Classification Term: 169402
Other carbonyl compounds (ontology term: d14a7c9f1b5bfa057102b2b07721cb2f)
found 36 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Carbonyl compounds
Child Taxonomies: There is no child term of current ontology term.
Ketorolac
Ketorolac is only found in individuals that have used or taken this drug. It is a pyrrolizine carboxylic acid derivative structurally related to indomethacin. It is an NSAID and is used principally for its analgesic activity (from Martindale The Extra Pharmacopoeia, 31st ed). Ketorolac is a nonsteroidal anti-inflammatory drug (NSAID) chemically related to indomethacin and tolmetin. Ketorolac tromethamine is a racemic mixture of [-]S- and [+]R-enantiomeric forms, with the S-form having analgesic activity. Its antiinflammatory effects are believed to be due to inhibition of both cylooxygenase-1 (COX-1) and cylooxygenase-2 (COX-2) which leads to the inhibition of prostaglandin synthesis leading to decreased formation of precursors of prostaglandins and thromboxanes from arachidonic acid. The resultant reduction in prostaglandin synthesis and activity may be at least partially responsible for many of the adverse, as well as the therapeutic, effects of these medications. Analgesia is probably produced via a peripheral action in which blockade of pain impulse generation results from decreased prostaglandin activity. However, inhibition of the synthesis or actions of other substances that sensitize pain receptors to mechanical or chemical stimulation may also contribute to the analgesic effect. In terms of the ophthalmic applications of ketorolac - ocular administration of ketorolac reduces prostaglandin E2 levels in aqueous humor, secondary to inhibition of prostaglandin biosynthesis. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Pyruvaldehyde
Methylglyoxal, also known as 2-ketopropionaldehyde or 2-oxopropanal, is a member of the class of compounds known as alpha ketoaldehydes. Alpha ketoaldehydes are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Methylglyoxal is soluble (in water) and an extremely weak acidic compound (based on its pKa). Methylglyoxal can be found in a number of food items such as shiitake, yellow zucchini, roman camomile, and carob, which makes methylglyoxal a potential biomarker for the consumption of these food products. Methylglyoxal can be found primarily in blood and urine, as well as throughout most human tissues. Methylglyoxal exists in all living species, ranging from bacteria to humans. In humans, methylglyoxal is involved in few metabolic pathways, which include glycine and serine metabolism, pyruvaldehyde degradation, pyruvate metabolism, and spermidine and spermine biosynthesis. Methylglyoxal is also involved in several metabolic disorders, some of which include hyperglycinemia, non-ketotic, pyruvate kinase deficiency, non ketotic hyperglycinemia, and pyruvate decarboxylase E1 component deficiency (PDHE1 deficiency). Moreover, methylglyoxal is found to be associated with diabetes mellitus type 2. Methylglyoxal, also called pyruvaldehyde or 2-oxopropanal, is the organic compound with the formula CH3C(O)CHO. Gaseous methylglyoxal has two carbonyl groups, an aldehyde and a ketone but in the presence of water, it exists as hydrates and oligomers. It is a reduced derivative of pyruvic acid . Pyruvaldehyde is an organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
Yersiniabactin
A member of the class of thiazolidines that is (4S)-4-methyl-4,5-dihydro-1,3-thiazole-4-carboxylic acid which is substituted at position 2 by a (1S)-1-hydroxy-1-{(4R)-2-[(4R)-2-(2-hydroxyphenyl)-4,5-dihydro-1,3-thiazol-4-yl]-1,3-thiazolidin-4-yl}-2-methylpropan-2-yl group. A siderophore found in the gram-negative bacterium species, Yersinia enterocolitica and Yersinia pestis. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
Malonic semialdehyde
Malonic semialdehyde is formed in the alternative pathway of propionate metabolism and in the catabolism of beta-alanine. Studies done on these pathways in cultured cells from a patient with mitochondrial malonyl-CoA decarboxylase deficiency show that malonic semialdehyde is directly converted into acetyl-CoA in man. (PMID: 6418146) [HMDB]. Malonic semialdehyde is found in many foods, some of which are spinach, rocket salad (sspecies), pepper (c. pubescens), and bilberry. Malonic semialdehyde is formed in the alternative pathway of propionate metabolism and in the catabolism of beta-alanine. Studies done on these pathways in cultured cells from a patient with mitochondrial malonyl-CoA decarboxylase deficiency show that malonic semialdehyde is directly converted into acetyl-CoA in man. (PMID: 6418146).
Lactaldehyde
L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).
Aminoacetone
Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA, but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces aminoacetone (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001). Aminoacetone is thought to be a substrate for SSAO (semicarbazide-sensitive amine oxidase), leading to the production of the toxic product methylglyoxal (Journal of Chromatography B. Volume 824, Issues 1-2 , 25 September 2005, Pages 116-122 ). Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA (5), but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces AA. (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001);
Phosphohydroxypyruvic acid
Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group. Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). [HMDB]
Hydroxyacetone
Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.
2-Propyn-1-al
2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3]. [HMDB] 2-Propyn-1-al is involved in the propanoate metabolism system. It is created from 2-Propyn-1-ol through the action of alcohol dehydrogenase [EC:1.1.99.8]. 2-Propyn-1-al is converted to propynoate by aldehyde dehydrogenase [EC:1.2.1.3].
1,2-Dihydroxy-3-keto-5-methylthiopentene
At physiological pH, this molecule, 1,2-dihydroxy-3-keto-5-methylthiopentene, is a monoanion, 1,2-dihydroxy-3-keto-5-methylthiopentene anion. 1,2-dihydroxy-3-keto-5-methylthiopentene anion, an aci-reductone, is believed to be an unstable intermediate in the methionine salvage pathway in Klebsiella pneumoniae. (MetaCyc).
Dopamine quinone
Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101). Dopamine quinone is produce by the reaction between dopamine and oxygen, with water as the byproduct. The reaction is catalyzed by the tyrosinase precursor. Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly with cysteine residues. (PMID: 12835101)
Malondialdehyde
Malondialdehyde (MDA) is the dialdehyde of malonic acid and a biomarker of oxidative damage to lipids caused by smoking. Oxidized lipids are able to produce MDA as a decomposition product. The mechanism is thought to involve formation of prostaglandin-like endoperoxides from polyunsaturated fatty acids with two or more double bonds. An alternative mechanism is based on successive hydroperoxide formation and β-cleavage of polyunsaturated fatty acids. MDA is then directly formed by β-scission of a 3-hydroperoxyaldehyde or by reaction between acrolein and hydroxyl radicals. While oxidation of polyunsaturated fatty acids is the major source of MDA in vivo, other minor sources exists such as byproducts of free radical generation by ionizing radiation and of the biosynthesis of prostaglandins. Aldehydes are generally reactive species capable of forming adducts and complexes in biological systems and MDA is no exception although the main species at physiological pH is the enolate ion which is of relative low reactivity. Consistent evidence is available for the reaction between MDA and cellular macromolecules such as proteins, RNA and DNA. MDA reacts with DNA to form adducts to deoxyguanosine and deoxyadenosine which may be mutagenic and these can be quantified in several human tissues. Oxidative stress is an imbalance between oxidants and antioxidants on a cellular or individual level. Oxidative damage is one result of such an imbalance and includes oxidative modification of cellular macromolecules, induction of cell death by apoptosis or necrosis, as well as structural tissue damage. Chemically speaking, oxidants are compounds capable of oxidizing target molecules. This can take place in three ways: abstraction of hydrogen, abstraction of electrons or addition of oxygen. All cells living under aerobic conditions are continuously exposed to a large numbers of oxidants derived from various endogenous and exogenous sources. The endogenous sources of oxidants are several and include the respiratory chain in the mitochondria, immune reactions, enzymes such as xanthine oxidase and nitric oxide synthase and transition metal mediated oxidation. Various exogenous sources of ROS also contribute directly or indirectly to the total oxidant load. These include effects of ionizing and non-ionizing radiation, air pollution and natural toxic gases such as ozone, and chemicals and toxins including oxidizing disinfectants. A poor diet containing inadequate amounts of nutrients may also indirectly result in oxidative stress by impairing cellular defense mechanisms. The cellular macromolecules, in particular lipids, proteins and DNA, are natural targets of oxidation. Oxidants are capable of initiating lipid oxidation by abstraction of an allylic proton from a polyunsaturated fatty acid. This process, by multiple stages leading to the formation of lipid hydroperoxides, is a known contributor to the development of atherosclerosis. (PMID: 17336279). MDA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). It is used as an indicator of fatty acid and lipid peroxidation, and oxidative changes in foods
lactaldehyde
A member of the class of propanals obtained by the reduction of the carboxylic group of lactic acid (2-hydroxypropanoic acid).
1-Hydroxy-2-butanone
1-Hydroxy-2-butanone is a natural compound isolated from Bomboo Juice with antitubercular activity[1]. 1-Hydroxy-2-butanone is a natural compound isolated from Bomboo Juice with antitubercular activity[1].
2,3-Pentanedione
2,3-Pentanedione, also known as acetyl propionyl or pentan-2,3-dione, belongs to the class of organic compounds known as alpha-diketones. These are organic compounds containing two ketone groups on two adjacent carbon atoms. 2,3-Pentanedione is a sweet, butter, and caramel tasting compound. 2,3-Pentanedione has been detected, but not quantified, in several different foods, such as coffee and coffee products, tamarinds, cauliflowers, green beans, and cereals and cereal products. Pentane-2,3-dione is an alpha-diketone that is pentane substituted at the 2- and 3-positions by oxo groups. It has a role as a flavouring agent. It is an alpha-diketone and a methyl ketone. It derives from a hydride of a pentane. 2,3-Pentanedione is a natural product found in Mangifera indica, Carica papaya, and other organisms with data available. 2,3-pentanedione is a metabolite found in or produced by Saccharomyces cerevisiae. 2,3-Pentanedione is a flavouring ingredient. It is found in many foods, some of which are coffee and coffee products, milk and milk products, tea, and fruits. 2,3-Pentanedione is a common constituent of synthetic flavorings and is used to impart a butter, strawberry, caramel, fruit, rum, or cheese flavor in beverages, ice cream, candy, baked goods, gelatins, and puddings. 2,3-Pentanedione also occurs naturally as a fermentation product in beer, wine, and yogurt and is releasedduring roasting of coffee beans[1]. 2,3-Pentanedione is a common constituent of synthetic flavorings and is used to impart a butter, strawberry, caramel, fruit, rum, or cheese flavor in beverages, ice cream, candy, baked goods, gelatins, and puddings. 2,3-Pentanedione also occurs naturally as a fermentation product in beer, wine, and yogurt and is releasedduring roasting of coffee beans[1].
2-Nonenal
(E)-2-Nonenal is found in alcoholic beverages. (E)-2-Nonenal is widespread in nature, in beer, coffee, watermelon, cucumbers, redcurrants, orris oil, palm oil, potatoes etc. (E)-2-Nonenal is a flavouring ingredien. It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). 2-Nonenal is an unsaturated aldehyde which some research has associated with human body odor alterations during aging. The substance is also an important aroma component of aged beer and buckwheat. The odor of this substance is perceived as orris, fat and cucumber. 2-Nonenal is found in lemon.
1-Hydroxy-2-butanone
1-Hydroxy-2-butanone is found in coffee and coffee products. 1-Hydroxy-2-butanone is a constituent of coffee and various edible mushrooms. 1-Hydroxy-2-butanone is a flavouring ingredient Constituent of coffee and various edible mushrooms. Flavouring ingredient. 1-Hydroxy-2-butanone is found in mushrooms and coffee and coffee products. 1-Hydroxy-2-butanone is a natural compound isolated from Bomboo Juice with antitubercular activity[1]. 1-Hydroxy-2-butanone is a natural compound isolated from Bomboo Juice with antitubercular activity[1].
Dihydroxyacetone Phosphate Acyl Ester
1-acylglycerone 3-phosphate is found in the glycerophospholipid metabolism and ether lipid metabolism pathways. In the glycerophospholipid metabolism pathway, 1-acylglycerone 3-phosphate is created from glycerone phosphate, a reaction catalyzed by glyceronephosphate O-acyltransferase [EC:2.3.1.42]. 1-acylglycerone 3-phosphate is then converted to 1-acyl-sn-3-glycercol-phosphate or enters ether lipid metabolism. The conversion to 1-acyl-sn-3-glycercol-phosphate is catalyzed by 1-acylglycerone phosphate reductase [EC:1.1.1.101]. Within the ether lipid metabolism pathway, 1-acylglycerone 3-phosphate is converted to 1-alkyl-glycerone-3-phosphate through the action of alkyldihydroxyacetonephosphate synthase [EC:2.5.1.26]. 1-acylglycerone 3-phosphate is found in the glycerophospholipid metabolism and ether lipid metabolism pathways.
Trimethylaminoacetone
Microorganisms (e.g., in the intestine) can metabolize carnitine to trimethylamine, dehydrocarnitine betaine, and possibly to trimethylaminoacetone. (PMID: 6361812). Microorganisms (e.g., in the intestine) can metabolize carnitine to trimethylamine, dehydrocarnitine betaine, and possibly to trimethylaminoacetone.
Yersiniabactin
Mesotrione
CONFIDENCE standard compound; EAWAG_UCHEM_ID 258 CONFIDENCE standard compound; INTERNAL_ID 3180
ketorolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors This spectrum was obtained at The Multidisciplinary Research Laboratory at Antenor Orrego Private University, Trujillo, La Libertad, Peru.The sample was obtained from a pharmacy.; The sample was dissolved in 1:1 acetonitrile:water and passed through a ACQUITY UPLC BEH C18 1.7um column at 0.6 mL/min in ramp of MPA: 0.1\\% Formic Acid in water; MPB: 0.1\\% Formic Acid in Acetonitrile; Contact us: http://www.upao.edu.pe/labinm/
aminoacetone
A propanone consisting of acetone having an amino group at the 1-position.