent-stable lipase from Staphylococcus capitis.
Biotechnology progress.
2019 07; 35(4):e2833. doi:
10.1002/btpr.2833
. [PMID: 31050178] - Chunchun Wang, Shuting Cao, Qianhui Zhang, Zhuojun Shen, Jie Feng, Qihua Hong, Jianjun Lu, Fei Xie, Yan Peng, Caihong Hu. Dietary Tributyrin Attenuates Intestinal Inflammation, Enhances Mitochondrial Function, and Induces Mitophagy in Piglets Challenged with Diquat.
Journal of agricultural and food chemistry.
2019 Feb; 67(5):1409-1417. doi:
10.1021/acs.jafc.8b06208
. [PMID: 30599507] - José Renato Guimarães, Raquel de Lima Camargo Giordano, Roberto Fernandez-Lafuente, Paulo Waldir Tardioli. Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties.
Molecules (Basel, Switzerland).
2018 Nov; 23(11):. doi:
10.3390/molecules23112993
. [PMID: 30453506] - Erika Meroni, Vassilios Raikos. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.
Food research international (Ottawa, Ont.).
2018 04; 106(?):439-445. doi:
10.1016/j.foodres.2018.01.013
. [PMID: 29579945] - Erika Meroni, Vassilios Raikos. Physicochemical stability, antioxidant properties and bioaccessibility of β-carotene in orange oil-in-water beverage emulsions: influence of carrier oil types.
Food & function.
2018 Jan; 9(1):320-330. doi:
10.1039/c7fo01170a
. [PMID: 29177307] - Benjamin Gronier, Helene M Savignac, Mathieu Di Miceli, Sherif M Idriss, George Tzortzis, Daniel Anthony, Philip W J Burnet. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS®) ingestion.
European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.
2018 01; 28(1):211-224. doi:
10.1016/j.euroneuro.2017.11.001
. [PMID: 29174530] - A Bedford, H Yu, E J Squires, S Leeson, J Gong. Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens.
Poultry science.
2017 Sep; 96(9):3221-3228. doi:
10.3382/ps/pex098
. [PMID: 28431158] - Amber C Chevalier, Thad A Rosenberger. Increasing acetyl-CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis.
Journal of neurochemistry.
2017 06; 141(5):721-737. doi:
10.1111/jnc.14032
. [PMID: 28369944] - Y Gu, Y Song, H Yin, S Lin, X Zhang, L Che, Y Lin, S Xu, B Feng, D Wu, Z Fang. Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation.
Journal of animal science.
2017 Jan; 95(1):226-238. doi:
10.2527/jas.2016.0911
. [PMID: 28177354] - Anna C Pham, Linda Hong, Oliver Montagnat, Cameron J Nowell, Tri-Hung Nguyen, Ben J Boyd. In Vivo Formation of Cubic Phase in Situ after Oral Administration of Cubic Phase Precursor Formulation Provides Long Duration Gastric Retention and Absorption for Poorly Water-Soluble Drugs.
Molecular pharmaceutics.
2016 Jan; 13(1):280-6. doi:
10.1021/acs.molpharmaceut.5b00784
. [PMID: 26567591] - Mette J Mandøe, Katrine B Hansen, Bolette Hartmann, Jens F Rehfeld, Jens J Holst, Harald S Hansen. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans.
The American journal of clinical nutrition.
2015 Sep; 102(3):548-55. doi:
10.3945/ajcn.115.106799
. [PMID: 26178726] - Florence Privé, C Jamie Newbold, Naheed N Kaderbhai, Susan G Girdwood, Olga V Golyshina, Peter N Golyshin, Nigel D Scollan, Sharon A Huws. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.
Applied microbiology and biotechnology.
2015 Jul; 99(13):5475-85. doi:
10.1007/s00253-014-6355-6
. [PMID: 25575887] - María de Los Angeles Camacho-Ruiz, Juan Carlos Mateos-Díaz, Frédéric Carrière, Jorge A Rodriguez. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.
Journal of lipid research.
2015 May; 56(5):1057-67. doi:
10.1194/jlr.d052837
. [PMID: 25748441] - Elton Luiz Silva, Guilherme Carneiro, Priscila Albuquerque Caetano, Gisele Goulart, Daniel Ferreira Costa, Elaine Maria de Souza-Fagundes, Dawidson Assis Gomes, Lucas Antônio Miranda Ferreira. Nanostructured lipid carriers loaded with tributyrin as an alternative to improve anticancer activity of all-trans retinoic acid.
Expert review of anticancer therapy.
2015 Feb; 15(2):247-56. doi:
10.1586/14737140.2015.1000868
. [PMID: 25611812] - Jintian He, Li Dong, Wen Xu, Kaiwen Bai, Changhui Lu, Yanan Wu, Qiang Huang, Lili Zhang, Tian Wang. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation.
PloS one.
2015; 10(8):e0136848. doi:
10.1371/journal.pone.0136848
. [PMID: 26317832] - Monika Sharma, Shelley Sardul Singh, Pratibha Maan, Rohit Sharma. Biocatalytic potential of lipase from Staphylococcus sp. MS1 for transesterification of jatropha oil into fatty acid methyl esters.
World journal of microbiology & biotechnology.
2014 Nov; 30(11):2885-97. doi:
10.1007/s11274-014-1715-z
. [PMID: 25115850] - Yongqing Hou, Lei Wang, Dan Yi, Binying Ding, Xing Chen, Qingjing Wang, Huiling Zhu, Yulan Liu, Yulong Yin, Joshua Gong, Guoyao Wu. Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid.
The British journal of nutrition.
2014 May; 111(10):1748-58. doi:
10.1017/s0007114514000038
. [PMID: 24506942] - Madiha Bou Ali, Aida Karray, Youssef Gargouri, Yassine Ben Ali. N-terminal domain of turkey pancreatic lipase is active on long chain triacylglycerols and stabilized by colipase.
PloS one.
2013; 8(8):e71605. doi:
10.1371/journal.pone.0071605
. [PMID: 23977086] - Renato Heidor, Juliana Festa Ortega, Aline de Conti, Thomas Prates Ong, Fernando Salvador Moreno. Anticarcinogenic actions of tributyrin, a butyric acid prodrug.
Current drug targets.
2012 Dec; 13(14):1720-9. doi:
10.2174/138945012804545443
. [PMID: 23140283] - Marco Aurélio Ramirez Vinolo, Hosana G Rodrigues, William T Festuccia, Amanda R Crisma, Vitor S Alves, Amanda R Martins, Catia L Amaral, Jarlei Fiamoncini, Sandro M Hirabara, Fabio T Sato, Ricardo A Fock, Gabriella Malheiros, Marinilce F dos Santos, Rui Curi. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice.
American journal of physiology. Endocrinology and metabolism.
2012 Jul; 303(2):E272-82. doi:
10.1152/ajpendo.00053.2012
. [PMID: 22621868] - Habib Horchani, Ahmed Fendri, Hanen Louati, Adel Sayari, Youssef Gargouri, Robert Verger. Purification, biochemical and kinetic properties of recombinant Staphylococcus aureus lipase.
Methods in molecular biology (Clifton, N.J.).
2012; 861(?):267-82. doi:
10.1007/978-1-61779-600-5_16
. [PMID: 22426724] - Lu Han, Zijian Xu, Jianhua Huang, Zong Meng, Yuanfa Liu, Xingguo Wang. Enzymatically catalyzed synthesis of low-calorie structured lipid in a solvent-free system: optimization by response surface methodology.
Journal of agricultural and food chemistry.
2011 Dec; 59(23):12635-42. doi:
10.1021/jf2029658
. [PMID: 22082136] - Makoto Miyoshi, Hiroe Sakaki, Makoto Usami, Norihito Iizuka, Katsuhito Shuno, Michiko Aoyama, Yu Usami. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats.
Clinical nutrition (Edinburgh, Scotland).
2011 Apr; 30(2):252-8. doi:
10.1016/j.clnu.2010.09.012
. [PMID: 21051124] - Slim Abdelkafi, Nathalie Barouh, Benjamin Fouquet, Imen Fendri, Michel Pina, Frantz Scheirlinckx, Pierre Villeneuve, Frédéric Carrière. Carica papaya lipase: a naturally immobilized enzyme with interesting biochemical properties.
Plant foods for human nutrition (Dordrecht, Netherlands).
2011 Mar; 66(1):34-40. doi:
10.1007/s11130-010-0206-0
. [PMID: 21267783] - Diana Martín, María I Morán-Valero, Francisco J Señoráns, Guillermo Reglero, Carlos F Torres. In vitro intestinal bioaccessibility of alkylglycerols versus triacylglycerols as vehicles of butyric acid.
Lipids.
2011 Mar; 46(3):277-85. doi:
10.1007/s11745-010-3520-2
. [PMID: 21225371] - Sung Nam Kang, Eunmyong Lee, Mi-Kyung Lee, Soo-Jeong Lim. Preparation and evaluation of tributyrin emulsion as a potent anti-cancer agent against melanoma.
Drug delivery.
2011 Feb; 18(2):143-9. doi:
10.3109/10717544.2010.522610
. [PMID: 20946006] - Yan Li, Solene Le Maux, Hang Xiao, David Julian McClements. Emulsion-based delivery systems for tributyrin, a potential colon cancer preventative agent.
Journal of agricultural and food chemistry.
2009 Oct; 57(19):9243-9. doi:
10.1021/jf901836f
. [PMID: 19731938] - S Santini, J M Crowet, A Thomas, M Paquot, M Vandenbol, P Thonart, J P Wathelet, C Blecker, G Lognay, R Brasseur, L Lins, B Charloteaux. Study of Thermomyces lanuginosa lipase in the presence of tributyrylglycerol and water.
Biophysical journal.
2009 Jun; 96(12):4814-25. doi:
10.1016/j.bpj.2009.03.040
. [PMID: 19527641] - Tan-Yao Li, Ke-Guo Deng, Bo Chen, Shou-Zhuo Yao. [Determination of lipase activity by gas chromatography].
Yao xue xue bao = Acta pharmaceutica Sinica.
2009 Jun; 44(6):628-31. doi:
"
. [PMID: 19806895] - Ikram Jemel, Ahmed Fendri, Youssef Gargouri, Sofiane Bezzine. Kinetic properties of dromedary pancreatic lipase: a comparative study on emulsified and monomolecular substrate.
Colloids and surfaces. B, Biointerfaces.
2009 May; 70(2):238-42. doi:
10.1016/j.colsurfb.2008.12.035
. [PMID: 19195852] - Sarbani Ghoshal, Jassir Witta, Jian Zhong, Willem de Villiers, Erik Eckhardt. Chylomicrons promote intestinal absorption of lipopolysaccharides.
Journal of lipid research.
2009 Jan; 50(1):90-7. doi:
10.1194/jlr.m800156-jlr200
. [PMID: 18815435] - Sung Hun Lee, Doo Hyun Park. Isolation and physiological characterization of Bacillus clausii SKAL-16 isolated from wastewater.
Journal of microbiology and biotechnology.
2008 Dec; 18(12):1908-14. doi:
. [PMID: 19131692]
- Wenshan Liu, Li Xu, Heyun Zhao, Jiangke Yang, Yunjun Yan. [Cell surface display of Yarrowia lipolytica lipase Lip2 in Saccharomyces cerevisiae with a-agglutinin as carrier protein].
Wei sheng wu xue bao = Acta microbiologica Sinica.
2008 Nov; 48(11):1543-8. doi:
. [PMID: 19149173]
- A Piva, E Grilli, L Fabbri, V Pizzamiglio, P P Gatta, F Galvano, M Bognanno, L Fiorentini, J Woliński, R Zabielski, J A Patterson. Intestinal metabolism of weaned piglets fed a typical United States or European diet with or without supplementation of tributyrin and lactitol.
Journal of animal science.
2008 Nov; 86(11):2952-61. doi:
10.2527/jas.2007-0402
. [PMID: 18502885] - Jie Su, Ningning Zhang, Paul C Ho. Evaluation of the pharmacokinetics of all-trans-retinoic acid (ATRA) in Wistar rats after intravenous administration of ATRA loaded into tributyrin submicron emulsion and its cellular activity on caco-2 and HepG2 cell lines.
Journal of pharmaceutical sciences.
2008 Jul; 97(7):2844-53. doi:
10.1002/jps.21193
. [PMID: 17879972] - Katarzyna Janda-Ulfig, Krzysztof Ulfig, Josep Cano, Josep Guarro. A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil.
Annals of agricultural and environmental medicine : AAEM.
2008; 15(1):45-9. doi:
"
. [PMID: 18581978] - Abir Ben Bacha, Ahmed Fendri, Youssef Gargouri, Hafedh Mejdoub, Nabil Miled. Proteolytic cleavage of ostrich and turkey pancreatic lipases: production of an active N-terminal domain.
Pancreas.
2007 Oct; 35(3):e55-61. doi:
10.1097/mpa.0b013e31811f450f
. [PMID: 17895836] - Nacim Zouari, Nabil Miled, Souad Rouis, Youssef Gargouri. Scorpion digestive lipase: a member of a new invertebrate's lipase group presenting novel characteristics.
Biochimie.
2007 Mar; 89(3):403-9. doi:
10.1016/j.biochi.2006.11.008
. [PMID: 17212975] - Abir Ben Bacha, Fakher Frikha, Ikram Djemal, Ahmed Fendri, Nabil Miled, Youssef Gargouri, Hafedh Mejdoub. Biochemical and structural comparative study between bird and mammal pancreatic colipases.
Journal of lipid research.
2006 Dec; 47(12):2701-11. doi:
10.1194/jlr.m600242-jlr200
. [PMID: 16957180] - Ahmed Fendri, Fakher Frikha, Habib Mosbah, Nabil Miled, Nacim Zouari, Abir Ben Bacha, Adel Sayari, Hafedh Mejdoub, Youssef Gargouri. Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase.
Archives of biochemistry and biophysics.
2006 Jul; 451(2):149-59. doi:
10.1016/j.abb.2006.04.018
. [PMID: 16780787] - Angela Bourbon Freie, Francine Ferrato, Frédéric Carrière, Mark E Lowe. Val-407 and Ile-408 in the beta5'-loop of pancreatic lipase mediate lipase-colipase interactions in the presence of bile salt micelles.
The Journal of biological chemistry.
2006 Mar; 281(12):7793-800. doi:
10.1074/jbc.m512984200
. [PMID: 16431912] - Jie Su, Li He, Ningning Zhang, Paul C Ho. Evaluation of tributyrin lipid emulsion with affinity to low-density lipoprotein: pharmacokinetics in adult male Wistar rats and cellular activity on Caco-2 and HepG2 cell lines.
The Journal of pharmacology and experimental therapeutics.
2006 Jan; 316(1):62-70. doi:
10.1124/jpet.105.090464
. [PMID: 16188956] - Henri Chahinian, Yassine Ben Ali, Abdelkarim Abousalham, Stefan Petry, Luigi Mandrich, Guiseppe Manco, Stephane Canaan, Louis Sarda. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases.
Biochimica et biophysica acta.
2005 Dec; 1738(1-3):29-36. doi:
10.1016/j.bbalip.2005.11.003
. [PMID: 16325466] - Annick Thomas, Maya Allouche, Frédéric Basyn, Robert Brasseur, Brigitte Kerfelec. Role of the lid hydrophobicity pattern in pancreatic lipase activity.
The Journal of biological chemistry.
2005 Dec; 280(48):40074-83. doi:
10.1074/jbc.m502123200
. [PMID: 16179352] - Katarzyna Janda. Lipolytic activity and radial daily growth rate changes during incubation of thermomyces lanuginosus on natural and synthetic fatty substrates.
Roczniki Panstwowego Zakladu Higieny.
2005; 56(4):347-53. doi:
"
. [PMID: 16610671] - Jono A Schmidt, Glenn F Browning, Philip F Markham. Mycoplasma hyopneumoniae p65 surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids.
Journal of bacteriology.
2004 Sep; 186(17):5790-8. doi:
10.1128/jb.186.17.5790-5798.2004
. [PMID: 15317784] - Jie Su, Ningning Zhang, Paul C Ho. Determination of tributyrin and its metabolite butyrate in Wistar rat plasma samples by gas chromatography/mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2004; 18(19):2217-22. doi:
10.1002/rcm.1607
. [PMID: 15384139] - I Kladnícková, T Klein, M Dittrich. [Effect of triester glycerol type of plasticizers on release of albumin from biodegradable polymer matrices].
Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti.
2004 Jan; 53(1):27-30. doi:
. [PMID: 15065393]
- F J Deive, M Costas, M A Longo. Production of a thermostable extracellular lipase by Kluyveromyces marxianus.
Biotechnology letters.
2003 Sep; 25(17):1403-6. doi:
10.1023/a:1025049825720
. [PMID: 14514040] - Robert J Brown, Joshua R Schultz, Kerry W S Ko, John S Hill, Tanya A Ramsamy, Ann L White, Daniel L Sparks, Zemin Yao. The amino acid sequences of the carboxyl termini of human and mouse hepatic lipase influence cell surface association.
Journal of lipid research.
2003 Jul; 44(7):1306-14. doi:
10.1194/jlr.m200374-jlr200
. [PMID: 12700335] - L I I Ouoba, M D Cantor, B Diawara, A S Traoré, M Jakobsen. Degradation of African locust bean oil by Bacillus subtilis and Bacillus pumilus isolated from soumbala, a fermented African locust bean condiment.
Journal of applied microbiology.
2003; 95(4):868-73. doi:
10.1046/j.1365-2672.2003.02063.x
. [PMID: 12969303] - Marina L Chiarappa-Zucca, Karen H Dingley, Mark L Roberts, Carol A Velsko, Adam H Love. Sample preparation for quantitation of tritium by accelerator mass spectrometry.
Analytical chemistry.
2002 Dec; 74(24):6285-90. doi:
10.1021/ac020295u
. [PMID: 12510750] - M A Pernas, C López, L Pastrana, M L Rúa. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation.
Journal of biotechnology.
2001 Nov; 84(2):163-74. doi:
10.1016/s0168-1656(00)00351-5
. [PMID: 11090688] - T Gaschott, C U Maassen, J Stein. Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells.
Anticancer research.
2001 Jul; 21(4A):2815-9. doi:
. [PMID: 11724360]
- J H Min, C Wilder, J Aoki, H Arai, K Inoue, L Paul, M H Gelb. Platelet-activating factor acetylhydrolases: broad substrate specificity and lipoprotein binding does not modulate the catalytic properties of the plasma enzyme.
Biochemistry.
2001 Apr; 40(15):4539-49. doi:
10.1021/bi002600g
. [PMID: 11294621] - Y Ota, T Sawamoto, M Hasuo. Tributyrin specifically induces a lipase with a preference for the sn-2 position of triglyceride in Geotrichum sp. FO401B.
Bioscience, biotechnology, and biochemistry.
2000 Nov; 64(11):2497-9. doi:
10.1271/bbb.64.2497
. [PMID: 11193426] - L Fernández, M M Beerthuyzen, J Brown, R J Siezen, T Coolbear, R Holland, O P Kuipers. Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis.
Applied and environmental microbiology.
2000 Apr; 66(4):1360-8. doi:
10.1128/aem.66.4.1360-1368.2000
. [PMID: 10742212] - S M Watkins, L C Carter, J Mak, J Tsau, S Yamamoto, J B German. Butyric acid and tributyrin induce apoptosis in human hepatic tumour cells.
The Journal of dairy research.
1999 Nov; 66(4):559-67. doi:
10.1017/s0022029999003830
. [PMID: 10612054] - M D Larsen, K Jensen. The effects of environmental conditions on the lipolytic activity of strains of Penicillium roqueforti.
International journal of food microbiology.
1999 Feb; 46(2):159-66. doi:
10.1016/s0168-1605(98)00191-3
. [PMID: 10728616] - M J Egorin, Z M Yuan, D L Sentz, K Plaisance, J L Eiseman. Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats.
Cancer chemotherapy and pharmacology.
1999; 43(6):445-53. doi:
10.1007/s002800050922
. [PMID: 10321503] - R A Cordle, M E Lowe. The hydrophobic surface of colipase influences lipase activity at an oil-water interface.
Journal of lipid research.
1998 Sep; 39(9):1759-67. doi:
"
. [PMID: 9741688] - B A Conley, M J Egorin, N Tait, D M Rosen, E A Sausville, G Dover, R J Fram, D A Van Echo. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors.
Clinical cancer research : an official journal of the American Association for Cancer Research.
1998 Mar; 4(3):629-34. doi:
. [PMID: 9533530]
- A P Potthoff, L Haalck, F Spener. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
Biochimica et biophysica acta.
1998 Jan; 1389(2):123-31. doi:
10.1016/s0005-2760(97)00160-4
. [PMID: 9461253] - M Taimi, Z X Chen, T R Breitman. Potentiation of retinoic acid-induced differentiation of human acute promyelocytic leukemia NB4 cells by butyric acid, tributyrin, and hexamethylene bisacetamide.
Oncology research.
1998; 10(2):75-84. doi:
. [PMID: 9666515]
- D T Lai, A D MacKenzie, C J O'Connor, K W Turner. Hydrolysis characteristics of bovine milk fat and monoacid triglycerides mediated by pregastric lipase from goats and kids.
Journal of dairy science.
1997 Oct; 80(10):2249-57. doi:
10.3168/jds.s0022-0302(97)76173-3
. [PMID: 9361196] - P Lohse, P Lohse, S Chahrokh-Zadeh, D Seidel. Human lysosomal acid lipase/cholesteryl ester hydrolase and human gastric lipase: site-directed mutagenesis of Cys227 and Cys236 results in substrate-dependent reduction of enzymatic activity.
Journal of lipid research.
1997 Sep; 38(9):1896-905. doi:
. [PMID: 9323599]
- A Lookene, N B Groot, J J Kastelein, G Olivecrona, T Bruin. Mutation of tryptophan residues in lipoprotein lipase. Effects on stability, immunoreactivity, and catalytic properties.
The Journal of biological chemistry.
1997 Jan; 272(2):766-72. doi:
10.1074/jbc.272.2.766
. [PMID: 8995362] - F Carrière, K Thirstrup, S Hjorth, F Ferrato, P F Nielsen, C Withers-Martinez, C Cambillau, E Boel, L Thim, R Verger. Pancreatic lipase structure-function relationships by domain exchange.
Biochemistry.
1997 Jan; 36(1):239-48. doi:
10.1021/bi961991p
. [PMID: 8993339] - P Feng, L Ge, N Akyhani, G Liau. Sodium butyrate is a potent modulator of smooth muscle cell proliferation and gene expression.
Cell proliferation.
1996 May; 29(5):231-41. doi:
10.1046/j.1365-2184.1996.00998.x
. [PMID: 8782486] - C Bernard, J Buc, G Piéroni. Lipolysis and heterogeneous catalysis. A new concept for expressing the substrate concentration.
Lipids.
1996 Mar; 31(3):261-7. doi:
10.1007/bf02529872
. [PMID: 8900455] - T Boswell, R D Richardson, R J Seeley, M Ramenofsky, J C Wingfield, M I Friedman, S C Woods. Regulation of food intake by metabolic fuels in white-crowned sparrows.
The American journal of physiology.
1995 Dec; 269(6 Pt 2):R1462-8. doi:
10.1152/ajpregu.1995.269.6.r1462
. [PMID: 8594950] - G R Smerdon, S J Aves, E F Walton. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe.
Gene.
1995 Nov; 165(2):313-8. doi:
10.1016/0378-1119(95)00495-r
. [PMID: 8522196] - J G Smith, J B German, M A Hickman. Incorporation of tributyrin enhances the expression of a reporter gene in primary and immortalized cell lines.
BioTechniques.
1995 May; 18(5):852-5. doi:
. [PMID: 7619491]
- L Kawasaki, A Farrés, J Aguirre. Aspergillus nidulans mutants affected in acetate metabolism isolated as lipid nonutilizers.
Experimental mycology.
1995 Mar; 19(1):81-5. doi:
10.1006/emyc.1995.1009
. [PMID: 7614370] - H L Newmark, C W Young. Butyrate and phenylacetate as differentiating agents: practical problems and opportunities.
Journal of cellular biochemistry. Supplement.
1995; 22(?):247-53. doi:
10.1002/jcb.240590831
. [PMID: 8538206] - M L Jennens, M E Lowe. A surface loop covering the active site of human pancreatic lipase influences interfacial activation and lipid binding.
The Journal of biological chemistry.
1994 Oct; 269(41):25470-4. doi:
10.1016/s0021-9258(18)47274-2
. [PMID: 7929247] - Z X Chen, T R Breitman. Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy.
Cancer research.
1994 Jul; 54(13):3494-9. doi:
NULL
. [PMID: 8012972] - A Lookene, N Skottova, G Olivecrona. Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat).
European journal of biochemistry.
1994 Jun; 222(2):395-403. doi:
10.1111/j.1432-1033.1994.tb18878.x
. [PMID: 8020477] - R D Joerger, M J Haas. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis.
Lipids.
1994 Jun; 29(6):377-84. doi:
10.1007/bf02537305
. [PMID: 8090057] - H L Dichek, C Parrott, R Ronan, J D Brunzell, H B Brewer, S Santamarina-Fojo. Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase.
Journal of lipid research.
1993 Aug; 34(8):1393-40. doi:
10.1016/s0022-2275(20)36968-6
. [PMID: 8409770] - N Magan, N E Jenkins, J Howarth. Lipolytic activity and degradation of rapeseed oil and rapeseed by spoilage fungi.
International journal of food microbiology.
1993 Aug; 19(3):217-27. doi:
10.1016/0168-1605(93)90079-v
. [PMID: 8217518] - M Aoubala, C Daniel, A De Caro, M G Ivanova, M Hirn, L Sarda, R Verger. Epitope mapping and immunoinactivation of human gastric lipase using five monoclonal antibodies.
European journal of biochemistry.
1993 Jan; 211(1-2):99-104. doi:
10.1111/j.1432-1033.1993.tb19874.x
. [PMID: 7678808] - K A Dugi, H L Dichek, G D Talley, H B Brewer, S Santamarina-Fojo. Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates.
The Journal of biological chemistry.
1992 Dec; 267(35):25086-91. doi:
. [PMID: 1460010]
- J Tashiro, J Kobayashi, K Shirai, Y Saito, H Nakamura, Y Morimoto, S Yoshida. Trypsin treatment may impair the interfacial activation action of lipoprotein lipase.
Journal of biochemistry.
1992 Apr; 111(4):509-14. doi:
10.1093/oxfordjournals.jbchem.a123788
. [PMID: 1618742] - A Abousalham, C Chaillan, B Kerfelec, E Foglizzo, C Chapus. Uncoupling of catalysis and colipase binding in pancreatic lipase by limited proteolysis.
Protein engineering.
1992 Jan; 5(1):105-11. doi:
10.1093/protein/5.1.105
. [PMID: 1631040] - S A Kripke, J A De Paula, J M Berman, A D Fox, J L Rombeau, R G Settle. Experimental short-bowel syndrome: effect of an elemental diet supplemented with short-chain triglycerides.
The American journal of clinical nutrition.
1991 Apr; 53(4):954-62. doi:
10.1093/ajcn/53.4.954
. [PMID: 1706907] - E E Deschner, J F Ruperto, J R Lupton, H L Newmark. Dietary butyrate (tributyrin) does not enhance AOM-induced colon tumorigenesis.
Cancer letters.
1990 Jun; 52(1):79-82. doi:
10.1016/0304-3835(90)90080-h
. [PMID: 2354422] - T Tsujita, H Okuda. Effect of bile salts on the interfacial inactivation of pancreatic carboxylester lipase.
Journal of lipid research.
1990 May; 31(5):831-8. doi:
. [PMID: 2380631]