Hydroxyacetone (BioDeep_00000005751)
Secondary id: BioDeep_00000863203
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C3H6O2 (74.0368)
中文名称: 丙酮醇, 羟基丙酮
谱图信息:
最多检出来源 Viridiplantae(plant) 29.29%
分子结构信息
SMILES: CC(=O)CO
InChI: InChI=1S/C3H6O2/c1-3(5)2-4/h4H,2H2,1H3
描述信息
Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism.
Present in beer, tobacco and honey
Hydroxyacetone is an endogenous metabolite.
Hydroxyacetone is an endogenous metabolite.
同义名列表
20 个代谢物同义名
Hydroxymethyl methyl ketone; 1-Hydroxy-2-propanone; 1-hydroxypropan-2-one; 2-Ketopropyl alcohol; alpha-Hydroxyacetone; 1-Hydroxy-2-acetone; Α-hydroxyacetone; Hydroxypropanone; 1-Hydroxyacetone; Acetone alcohol; Pyruvic alcohol; Hydroxyacetone; Pyruvinalcohol; Acetylcarbinol; Acetylmethanol; 2-Oxopropanol; Methylketol; Acetol; Hydroxyacetone; Hydroxyacetone
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:27957
- KEGG: C05235
- PubChem: 8299
- HMDB: HMDB0006961
- Metlin: METLIN64743
- Wikipedia: Hydroxyacetone
- MetaCyc: ACETOL
- KNApSAcK: C00019558
- foodb: FDB012041
- chemspider: 21106125
- CAS: 116-09-6
- PMhub: MS000018616
- PubChem: 7630
- PDB-CCD: 4Y8
- 3DMET: B00761
- NIKKAJI: J2.470H
- RefMet: Hydroxyacetone
- medchemexpress: HY-Y1366
- KNApSAcK: 27957
分类词条
相关代谢途径
Reactome(0)
BioCyc(10)
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- 12-epi-fischerindole biosynthesis
- propane degradation II
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- detoxification of reactive carbonyls in chloroplasts
代谢反应
274 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(28)
- acetone degradation I (to methylglyoxal):
H+ + acetoacetate ⟶ CO2 + acetone
- acetone degradation III (to propane-1,2-diol):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- acetone degradation I (to methylglyoxal):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- propane degradation II:
NAD+ + propan-2-ol ⟶ H+ + NADH + acetone
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- superpathway of methylglyoxal degradation:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- 12-epi-hapalindole biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- paerucumarin biosynthesis:
D-ribulose 5-phosphate + tyr ⟶ (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- rhabduscin biosynthesis:
D-ribulose 5-phosphate + tyr ⟶ (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- hapalindole H biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- 12-epi-fischerindole biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(243)
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + acetol ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + acetol
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
NADP+ + hydroxyacetone ⟶ H+ + NADPH + methylglyoxal
- methylglyoxal degradation III:
(S)-propane-1,2-diol + NAD+ ⟶ H+ + NADH + hydroxyacetone
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(1)
- Methylglyoxal Degradation III:
Hydrogen Ion + NADPH + Pyruvaldehyde ⟶ Hydroxyacetone + NADP
PharmGKB(0)
10 个相关的物种来源信息
- 649199 - Astragalus membranaceus: 10.1080/00021369.1987.10868496
- 119829 - Astragalus mongholicus: 10.1080/00021369.1987.10868496
- 4072 - Capsicum annuum: 10.1006/JFCA.1997.0535
- 49827 - Glycyrrhiza glabra: 10.1021/JF60214A042
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 3893 - Pueraria montana var. lobata: 10.1271/BBB1961.52.1053
- 35974 - Santalum Album L\uff0e: -
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jieni Lian, Manuel Garcia-Perez, Ralph Coates, Hongwei Wu, Shulin Chen. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.
Bioresource technology.
2012 Aug; 118(?):177-86. doi:
10.1016/j.biortech.2012.05.010
. [PMID: 22705522] - Shangwu Jin, Eerdunbayaer, Airi Doi, Teruo Kuroda, Guixia Zhang, Tsutomu Hatano, Guilin Chen. Polyphenolic constituents of Cynomorium songaricum Rupr. and antibacterial effect of polymeric proanthocyanidin on methicillin-resistant Staphylococcus aureus.
Journal of agricultural and food chemistry.
2012 Jul; 60(29):7297-305. doi:
10.1021/jf301621e
. [PMID: 22747497] - Su-Hwa Jung, Seon-Jin Kim, Joo-Sik Kim. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.
Bioresource technology.
2012 Jun; 114(?):670-6. doi:
10.1016/j.biortech.2012.03.044
. [PMID: 22513256] - Cong Zhou, Kathryn L Simpson, Lee J Lancashire, Michael J Walker, Martin J Dawson, Richard D Unwin, Agata Rembielak, Patricia Price, Catharine West, Caroline Dive, Anthony D Whetton. Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery.
Journal of proteome research.
2012 Apr; 11(4):2103-13. doi:
10.1021/pr200636x
. [PMID: 22338609] - Yan-Bo Zeng, Hui Wang, Wen-Jian Zuo, Bo Zheng, Tao Yang, Hao-Fu Dai, Wen-Li Mei. A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant Scyphiphora hydrophyllacea.
Marine drugs.
2012 Mar; 10(3):598-603. doi:
10.3390/md10030598
. [PMID: 22611356] - Tomasz Bączek, Ilona Olędzka, Lucyna Konieczna, Piotr Kowalski, Alina Plenis. Biomedical evaluation of cortisol, cortisone, and corticosterone along with testosterone and epitestosterone applying micellar electrokinetic chromatography.
TheScientificWorldJournal.
2012; 2012(?):268120. doi:
10.1100/2012/268120
. [PMID: 22536129] - Felipe Meira de-Faria, Ana Cristina Alves Almeida, Anderson Luiz-Ferreira, Christiane Takayama, Ricardo José Dunder, Marcelo Aparecido da Silva, Marcos José Salvador, Patrícia Verardi Abdelnur, Marcos Nogueira Eberlin, Wagner Vilegas, Walber Toma, Alba Regina Monteiro Souza-Brito. Antioxidant action of mangrove polyphenols against gastric damage induced by absolute ethanol and ischemia-reperfusion in the rat.
TheScientificWorldJournal.
2012; 2012(?):327071. doi:
10.1100/2012/327071
. [PMID: 22654592] - Sally J Gustafson, Kriya L Dunlap, Colin M McGill, Thomas B Kuhn. A nonpolar blueberry fraction blunts NADPH oxidase activation in neuronal cells exposed to tumor necrosis factor-α.
Oxidative medicine and cellular longevity.
2012; 2012(?):768101. doi:
10.1155/2012/768101
. [PMID: 22530077] - Venugopal Mendu, Anne E Harman-Ware, Mark Crocker, Jungho Jae, Jozsef Stork, Samuel Morton, Andrew Placido, George Huber, Seth Debolt. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production.
Biotechnology for biofuels.
2011 Oct; 4(?):43. doi:
10.1186/1754-6834-4-43
. [PMID: 22018114] - Maria Graça Miguel, Maria Dulce Antunes. Is propolis safe as an alternative medicine?.
Journal of pharmacy & bioallied sciences.
2011 Oct; 3(4):479-95. doi:
10.4103/0975-7406.90101
. [PMID: 22219581] - Ana Carolina A V Kayano, Stefanie C P Lopes, Fernanda G Bueno, Elaine C Cabral, Wanessa C Souza-Neiras, Lucy M Yamauchi, Mary A Foglio, Marcos N Eberlin, João Carlos P Mello, Fabio T M Costa. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa.
Malaria journal.
2011 May; 10(?):112. doi:
10.1186/1475-2875-10-112
. [PMID: 21535894] - Kirsten Gescher, Joachim Kühn, Eva Lorentzen, Wali Hafezi, Andrea Derksen, Alexandra Deters, Andreas Hensel. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration.
Journal of ethnopharmacology.
2011 Mar; 134(2):468-74. doi:
10.1016/j.jep.2010.12.038
. [PMID: 21211557] - S Kalies, K Kuetemeyer, A Heisterkamp. Mechanisms of high-order photobleaching and its relationship to intracellular ablation.
Biomedical optics express.
2011 Mar; 2(4):805-16. doi:
10.1364/boe.2.000816
. [PMID: 21483605] - Shu-Dong Wei, Hai-Chao Zhou, Yi-Ming Lin. Antioxidant activities of fractions of polymeric procyanidins from stem bark of Acacia confusa.
International journal of molecular sciences.
2011 Feb; 12(2):1146-60. doi:
10.3390/ijms12021146
. [PMID: 21541049] - Ilja Kusters, Nobina Mukherjee, Menno R de Jong, Sander Tans, Armağan Koçer, Arnold J M Driessen. Taming membranes: functional immobilization of biological membranes in hydrogels.
PloS one.
2011; 6(5):e20435. doi:
10.1371/journal.pone.0020435
. [PMID: 21655266] - Christy E Manyi-Loh, Roland N Ndip, Anna M Clarke. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities.
International journal of molecular sciences.
2011; 12(12):9514-32. doi:
10.3390/ijms12129514
. [PMID: 22272147] - S C Sati, Savita Joshi. Antibacterial activities of Ginkgo biloba L. leaf extracts.
TheScientificWorldJournal.
2011; 11(?):2241-6. doi:
10.1100/2011/545421
. [PMID: 22125471] - Y Duan, H Zhang, B Xie, Y Yan, J Li, F Xu, Y Qin. Whole body radioprotective activity of an acetone-water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2010 Dec; 48(12):3374-84. doi:
10.1016/j.fct.2010.09.008
. [PMID: 20837084] - T Petr, V Smíd, J Smídová, H Hůlková, M Jirkovská, M Elleder, L Muchová, L Vitek, F Smíd. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction.
European journal of histochemistry : EJH.
2010 May; 54(2):e23. doi:
10.4081/ejh.2010.e23
. [PMID: 20558344] - Amedeo Pietri, Silvia Rastelli, Terenzio Bertuzzi. Ochratoxin A and aflatoxins in liquorice products.
Toxins.
2010 04; 2(4):758-70. doi:
10.3390/toxins2040758
. [PMID: 22069608] - Houchun H Hu, Krishna S Nayak. Change in the proton T(1) of fat and water in mixture.
Magnetic resonance in medicine.
2010 Feb; 63(2):494-501. doi:
10.1002/mrm.22205
. [PMID: 19918888] - M Shekarchi, H Hajimehdipoor, M Khanavi, N Adib, M Bozorgi, B Akbari-Adergani. A validated method for analysis of Swerchirin in Swertia longifolia Boiss. by high performance liquid chromatography.
Pharmacognosy magazine.
2010 Jan; 6(21):13-8. doi:
10.4103/0973-1296.59961
. [PMID: 20548931] - Ryszard Amarowicz, Isabell Estrella, Teresa Hernández, Montserrat Dueñas, Agnieszka Troszyńska, Agnieszka Kosińska, Ronald B Pegg. Antioxidant activity of a red lentil extract and its fractions.
International journal of molecular sciences.
2009 Dec; 10(12):5513-5527. doi:
10.3390/ijms10125513
. [PMID: 20054484] - J Bicker, F Petereit, A Hensel. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.
Fitoterapia.
2009 Dec; 80(8):483-95. doi:
10.1016/j.fitote.2009.08.015
. [PMID: 19695312] - Ugochukwu B Anyaehie. Medicinal properties of fractionated acetone/water neem [Azadirachta indica] leaf extract from Nigeria: a review.
Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria.
2009 Dec; 24(2):157-9. doi:
10.4314/njps.v24i2.52926
. [PMID: 20234757] - Wei-Dong Yang, Jie-Sheng Liu, Hong-Ye Li, Xin-Lian Zhang, Yu-Zao Qi. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata).
Bulletin of environmental contamination and toxicology.
2009 Oct; 83(4):537-41. doi:
10.1007/s00128-009-9836-z
. [PMID: 19634014] - Abdul L Molan, Shampa De, Lucy Meagher. Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins.
International journal of food sciences and nutrition.
2009 Sep; 60(6):497-506. doi:
10.1080/09637480701781490
. [PMID: 18608546] - Yuan-Xiang Li. Ethyl 2-(2,6-difluoro-benz-yloxy)-4-(4,6-dimethoxy-pyrimidin-2-yl)quinoline-3-carboxyl-ate.
Acta crystallographica. Section E, Structure reports online.
2009 Aug; 65(Pt 9):o2101. doi:
10.1107/s1600536809030499
. [PMID: 21577516] - D Prakash, J Behari. Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposure to simulated microgravity.
International journal of nanomedicine.
2009; 4(?):133-44. doi:
10.2147/ijn.s5481
. [PMID: 19774112] - Apoorva Bhatt, Alistair K Brown, Albel Singh, David E Minnikin, Gurdyal S Besra. Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones.
Chemistry & biology.
2008 Sep; 15(9):930-9. doi:
10.1016/j.chembiol.2008.07.007
. [PMID: 18804030] - Wei-dong Yang, Yu-rong Liu, Jie-sheng Liu, Zheng Liu. [Inhibitory effects and chemical basis of Eucalyptus orelliana wood meals on the growth of Alexandrium tamarense].
Huan jing ke xue= Huanjing kexue.
2008 Aug; 29(8):2296-301. doi:
"
. [PMID: 18839589] - M V Kozlov, L N Shishkina. [The influence of damage factors of the different nature on the lipid composition in the mice liver].
Radiatsionnaia biologiia, radioecologiia.
2008 May; 48(3):349-55. doi:
"
. [PMID: 18689261] - Sumei Yao, Weixia Qing. 5,3'-Dihydr-oxy-7,4'-dimethoxy-flavanone from Artemisia sphaerocephala Kraschen.
Acta crystallographica. Section E, Structure reports online.
2008 Apr; 64(Pt 5):o822. doi:
10.1107/s1600536808009355
. [PMID: 21202312] - Pierre Antony, Kristen Hoek, Bhaskarjyoti Sarmah, Wasif N Khan. Micro-scale flow cytometry-based and biochemical analysis of lipid signaling in primary B cell subpopulations.
Biological procedures online.
2007 Dec; 9(?):73-83. doi:
10.1251/bpo135
. [PMID: 18385809] - Ganesh Sriram, Vidya V Iyer, D Bruce Fulton, Jacqueline V Shanks. Identification of hexose hydrolysis products in metabolic flux analytes: a case study of levulinic acid in plant protein hydrolysate.
Metabolic engineering.
2007 Sep; 9(5-6):442-51. doi:
10.1016/j.ymben.2007.07.003
. [PMID: 17888703] - A U Mbah, I J Udeinya, E N Shu, C P Chijioke, T Nubila, F Udeinya, Angela Muobuike, Ancila Mmuobieri, Maria S Obioma. Fractionated neem leaf extract is safe and increases CD4+ cell levels in HIV/AIDS patients.
American journal of therapeutics.
2007 Jul; 14(4):369-74. doi:
10.1097/mjt.0b013e3180a72199
. [PMID: 17667213] - Shan Zhong, Zheng Cui, Naoki Sakura, Dong Wang, Jianlin Li, Yan Zhai. A rapid method for isolation and purification of an anticoagulant from Whitmania pigra.
Biomedical chromatography : BMC.
2007 May; 21(5):439-45. doi:
10.1002/bmc.739
. [PMID: 17370295] - Steven T S Lim, Klaus Dragull, Chung-Shih Tang, Harry C Bittenbender, Jimmy T Efird, Pratibha V Nerurkar. Effects of kava alkaloid, pipermethystine, and kavalactones on oxidative stress and cytochrome P450 in F-344 rats.
Toxicological sciences : an official journal of the Society of Toxicology.
2007 May; 97(1):214-21. doi:
10.1093/toxsci/kfm035
. [PMID: 17329236] - Yun-long Yu, Jia-lun Wu, Matthias Stahler, Wilfried Pestemer. Residual dynamics of thiacloprid in medical herbs marjoram, thyme, and camomile in soil.
Journal of environmental sciences (China).
2007; 19(2):205-9. doi:
10.1016/s1001-0742(07)60033-3
. [PMID: 17915730] - Guoshun Liu, Fengjie Wei, Fang Wang, Yajuan Li, Qiaoyan Guo, Xiaoshu Huang. [Determination of carotenoids in flue-cured tobacco leaves during its growth by reversed-phase high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2006 Mar; 24(2):161-3. doi:
"
. [PMID: 16830465] - Y L Yu, X M Wu, S N Li, H Fang, Y J Tan, J Q Yu. Bioavailability of butachlor and myclobutanil residues in soil to earthworms.
Chemosphere.
2005 May; 59(7):961-7. doi:
10.1016/j.chemosphere.2004.11.009
. [PMID: 15823329] - Tomomi Sugiyama, Kazumasa Shinozuka, Atsushi Sano, Shizuo Yamada, Kaori Endoh, Kazuhiko Yamada, Keizo Umegaki. [Effects of various ginkgo biloba extracts and proanthocyanidin on hepatic cytochrome P450 activity in rats].
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.
2004 Dec; 45(6):295-301. doi:
10.3358/shokueishi.45.295
. [PMID: 15794086] - Nancy Garbacki, Monique Tits, Luc Angenot, Jacques Damas. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenin acute inflammatory reactions induced in rats.
BMC pharmacology.
2004 Oct; 4(?):25. doi:
10.1186/1471-2210-4-25
. [PMID: 15498105] - Z Maksimović, A Malenović, B Jancić, N Kovacević. Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection.
Die Pharmazie.
2004 Jul; 59(7):524-7. doi:
"
. [PMID: 15296088] - I J Udeinya, A U Mbah, C P Chijioke, E N Shu. An antimalarial extract from neem leaves is antiretroviral.
Transactions of the Royal Society of Tropical Medicine and Hygiene.
2004 Jul; 98(7):435-7. doi:
10.1016/j.trstmh.2003.10.016
. [PMID: 15138081] - Elisa Vega Avila, Rafaela Tapia Aguilar, Manuel Jiménez Estrada, Ma Luisa Villarreal Ortega, Rubén Román Ramos. Cytotoxic activity of Cuphea aequipetala.
Proceedings of the Western Pharmacology Society.
2004; 47(?):129-33. doi:
"
. [PMID: 15633633] - Kenji Kuwasako, Yuan-Ning Cao, Yasuko Nagoshi, Toshihiro Tsuruda, Kazuo Kitamura, Tanenao Eto. Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins.
Molecular pharmacology.
2004 Jan; 65(1):207-13. doi:
10.1124/mol.65.1.207
. [PMID: 14722252] - Min Zhu, Tong-wei Yao, Su Zeng. [Ginkgo flavones in in vitro metabolism and its clinical application].
Yao xue xue bao = Acta pharmaceutica Sinica.
2003 Dec; 38(12):938-41. doi:
"
. [PMID: 15040090] - Rafael Rodríguez, Jordi Mañes, Yolanda Picó. Off-line solid-phase microextraction and capillary electrophoresis mass spectrometry to determine acidic pesticides in fruits.
Analytical chemistry.
2003 Feb; 75(3):452-9. doi:
10.1021/ac025884e
. [PMID: 12585470] - M J Siti Najila, A Noor Rain, A G Mohamad Kamel, S I Syed Zahir, S Khozirah, S Lokman Hakim, I Zakiah, A K Azizol. The screening of extracts from Goniothalamus scortechinii, Aralidium pinnatifidum and Andrographis paniculata for anti-malarial activity using the lactate dehydrogenase assay.
Journal of ethnopharmacology.
2002 Oct; 82(2-3):239-42. doi:
10.1016/s0378-8741(02)00183-6
. [PMID: 12242001] - Young Hoon Bai, Sok Cheon Pak, Bum Chae Choi, Laird Wilson. Tocolytic Effect of Morphine via Increased Metabolic Clearance of Oxytocin in the Baboon.
Yonsei medical journal.
2002 Oct; 43(5):567-72. doi:
10.3349/ymj.2002.43.5.567
. [PMID: 12402368] - Philip E Morgan, Roger T Dean, Michael J Davies. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products.
Archives of biochemistry and biophysics.
2002 Jul; 403(2):259-69. doi:
10.1016/s0003-9861(02)00222-9
. [PMID: 12139975] - O I Shadyro, I L Yurkova, M A Kisel. Radiation-induced peroxidation and fragmentation of lipids in a model membrane.
International journal of radiation biology.
2002 Mar; 78(3):211-7. doi:
10.1080/09553000110104065
. [PMID: 11869476] - N Sultanova, T Makhmoor, Z A Abilov, Z Parween, V B Omurkamzinova, A ur-Rahman, M I Choudhary. Antioxidant and antimicrobial activities of Tamarix ramosissima.
Journal of ethnopharmacology.
2001 Dec; 78(2-3):201-5. doi:
10.1016/s0378-8741(01)00354-3
. [PMID: 11694365] - C Atzori, A Bruno, G Chichino, E Bombardelli, M Scaglia, M Ghione. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii.
Antimicrobial agents and chemotherapy.
1993 Jul; 37(7):1492-6. doi:
10.1128/aac.37.7.1492
. [PMID: 8363381] - C L Skutches, O E Owen, G A Reichard. Acetone and acetol inhibition of insulin-stimulated glucose oxidation in adipose tissue and isolated adipocytes.
Diabetes.
1990 Apr; 39(4):450-5. doi:
10.2337/diab.39.4.450
. [PMID: 2180756] - G A Reichard, C L Skutches, R D Hoeldtke, O E Owen. Acetone metabolism in humans during diabetic ketoacidosis.
Diabetes.
1986 Jun; 35(6):668-74. doi:
10.2337/diab.35.6.668
. [PMID: 3086164] - J P Casazza, J L Fu. Measurement of acetol in serum.
Analytical biochemistry.
1985 Aug; 148(2):344-8. doi:
10.1016/0003-2697(85)90238-6
. [PMID: 3933378] - . .
.
. doi:
. [PMID: 4055750]
- . .
.
. doi:
. [PMID: 1537826]
- . .
.
. doi:
. [PMID: 20634950]