Acrylamide (BioDeep_00000004733)

Main id: BioDeep_00000002854

Secondary id: BioDeep_00000405586

human metabolite Endogenous


代谢物信息卡片


American cyanamid P-250

化学式: C3H5NO (71.0371)
中文名称: 丙烯酰胺40\\%(W/V)溶液, 2-丙烯酰胺, 聚丙烯酰胺
谱图信息: 最多检出来源 Homo sapiens(otcml) 18.12%

分子结构信息

SMILES: C=CC(=N)O
InChI: InChI=1S/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5)

描述信息

Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. It is produced industrially as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents. It is highly toxic, likely to be carcinogenic,and partly for that reason it is mainly handled as an aqueous solution. It is a chemical used in many industries around the world and more recently was found to form naturally in foods cooked at high temperatures. Acrylamide is a neurotoxicant, reproductive toxicant, and carcinogen in animal species. Only the neurotoxic effects have been observed in humans and only at high levels of exposure in occupational settings. The mechanism underlying neurotoxic effects of ACR may be basic to the other toxic effects seen in animals. This mechanism involves interference with the kinesin-related motor proteins in nerve cells or with fusion proteins in the formation of vesicles at the nerve terminus and eventual cell death. Neurotoxicity and resulting behavioral changes can affect reproductive performance of ACR-exposed laboratory animals with resulting decreased reproductive performance. Further, the kinesin motor proteins are important in sperm motility, which could alter reproduction parameters. Effects on kinesin proteins could also explain some of the genotoxic effects on ACR. These proteins form the spindle fibers in the nucleus that function in the separation of chromosomes during cell division. This could explain the clastogenic effects of the chemical noted in a number of tests for genotoxicity and assays for germ cell damage. Other mechanisms underlying ACR-induced carcinogenesis or nerve toxicity are likely related to an affinity for sulfhydryl groups on proteins. Binding of the sulfhydryl groups could inactive proteins/enzymes involved in DNA repair and other critical cell functions. Direct interaction with DNA may or may not be a major mechanism for cancer induction in animals. The DNA adducts that form do not correlate with tumor sites and ACR is mostly negative in gene mutation assays except at high doses that may not be achievable in the diet. All epidemiologic studies fail to show any increased risk of cancer from either high-level occupational exposure or the low levels found in the diet. In fact, two of the epidemiologic studies show a decrease in cancer of the large bowel. A number of risk assessment studies were performed to estimate increased cancer risk. The results of these studies are highly variable depending on the model. There is universal consensus among international food safety groups in all countries that examined the issue of ACR in the diet that not enough information is available at this time to make informed decisions on which to base any regulatory action. Too little is known about levels of this chemical in different foods and the potential risk from dietary exposure. Avoidance of foods containing ACR would result in worse health issues from an unbalanced diet or pathogens from under cooked foods. There is some consensus that low levels of ACR in the diet are not a concern for neurotoxicity or reproductive toxicity in humans, although further research is need to study the long-term, low-level cumulative effects on the nervous system. Any relationship to cancer risk from dietary exposure is hypothetical at this point and awaits more definitive studies. (PMID:17492525).
Polyacrylamides are used as flocculants as a filtration aid in the treatment of waste water and expressed sugar juices and as clarifying agents in a variety of food products. Asparagine-derived Maillard production found in trace amounts in a variety of cooked and processed foods. Subject of a food scare in 2001-2 but concern may have been overstated.

同义名列表

62 个代谢物同义名

American cyanamid P-250; Polyacrylamide solution; Amid kyseliny akrylove; American cyanamid kpam; Polyacrylamide resin; Propenoic acid amide; Amide propenoic acid; Ethylene carboxamide; Ethylenecarboxamide; Acrylamide Crystals; Acrylic acid amide; Amide propenoate; amresco Acryl-40; Stokopol D 2624; Magnafloc R 292; Himoloc SS 200; Propenoic acid; 2-Propeneamide; Prop-2-enamide; Cyanamer P 250; Polyacrylamide; Solvitose 433; Acrylic amide; Sanpoly a 520; Versicol W 11; Superfloc 900; Praestol 2800; 2-Propenamide; Aerofloc 3453; Cyanamer P 35; Nacolyte 673; Sursolan P 5; Sumirez a 17; Gelamide 250; Superfloc 84; Polyhall 402; Sumirez a 27; Propeneamide; BioGel P-100; Porisutoron; Polyhall 27; Aminogen pa; bio-Gel P 2; Sumitex a 1; Vinyl amide; Propenamide; Polystoron; Flokonit e; Polystolon; ACRYLAMIDE; Propenoate; Flygtol GB; Dow et 597; Reten 420; Stipix ad; Acrylagel; Akrylamid; Cytame 5; Optimum; K-Pam; Acrylamide; 2-Propenamide



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

11 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(11)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ALB, AXIN2, CYP2E1, EGFR, GAPDH, GSTP1, HPGDS, PRKX, TUBB4B, VIM
Peripheral membrane protein 1 CYP2E1
Endosome membrane 2 EGFR, TF
Endoplasmic reticulum membrane 3 CYP2E1, EGFR, HSP90B1
Nucleus 8 ALB, AXIN2, EGFR, GAPDH, GSTP1, HSP90B1, PRKX, TUBB4B
cytosol 12 ALB, ASNS, AXIN2, GAPDH, GLS, GSTP1, HPGDS, HSP90B1, LIPE, MB, TUBB4B, VIM
phagocytic vesicle 1 VIM
centrosome 2 ALB, AXIN2
nucleoplasm 3 ATP2B1, HPGDS, PRKX
Cell membrane 5 ATP2B1, EGFR, LIPE, MAG, VIM
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 1 ATP2B1
Synapse 3 ATP2B1, GLS, TAC1
cell junction 1 EGFR
cell surface 2 EGFR, TF
glutamatergic synapse 2 ATP2B1, EGFR
Golgi apparatus 1 ALB
Golgi membrane 1 EGFR
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 1 TAC1
presynaptic membrane 1 ATP2B1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 3 GAPDH, GLS, LIPE
endosome 1 EGFR
plasma membrane 7 ATP2B1, AXIN2, EGFR, GAPDH, MAG, TF, VIM
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ATP2B1, EGFR, GAPDH, HSP90B1, LIPE, MAG
apical plasma membrane 2 EGFR, TF
axon 2 TAC1, VIM
basolateral plasma membrane 2 ATP2B1, EGFR
caveola 1 LIPE
extracellular exosome 10 ALB, ATP2B1, GAPDH, GSTP1, HSP90B1, LYZ, MB, TF, TUBB4B, VIM
endoplasmic reticulum 2 ALB, HSP90B1
extracellular space 6 ALB, EGFR, GSTP1, LYZ, TAC1, TF
perinuclear region of cytoplasm 4 EGFR, GAPDH, HSP90B1, TF
mitochondrion 2 GLS, GSTP1
protein-containing complex 3 ALB, EGFR, HSP90B1
intracellular membrane-bounded organelle 4 ATP2B1, CYP2E1, GAPDH, HPGDS
Microsome membrane 1 CYP2E1
Single-pass type I membrane protein 2 EGFR, MAG
Secreted 2 ALB, TF
extracellular region 7 ALB, GSTP1, HSP90B1, LYZ, TAC1, TF, TUBB4B
Single-pass membrane protein 1 MAG
basal part of cell 1 TF
mitochondrial matrix 1 GLS
anchoring junction 1 ALB
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 2 EGFR, GAPDH
Extracellular vesicle 1 TUBB4B
beta-catenin destruction complex 1 AXIN2
cytoplasmic vesicle 1 TF
microtubule cytoskeleton 2 GAPDH, TUBB4B
midbody 1 HSP90B1
sarcoplasm 1 MB
Early endosome 1 TF
clathrin-coated pit 1 TF
recycling endosome 1 TF
vesicle 3 GAPDH, GSTP1, TF
Cytoplasm, perinuclear region 1 GAPDH
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 2 EGFR, MAG
Cytoplasm, cytoskeleton 3 GAPDH, TUBB4B, VIM
focal adhesion 3 EGFR, HSP90B1, VIM
microtubule 1 TUBB4B
Peroxisome 1 VIM
intracellular vesicle 1 EGFR
collagen-containing extracellular matrix 1 HSP90B1
intermediate filament 1 VIM
lateral plasma membrane 1 ATP2B1
Late endosome 1 TF
receptor complex 1 EGFR
neuron projection 1 VIM
ciliary basal body 1 ALB
cell leading edge 1 VIM
cell projection 1 ATP2B1
mitotic spindle 1 TUBB4B
cytoskeleton 3 GAPDH, TUBB4B, VIM
centriole 1 ALB
[Isoform 1]: Mitochondrion 1 GLS
spindle pole 1 ALB
blood microparticle 2 ALB, TF
Basolateral cell membrane 1 ATP2B1
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
axonemal microtubule 1 TUBB4B
microtubule organizing center 1 VIM
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 ATP2B1
myelin sheath 1 MAG
sperm plasma membrane 1 HSP90B1
intermediate filament cytoskeleton 1 VIM
basal plasma membrane 2 EGFR, TF
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 GSTP1
secretory granule lumen 2 GSTP1, TF
HFE-transferrin receptor complex 1 TF
endoplasmic reticulum lumen 3 ALB, HSP90B1, TF
nuclear matrix 1 VIM
platelet alpha granule lumen 1 ALB
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
endocytic vesicle 1 TF
paranode region of axon 1 MAG
Schmidt-Lanterman incisure 1 MAG
azurophil granule lumen 2 LYZ, TUBB4B
immunological synapse 1 ATP2B1
Nucleus matrix 1 VIM
clathrin-coated endocytic vesicle membrane 2 EGFR, TF
Sarcoplasmic reticulum lumen 1 HSP90B1
ribonucleoprotein complex 1 GAPDH
[Isoform 3]: Mitochondrion 1 GLS
GAIT complex 1 GAPDH
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
vesicle coat 1 TF
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
endocytic vesicle lumen 1 HSP90B1
Cytoplasm, sarcoplasm 1 MB
compact myelin 1 MAG
endoplasmic reticulum chaperone complex 1 HSP90B1
myelin sheath adaxonal region 1 MAG
TRAF2-GSTP1 complex 1 GSTP1
photoreceptor ribbon synapse 1 ATP2B1
mesaxon 1 MAG
ciliary transition fiber 1 ALB
dense body 1 TF


文献列表

  • Zhengguo Wu, Shanshan Li, Xiaoqian Qin, Lu Zheng, Jiawei Fang, Lansheng Wei, Changliang Xu, Zhong Alan Li, Xiaoying Wang. Facile preparation of fatigue-resistant Mxene-reinforced chitosan cryogel for accelerated hemostasis and wound healing. Carbohydrate polymers. 2024 Jun; 334(?):121934. doi: 10.1016/j.carbpol.2024.121934. [PMID: 38553248]
  • Xurui Ye, Mengyun Zhang, Zihao Gong, Weiting Jiao, Liangchao Li, Mingyu Dong, Tianyu Xiang, Nianjie Feng, Qian Wu. Inhibition of polyphenols on Maillard reaction products and their induction of related diseases: A comprehensive review. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155589. doi: 10.1016/j.phymed.2024.155589. [PMID: 38608487]
  • Ahmed M E Shipa, Khaled A Kahilo, Samir A Elshazly, Ehab S Taher, Nasr E Nasr, Badriyah S Alotaibi, Essam A Almadaly, Mona Assas, Walied Abdo, Tarek K Abouzed, Abdulati Elsanusi Salem, Damla Kirci, Hesham R El-Seedi, Mohamed S Refaey, Nermin I Rizk, Mustafa Shukry, Doaa A Dorghamm. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reproductive toxicology (Elmsford, N.Y.). 2024 Jun; 126(?):108586. doi: 10.1016/j.reprotox.2024.108586. [PMID: 38614435]
  • Jinli Chen, Meng Zhang, Chunmei Yuan, Tao Zhang, Zhibing Wu, Tingting Li, Yonggui Robin Chi. Design, Synthesis, and Antifungal Activity of Acrylamide Derivatives Containing Trifluoromethylpyridine and Piperazine. Journal of agricultural and food chemistry. 2024 May; 72(20):11360-11368. doi: 10.1021/acs.jafc.3c09770. [PMID: 38720533]
  • Yuchao Guo, Ting Zhao, Xiongyi Yao, Hongchen Ji, Yingbiao Luo, Emmanuel Sunday Okeke, Guanghua Mao, Weiwei Feng, Yao Chen, Yangyang Ding, Xiangyang Wu, Liuqing Yang. Acrylamide-Aggravated Liver Injury by Activating Endoplasmic Reticulum Stress in Female Mice with Diabetes. Chemical research in toxicology. 2024 May; 37(5):731-743. doi: 10.1021/acs.chemrestox.4c00016. [PMID: 38634348]
  • Jonas Pospiech, Eva Hoelzle, Alena Schoepf, Tanja Melzer, Michael Granvogl, Jan Frank. Acrylamide increases and furanoic compounds decrease in plant-based meat alternatives during pan-frying. Food chemistry. 2024 May; 439(?):138063. doi: 10.1016/j.foodchem.2023.138063. [PMID: 38035494]
  • Margot Visse-Mansiaux, Leonard Shumbe, Yves Brostaux, Theodor Ballmer, Inga Smit, Brice Dupuis, Hervé Vanderschuren. Identification of potato varieties suitable for cold storage and reconditioning: A safer alternative to anti-sprouting chemicals for potato sprouting control. Food research international (Ottawa, Ont.). 2024 May; 184(?):114249. doi: 10.1016/j.foodres.2024.114249. [PMID: 38609227]
  • Yuchao Guo, Houlin Mao, Danni Gong, Nuo Zhang, Dandan Gu, Emmanuel Sunday Okeke, Weiwei Feng, Yao Chen, Guanghua Mao, Ting Zhao, Liuqing Yang. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro. Toxicology. 2024 May; 504(?):153800. doi: 10.1016/j.tox.2024.153800. [PMID: 38604440]
  • Jayabrata Maity, Samit Kumar Ray. Synthesis, characterization and column adsorption properties of gum ghatti and water hyacianth derived cellulose grafted poly(vinyl sulfonic acid-co-acrylamide) composites. International journal of biological macromolecules. 2024 May; 268(Pt 1):131652. doi: 10.1016/j.ijbiomac.2024.131652. [PMID: 38649075]
  • Tian-Bao Wang, Ying He, Rui-Cheng Li, Yu-Xi Yu, Yu Liu, Zhong-Quan Qi. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Apr; 126(?):155448. doi: 10.1016/j.phymed.2024.155448. [PMID: 38394736]
  • Sarah L Oliver, Abou Yobi, Sherry Flint-Garcia, Ruthie Angelovici. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds. Journal of agricultural and food chemistry. 2024 Mar; 72(12):6089-6095. doi: 10.1021/acs.jafc.3c09547. [PMID: 38483189]
  • Qi-Yue Xie, Yang Chen, Chang-Jun Li, Jia-Bin Zhang, Xiu-Jun Cao, Jun Lu. Ionizable copolymer functionalized magnetic nanocomposite as an adsorbent for boosting the extraction selectivity of aristolochic acids. Journal of food and drug analysis. 2024 Mar; 32(1):65-78. doi: 10.38212/2224-6614.3493. [PMID: 38526591]
  • Dominika Osiecka, Christina Vakh, Patrycja Makoś-Chełstowska, Paweł Kubica. Plant-based meat substitute analysis using microextraction with deep eutectic solvent followed by LC-MS/MS to determine acrylamide, 5-hydroxymethylfurfural and furaneol. Analytical and bioanalytical chemistry. 2024 Feb; 416(5):1117-1126. doi: 10.1007/s00216-023-05107-6. [PMID: 38123751]
  • Leila Peivasteh-Roudsari, Marziyeh Karami, Raziyeh Barzegar-Bafrouei, Samane Samiee, Hadis Karami, Behrouz Tajdar-Oranj, Vahideh Mahdavi, Adel Mirza Alizadeh, Parisa Sadighara, Gea Oliveri Conti, Amin Mousavi Khaneghah. Toxicity, metabolism, and mitigation strategies of acrylamide: a comprehensive review. International journal of environmental health research. 2024 Jan; 34(1):1-29. doi: 10.1080/09603123.2022.2123907. [PMID: 36161963]
  • Zisheng Han, Mengting Zhu, Xiaochun Wan, Xiaoting Zhai, Chi-Tang Ho, Liang Zhang. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Critical reviews in food science and nutrition. 2024; 64(15):4904-4920. doi: 10.1080/10408398.2022.2146653. [PMID: 36382683]
  • Homa Fazeli Kakhki, Mahboobeh Ghasemzadeh Rahbardar, Bibi Marjan Razavi, Mahmoud Reza Heidari, Hossein Hosseinzadeh. Preventive and therapeutic effects of azithromycin on acrylamide-induced neurotoxicity in rats. Neurotoxicology. 2024 Jan; 100(?):47-54. doi: 10.1016/j.neuro.2023.11.011. [PMID: 38043637]
  • Amanda G A Sá, James D House. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods. Comprehensive reviews in food science and food safety. 2024 Jan; 23(1):1-20. doi: 10.1111/1541-4337.13260. [PMID: 38284574]
  • Yucel Buyukdere, Asli Akyol. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutrition reviews. 2023 Dec; 82(1):128-142. doi: 10.1093/nutrit/nuad041. [PMID: 37155834]
  • Antonio Fernández, Sara Martillanes, Enrico Maria Lodolini, Manuel Martínez, Rocío Arias-Calderón, Daniel Martín-Vertedor. Effect of elaboration process, crop year and irrigation on acrylamide levels of potential table olive varieties. Journal of the science of food and agriculture. 2023 Dec; 103(15):7580-7589. doi: 10.1002/jsfa.12877. [PMID: 37483099]
  • Maria Goretti Reyes López, Adriana Cavazos Garduño, Nancy Elizabeth Franco Rodríguez, Jorge Manuel Silva Jara, Julio César Serrano Niño. [Assessment of the in vitro effect of intra and extracellular extracts of Lactobacillus against genotoxicity and oxidative stress caused by acrylamide]. Nutricion hospitalaria. 2023 Aug; 40(4):811-818. doi: 10.20960/nh.04241. [PMID: 36602127]
  • Luciana Dalazen Dos Santos, Tugstênio Lima de Souza, Gabriel Ian da Silva, Mateus Francescon Ferreira de Mello, Jeane Maria de Oliveira, Marco Aurelio Romano, Renata Marino Romano. Prepubertal oral exposure to relevant doses of acrylamide impairs the testicular antioxidant system in adulthood, increasing protein carbonylation and lipid peroxidation. Environmental pollution (Barking, Essex : 1987). 2023 Jul; 334(?):122132. doi: 10.1016/j.envpol.2023.122132. [PMID: 37414124]
  • Min Fan, Xiaoying Xu, Wenjun Lang, Wenjing Wang, Xinyu Wang, Angjun Xin, Fangmei Zhou, Zhishan Ding, Xiaoqing Ye, Bingqi Zhu. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. Ecotoxicology and environmental safety. 2023 May; 260(?):115059. doi: 10.1016/j.ecoenv.2023.115059. [PMID: 37257344]
  • Jialiang Liang, Yulin Yan, Linhao Chen, Jinxiang Wu, Yunyi Li, Zhiwei Zhao, Li Li. Synthesis of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge as a fast absorbent composite and its application in coral sand soil. International journal of biological macromolecules. 2023 May; ?(?):124965. doi: 10.1016/j.ijbiomac.2023.124965. [PMID: 37236573]
  • Sarah Woelfle, Dhruva Deshpande, Simone Feldengut, Heiko Braak, Kelly Del Tredici, Francesco Roselli, Karl Deisseroth, Jens Michaelis, Tobias M Boeckers, Michael Schön. CLARITY increases sensitivity and specificity of fluorescence immunostaining in long-term archived human brain tissue. BMC biology. 2023 05; 21(1):113. doi: 10.1186/s12915-023-01582-6. [PMID: 37221592]
  • Firoozeh Hosseini-Esfahani, Niloofar Beheshti, Amene Nematollahi, Glareh Koochakpoor, Soheil Verij-Kazemi, Parvin Mirmiran, Fereidoon Azizi. The association between dietary acrylamide intake and the risk of type 2 diabetes incidence in the Tehran lipid and glucose study. Scientific reports. 2023 May; 13(1):8235. doi: 10.1038/s41598-023-35493-x. [PMID: 37217800]
  • Anli Wang, Xuzhi Wan, Pan Zhuang, Wei Jia, Yang Ao, Xiaohui Liu, Yimei Tian, Li Zhu, Yingyu Huang, Jianxin Yao, Binjie Wang, Yuanzhao Wu, Zhongshi Xu, Jiye Wang, Weixuan Yao, Jingjing Jiao, Yu Zhang. High fried food consumption impacts anxiety and depression due to lipid metabolism disturbance and neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America. 2023 May; 120(18):e2221097120. doi: 10.1073/pnas.2221097120. [PMID: 37094155]
  • Kandrakonda Yelamanda Rao, Shaik Jeelan Basha, Kallubai Monika, Navya Naidu Gajula, Irla Sivakumar, Sandeep Kumar, Ramakrishna Vadde, Bindu Madhava Reddy Aramati, Rajagopal Subramanyam, Amooru Gangaiah Damu. Development of quinazolinone and vanillin acrylamide hybrids as multi-target directed ligands against Alzheimer's disease and mechanistic insights into their binding with acetylcholinesterase. Journal of biomolecular structure & dynamics. 2023 Apr; ?(?):1-18. doi: 10.1080/07391102.2023.2203255. [PMID: 37098803]
  • Xiaoyu Yan, Qiuju Li, Shuangyue Wu, Jie Liang, Yuanyuan Li, Tingting Zhang, Dayi Chen, Xiaoqi Pan. Acrylamide induces the activation of BV2 microglial cells through TLR2/4-mediated LRRK2-NFATc2 signaling cascade. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Apr; 176(?):113775. doi: 10.1016/j.fct.2023.113775. [PMID: 37037409]
  • Dan Jiang, Xiaoyang Xia, Zhixiong He, Yanan Xue, Xia Xiang. Hyaluronic acid-functionalized redox-responsive organosilica nanoparticles for targeted resveratrol delivery to attenuate acrylamide-induced toxicity. International journal of biological macromolecules. 2023 Mar; 232(?):123463. doi: 10.1016/j.ijbiomac.2023.123463. [PMID: 36716846]
  • Hala Mahfouz, Naief Dahran, Amany Abdel-Rahman Mohamed, Yasmina M Abd El-Hakim, Mohamed M M Metwally, Leena S Alqahtani, Hassan Abdelraheem Abdelmawlla, Hazim A Wahab, Ghalia Shamlan, Mohamed A Nassan, Rasha A Gaber. Stabilization of glutathione redox dynamics and CYP2E1 by green synthesized Moringa oleifera-mediated zinc oxide nanoparticles against acrylamide induced hepatotoxicity in rat model: Morphometric and molecular perspectives. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Mar; ?(?):113744. doi: 10.1016/j.fct.2023.113744. [PMID: 36965644]
  • Fangfang Yan, Li Wang, Li Zhao, Chengming Wang, Qun Lu, Rui Liu. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Mar; ?(?):113696. doi: 10.1016/j.fct.2023.113696. [PMID: 36870671]
  • Zhi-Hao Ye, Xiao-Tong Chen, Hai-Yan Zhu, Xiao-Qian Liu, Wen-Hui Deng, Wei Song, Da-Xiang Li, Ru-Yan Hou, Hui-Mei Cai, Chuan-Yi Peng. Aggregating-agent-assisted surface-enhanced Raman spectroscopy-based detection of acrylamide in fried foods: A case study with potato chips. Food chemistry. 2023 Mar; 403(?):134377. doi: 10.1016/j.foodchem.2022.134377. [PMID: 36182848]
  • Piyush Shukla, Naresh Kumar Sahu, Raj Kumar, Deep Kaur Dhalla, Samrat Rakshit, Monika Bhadauria, Narottam Das Agrawal, Sadhana Shrivastava, Sangeeta Shukla, Satendra Kumar Nirala. Quercetin ameliorates acute acrylamide induced spleen injury. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 2023 Feb; ?(?):1-9. doi: 10.1080/10520295.2023.2172610. [PMID: 36755386]
  • William Yesid Díaz-Ávila, Sylvia María Villarreal-Archila, Francisco Javier Castellanos-Galeano. Acrylamide in starchy foods subjected to deep-frying, 20 years after its discovery (2002-2022): a patent review. F1000Research. 2023; 12(?):1322. doi: 10.12688/f1000research.140948.1. [PMID: 38434634]
  • Anne-Catherine Lehnen, Alain M Bapolisi, Melanie Krass, Ahmad AlSawaf, Jan Kurki, Sebastian Kersting, Hendrik Fuchs, Matthias Hartlieb. Shape Matters: Highly Selective Antimicrobial Bottle Brush Copolymers via a One-Pot RAFT Polymerization Approach. Biomacromolecules. 2022 Dec; 23(12):5350-5360. doi: 10.1021/acs.biomac.2c01187. [PMID: 36455024]
  • Jinxiu Guo, Hongjia Xue, Haitao Zhong, Wenxue Sun, Shiyuan Zhao, Junjun Meng, Pei Jiang. Involvement of LARP7 in Activation of SIRT1 to Inhibit NF-κB Signaling Protects Microglia from Acrylamide-Induced Neuroinflammation. Neurotoxicity research. 2022 Dec; 40(6):2016-2026. doi: 10.1007/s12640-022-00624-1. [PMID: 36550222]
  • Velliyath Ligina, Ranjana Martin, Moolamkottil Venugopalan Aiswarya, Kajahussain Reeha Mashirin, Kumari Chidambaran Chitra. Acute and sublethal effects of acrylamide on the freshwater fish Anabas testudineus (Bloch, 1792). Environmental science and pollution research international. 2022 Dec; 29(60):90835-90851. doi: 10.1007/s11356-022-22155-0. [PMID: 35879632]
  • Adel Abdelrazek Abdelazim Mohdaly, Mohamed H H Roby, Seham Ahmed Rabea Sultan, Eberhard Groß, Iryna Smetanska. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules (Basel, Switzerland). 2022 Nov; 27(21):. doi: 10.3390/molecules27217516. [PMID: 36364343]
  • Yasemin Bicer, Hulya Elbe, Melike Karayakali, Gurkan Yigitturk, Umit Yilmaz, Osman Cengil, Mohammed Raed Abdullah Al Gburi, Eyup Altinoz. Neuroprotection by melatonin against acrylamide-induced brain damage in pinealectomized rats. Journal of chemical neuroanatomy. 2022 11; 125(?):102143. doi: 10.1016/j.jchemneu.2022.102143. [PMID: 35952951]
  • Chaoyi Xue, Yong Li, Wei Quan, Peng Deng, Zhiyong He, Fang Qin, Zhaojun Wang, Jie Chen, Maomao Zeng. Unraveling inhibitory effects of Alpinia officinarum Hance and curcumin on methylimidazole and acrylamide in cookies and possible pathways revealed by electron paramagnetic resonance. Food chemistry. 2022 Sep; 389(?):133011. doi: 10.1016/j.foodchem.2022.133011. [PMID: 35500409]
  • Jing Fan, Qiang Zhang, Xin-Huai Zhao, Na Zhang. The Impact of Heat Treatment of Quercetin and Myricetin on their Activities to Alleviate the Acrylamide-Induced Cytotoxicity and Barrier Loss in IEC-6 Cells. Plant foods for human nutrition (Dordrecht, Netherlands). 2022 Sep; 77(3):436-442. doi: 10.1007/s11130-022-00994-z. [PMID: 35916997]
  • Roberto O Ybañez-Julca, Javier Palacios, Daniel Asunción-Alvarez, Ivan Quispe-Díaz, Chukwuemeka R Nwokocha, Ricardo Diego Duarte Galhardo de Albuquerque. Lepidium meyenii Walp (red maca) Supplementation Prevents Acrylamide-Induced Oxidative Stress and Liver Toxicity in Rats: Phytochemical Composition by UHPLC-ESI-MS/MS. Plant foods for human nutrition (Dordrecht, Netherlands). 2022 Sep; 77(3):460-466. doi: 10.1007/s11130-022-01000-2. [PMID: 35932411]
  • Sandra F Fernández, Olga Pardo, Clara Coscollà, Vicent Yusà. Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring. Environmental pollution (Barking, Essex : 1987). 2022 Jul; 305(?):119319. doi: 10.1016/j.envpol.2022.119319. [PMID: 35439595]
  • Marek Kovár, Alica Navrátilová, Renata Kolláthová, Anna Trakovická, Miroslava Požgajová. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules (Basel, Switzerland). 2022 Jul; 27(13):. doi: 10.3390/molecules27134307. [PMID: 35807551]
  • Zonghao Yue, Yanjuan Chen, Qian Dong, Dan Li, Meng Guo, Li Zhang, Yini Shi, Huiting Wu, Lili Li, Zhongke Sun. Acrylamide induced glucose metabolism disorder in rats involves gut microbiota dysbiosis and changed bile acids metabolism. Food research international (Ottawa, Ont.). 2022 07; 157(?):111405. doi: 10.1016/j.foodres.2022.111405. [PMID: 35761659]
  • Yiling Li, Jialin Liu, Yibaina Wang, Sheng Wei. Cancer risk and disease burden of dietary acrylamide exposure in China, 2016. Ecotoxicology and environmental safety. 2022 Jun; 238(?):113551. doi: 10.1016/j.ecoenv.2022.113551. [PMID: 35489291]
  • B Haridevamuthu, Tamilvelan Manjunathan, Ajay Guru, Rajendran Saravana Kumar, Rajakrishnan Rajagopal, Palaniselvam Kuppusamy, Annie Juliet, Pushparathinam Gopinath, Jesu Arockiaraj. Hydroxyl containing benzo[b]thiophene analogs mitigates the acrylamide induced oxidative stress in the zebrafish larvae by stabilizing the glutathione redox cycle. Life sciences. 2022 Jun; 298(?):120507. doi: 10.1016/j.lfs.2022.120507. [PMID: 35358593]
  • Bin Wang, Xing Wang, Linling Yu, Wei Liu, Jiahao Song, Lieyang Fan, Min Zhou, Meng Yang, Jixuan Ma, Man Cheng, Weihong Qiu, Ruyi Liang, Dongming Wang, Yanjun Guo, Weihong Chen. Acrylamide exposure increases cardiovascular risk of general adult population probably by inducing oxidative stress, inflammation, and TGF-β1: A prospective cohort study. Environment international. 2022 06; 164(?):107261. doi: 10.1016/j.envint.2022.107261. [PMID: 35486963]
  • Brandon M Kenwood, Wanzhe Zhu, Luyu Zhang, Deepak Bhandari, Benjamin C Blount. Cigarette smoking is associated with acrylamide exposure among the U.S. population: NHANES 2011-2016. Environmental research. 2022 06; 209(?):112774. doi: 10.1016/j.envres.2022.112774. [PMID: 35074357]
  • Cui-Ping Yu, Yu-Lin Pan, Xiao-Li Wang, Rui Xin, Hong-Qiu Li, Ya-Ting Lei, Fang-Fang Zhao, Dan Zhang, Xiao-Rong Zhou, Wei-Wei Ma, Sheng-Yuan Wang, Yong-Hui Wu. Stimulating the expression of sphingosine kinase 1 (SphK1) is beneficial to reduce acrylamide-induced nerve cell damage. Ecotoxicology and environmental safety. 2022 Jun; 237(?):113511. doi: 10.1016/j.ecoenv.2022.113511. [PMID: 35489137]
  • Alka Kumari, Bhaswati Bhattacharya, Tripti Agarwal, Vijay Paul, S Chakkaravarthi. Integrated approach towards acrylamide reduction in potato-based snacks: A critical review. Food research international (Ottawa, Ont.). 2022 06; 156(?):111172. doi: 10.1016/j.foodres.2022.111172. [PMID: 35651095]
  • Jelena Marković Filipović, Marko Miler, Danijela Kojić, Jelena Karan, Ivana Ivelja, Jovana Čukuranović Kokoris, Milica Matavulj. Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes. International journal of molecular sciences. 2022 May; 23(11):. doi: 10.3390/ijms23116062. [PMID: 35682741]
  • Fan Wang, Ben Fan, Chao Chen, Wensheng Zhang. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2022 May; 163(?):112982. doi: 10.1016/j.fct.2022.112982. [PMID: 35390441]
  • Tina Kollannoor Johny, Rinu Madhu Puthusseri, Bindiya Ellathuparambil Saidumohamed, Unnikrishnan Babukuttan Sheela, Saipriya Parol Puthusseri, Raghul Subin Sasidharan, Sarita Ganapathy Bhat. Appraisal of cytotoxicity and acrylamide mitigation potential of L-asparaginase SlpA from fish gut microbiome. Applied microbiology and biotechnology. 2022 May; 106(9-10):3583-3598. doi: 10.1007/s00253-022-11954-7. [PMID: 35579684]
  • Samr Kassem, Mahmoud M Arafa, Manal M Yehya, Mostafa A M Soliman. In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's archives of pharmacology. 2022 05; 395(5):593-606. doi: 10.1007/s00210-022-02219-1. [PMID: 35201389]
  • Kai-Wei Liao, Fang-Chi Chang, Chia-Huang Chang, Yu-Fang Huang, Wen-Harn Pan, Mei-Lien Chen. Associating acrylamide internal exposure with dietary pattern and health risk in the general population of Taiwan. Food chemistry. 2022 Apr; 374(?):131653. doi: 10.1016/j.foodchem.2021.131653. [PMID: 34906800]
  • Sedat Kacar, Varol Sahinturk, Ozlem Tomsuk, Hatice M Kutlu. The effects of thymoquinone and quercetin on the toxicity of acrylamide in rat glioma cells. Journal of biochemical and molecular toxicology. 2022 Apr; 36(4):e22992. doi: 10.1002/jbt.22992. [PMID: 35187760]
  • Hazim F El-Sharif, Nicholas W Turner, Subrayal M Reddy, Mark V Sullivan. Application of thymine-based nucleobase-modified acrylamide as a functional co-monomer in electropolymerised thin-film molecularly imprinted polymer (MIP) for selective protein (haemoglobin) binding. Talanta. 2022 Apr; 240(?):123158. doi: 10.1016/j.talanta.2021.123158. [PMID: 34952354]
  • Rohollah Sadeghi, Fang Fang, Yijing Shao, Nora Olsen, Bin Du, Amy Hui-Mei Lin. Eliminating protein interference when quantifying potato reducing sugars with the miniaturized Somogyi-Nelson assay. Food chemistry. 2022 Mar; 373(Pt B):131473. doi: 10.1016/j.foodchem.2021.131473. [PMID: 34741968]
  • Runlin Wu, Yang Jiang, Ruike Qin, Haonan Shi, Caihua Jia, Jianhua Rong, Ru Liu. Study of the formation of food hazard factors in fried fish nuggets. Food chemistry. 2022 Mar; 373(Pt B):131562. doi: 10.1016/j.foodchem.2021.131562. [PMID: 34838400]
  • Ting Yin, Fang Xu, Shi Shi, Shengen Liao, Xiaosu Tang, Haifeng Zhang, Yanli Zhou, Xinli Li. Vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. Environmental science and pollution research international. 2022 Mar; 29(12):17162-17172. doi: 10.1007/s11356-021-16798-8. [PMID: 34661844]
  • Soha M Hamdy, Zakaria El-Khayat, Abdel Razik Farrag, Ola N Sayed, Mervat M El-Sayed, Diaa Massoud. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug and chemical toxicology. 2022 Mar; 45(2):722-730. doi: 10.1080/01480545.2020.1772279. [PMID: 32482111]
  • Ting Zhao, Yuchao Guo, Hongchen Ji, Guanghua Mao, Weiwei Feng, Yao Chen, Xiangyang Wu, Liuqing Yang. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes. Toxicology letters. 2022 Mar; 356(?):41-53. doi: 10.1016/j.toxlet.2021.12.004. [PMID: 34896238]
  • Didem P Aykas, Alejandra Urtubia, Kevin Wong, Luju Ren, Claudia López-Lira, Luis E Rodriguez-Saona. Screening of Acrylamide of Par-Fried Frozen French Fries Using Portable FT-IR Spectroscopy. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041161. [PMID: 35208950]
  • Md Abu Kawochar, Yunxia Cheng, Shahnewaz Begum, Enshuang Wang, Tingting Zhou, Tiantian Liu, Tengfei Liu, Botao Song. Suppression of the tonoplast sugar transporter StTST3.2 improves quality of potato chips. Journal of plant physiology. 2022 Feb; 269(?):153603. doi: 10.1016/j.jplph.2021.153603. [PMID: 34959218]
  • Marta Kopańska, Marta Batoryna, Agnieszka Banaś-Ząbczyk, Joanna Błajda, Marcin W Lis. The Effect of α-Tocopherol on the Reduction of Inflammatory Processes and the Negative Effect of Acrylamide. Molecules (Basel, Switzerland). 2022 Jan; 27(3):. doi: 10.3390/molecules27030965. [PMID: 35164231]
  • Yung-Wen Cheng, Chun-Chi Hung, Tung-Wei Kao, Wei-Liang Chen. Health risks of dual use of electronic and combustible cigarettes: exposure to acrylamide and glycidamide. Polish archives of internal medicine. 2022 01; 132(1):. doi: 10.20452/pamw.16103. [PMID: 34612028]
  • Yu-Syuan Luo, Su-Yin Chiang, Tai-Ying Long, Tung-Hu Tsai, Kuen-Yuh Wu. Simultaneous toxicokinetics characterization of acrylamide and its primary metabolites using a novel microdialysis isotope-dilution liquid chromatography mass spectrometry method. Environment international. 2022 01; 158(?):106954. doi: 10.1016/j.envint.2021.106954. [PMID: 34710730]
  • Zizhuang Fang, Yinghua Luo, Chen Ma, Li Dong, Fang Chen. Blueberry Anthocyanins Extract Attenuates Acrylamide-Induced Oxidative Stress and Neuroinflammation in Rats. Oxidative medicine and cellular longevity. 2022; 2022(?):7340881. doi: 10.1155/2022/7340881. [PMID: 35651724]
  • Sandra F Fernández, Olga Pardo, Clara Coscollà, Vicent Yusà. Exposure assessment of Spanish lactating mothers to acrylamide via human biomonitoring. Environmental research. 2022 01; 203(?):111832. doi: 10.1016/j.envres.2021.111832. [PMID: 34358503]
  • Yiju Zhang, Qiao Wang, Yaoran Li, Jun Cheng, Xinyu Chen, Yu Zhang. Comprehensive profile of DNA adducts as both tissue and urinary biomarkers of exposure to acrylamide and chemo-preventive effect of catechins in rats. Chemosphere. 2022 Jan; 286(Pt 3):131852. doi: 10.1016/j.chemosphere.2021.131852. [PMID: 34416594]
  • Mahmut Bodur, Gülizar Aydoğdu, Ayşe Özfer Özçelik, Erkan Yilmaz. An in vitro Approach to Protective Effect of Lactoferrin on Acrylamide-induced Oxidative Damage. Anais da Academia Brasileira de Ciencias. 2022; 94(suppl 3):e20201882. doi: 10.1590/0001-3765202220201882. [PMID: 36477225]
  • Banrida Wahlang, Tyler C Gripshover, Hong Gao, Tatiana Krivokhizhina, Rachel J Keith, Israel D Sithu, Shesh N Rai, Aruni Bhatnagar, Craig J McClain, Sanjay Srivastava, Mathew C Cave. Associations Between Residential Exposure to Volatile Organic Compounds and Liver Injury Markers. Toxicological sciences : an official journal of the Society of Toxicology. 2021 12; 185(1):50-63. doi: 10.1093/toxsci/kfab119. [PMID: 34668566]
  • Daniel Zaidman, Paul Gehrtz, Mihajlo Filep, Daren Fearon, Ronen Gabizon, Alice Douangamath, Jaime Prilusky, Shirly Duberstein, Galit Cohen, C David Owen, Efrat Resnick, Claire Strain-Damerell, Petra Lukacik, Haim Barr, Martin A Walsh, Frank von Delft, Nir London. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor. Cell chemical biology. 2021 12; 28(12):1795-1806.e5. doi: 10.1016/j.chembiol.2021.05.018. [PMID: 34174194]
  • Yu-Syuan Luo, Tai-Ying Long, Su-Yin Chiang, Kuen-Yuh Wu. Characterization of primary glutathione conjugates with acrylamide and glycidamide: Toxicokinetic studies in Sprague Dawley rats treated with acrylamide. Chemico-biological interactions. 2021 Dec; 350(?):109701. doi: 10.1016/j.cbi.2021.109701. [PMID: 34656557]
  • Lijun Zhou, Siyuan Luo, Xiaoju Wang, Yiling Zhou, Yuan Zhang, Shuai Zhu, Tao Chen, Shiling Feng, Ming Yuan, Chunbang Ding. Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Dec; 158(?):112667. doi: 10.1016/j.fct.2021.112667. [PMID: 34762976]
  • Yi-Shan Li, Jau-Ling Suen, Wei-Lung Tseng, Chi-Yu Lu. An eco-friendly solvent-free reaction based on peptide probes: design an extraction-free method for analysis of acrylamide under microliter volume. Analytical and bioanalytical chemistry. 2021 Dec; 413(30):7531-7539. doi: 10.1007/s00216-021-03717-6. [PMID: 34635932]
  • Chun-Chi Hung, Yung-Wen Cheng, Wei-Liang Chen, Wen-Hui Fang. Negative Association between Acrylamide Exposure and Metabolic Syndrome Markers in Adult Population. International journal of environmental research and public health. 2021 11; 18(22):. doi: 10.3390/ijerph182211949. [PMID: 34831705]
  • Zhen Lin, Ping Luo, Dongmin Huang, Yulian Wu, Fangping Li, Huazhong Liu. Multi-omics based strategy for toxicity analysis of acrylamide in Saccharomyces cerevisiae model. Chemico-biological interactions. 2021 Nov; 349(?):109682. doi: 10.1016/j.cbi.2021.109682. [PMID: 34610338]
  • Ibtesam S Alanazi, Mohamed Emam, Mabrouk Elsabagh, Saad Alkahtani, Mohamed M Abdel-Daim. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. Environmental science and pollution research international. 2021 Nov; 28(41):58322-58330. doi: 10.1007/s11356-021-14742-4. [PMID: 34117542]
  • Hanan A Edres, Nabil M Taha, Mohamed A Lebda, Mohamed S Elfeky. The potential neuroprotective effect of allicin and melatonin in acrylamide-induced brain damage in rats. Environmental science and pollution research international. 2021 Nov; 28(41):58768-58780. doi: 10.1007/s11356-021-14800-x. [PMID: 34120280]
  • Shiyuan Zhao, Haitao Zhong, Chunmei Geng, Hongjia Xue, Changshui Wang, Wenxue Sun, Ruili Dang, Wenxiu Han, Pei Jiang. Comprehensive analysis of metabolic changes in rats exposed to acrylamide. Environmental pollution (Barking, Essex : 1987). 2021 Oct; 287(?):117591. doi: 10.1016/j.envpol.2021.117591. [PMID: 34153608]
  • Anli Wang, Xinyu Chen, Shanyun Wu, Wei Jia, Jingjing Jiao, Yu Zhang. Unraveling the Serum Metabolomic Profile of Acrylamide-Induced Cardiovascular Toxicity. Journal of agricultural and food chemistry. 2021 Oct; 69(40):12012-12020. doi: 10.1021/acs.jafc.1c04367. [PMID: 34586797]
  • Reham M Abd-Elsalam, Shymaa A El Badawy, Hanan A Ogaly, Faten M Ibrahim, Ola M Farag, Kawkab A Ahmed. Eruca sativa seed extract modulates oxidative stress and apoptosis and up-regulates the expression of Bcl-2 and Bax genes in acrylamide-induced testicular dysfunction in rats. Environmental science and pollution research international. 2021 Oct; 28(38):53249-53266. doi: 10.1007/s11356-021-14532-y. [PMID: 34024031]
  • Janneke G F Hogervorst, Nelly D Saenen, Tim S Nawrot. Gestational acrylamide exposure and biomarkers of fetal growth: Probing the mechanism underlying the association between acrylamide and reduced fetal growth. Environment international. 2021 10; 155(?):106668. doi: 10.1016/j.envint.2021.106668. [PMID: 34120003]
  • Hany Elsawy, Abdullah M Alzahrani, Manal Alfwuaires, Azza Sedky, Eman E El-Trass, Omar Mahmoud, Ashraf M Abdel-Moneim, Mahmoud Khalil. Analysis of silymarin-modulating effects against acrylamide-induced cerebellar damage in male rats: Biochemical and pathological markers. Journal of chemical neuroanatomy. 2021 09; 115(?):101964. doi: 10.1016/j.jchemneu.2021.101964. [PMID: 33965515]
  • Zhening Liu, Jinghua Wang, Shenghui Chen, Chengfu Xu, Yu Zhang. Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environmental health : a global access science source. 2021 08; 20(1):98. doi: 10.1186/s12940-021-00783-2. [PMID: 34461916]
  • Adeoye Oyewole Idris, Quadri Kunle Alabi, Mary Funmilayo Ologe, Waheed Akanni Oluogun, Marijke Haas Jimoh Akanbi, Ezekiel Olugbenga Iwalewa. Evaluation of acrylamide exposure in pregnant Wistar rats as a risk of developing renal disease in their litters. Environmental science and pollution research international. 2021 Aug; 28(29):39680-39691. doi: 10.1007/s11356-021-13580-8. [PMID: 33763836]
  • Benyang Wu, Xiaoyan Chai, Aiming He, Zhen Huang, Sheng Chen, Pingfan Rao, Lijing Ke, Leiwen Xiang. Inhibition of acrylamide toxicity in vivo by arginine-glucose maillard reaction products. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Aug; 154(?):112315. doi: 10.1016/j.fct.2021.112315. [PMID: 34082049]
  • Matthew Knight, Simon McWilliam, Sarah Peck, Georgios Koutsidis, Gemma Chope, Ian Puddephat, Bronislaw Wedzicha. Kinetic modelling of acrylamide formation during the frying of potato chips. Food chemistry. 2021 Aug; 352(?):129305. doi: 10.1016/j.foodchem.2021.129305. [PMID: 33691208]
  • Zhang Xia, Zheng Kai, Xin Youwei, Wang Ruijuan, Guan Tong, Jia Siqi, Li Siqi, Zhao Xiujuan. Effects of Quercetin on Acrylamide-Induced Variation of Serum Elements in Rats. Biological trace element research. 2021 Aug; 199(8):2972-2982. doi: 10.1007/s12011-020-02407-1. [PMID: 32996009]
  • Bin Wang, Xing Wang, Shijie Yang, Man Cheng, Yun Zhou, Min Zhou, Zi Ye, Weihong Qiu, Heng He, Xingzu Cen, Chunmei Zhu, Limin Cao, Ge Mu, Jixuan Ma, Dongming Wang, Lili Xiao, Jing Yuan, Weihong Chen. Acrylamide exposure and pulmonary function reduction in general population: The mediating effect of systemic inflammation. The Science of the total environment. 2021 Jul; 778(?):146304. doi: 10.1016/j.scitotenv.2021.146304. [PMID: 34030393]
  • Amira Haddarah, Elissa Naim, Iman Dankar, Francesc Sepulcre, Montserrat Pujolà, Manal Chkeir. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food chemistry. 2021 Jul; 350(?):129060. doi: 10.1016/j.foodchem.2021.129060. [PMID: 33610846]
  • Ahmad Salimi, Niloufar Hashemidanesh, Enayatollah Seydi, Elahe Baghal, Farzad Khodaparast, Hassan Ghobadi. Restoration and stabilization of acrylamide-induced DNA, mitochondrial damages and oxidative stress by chrysin in human lymphocyte. Expert opinion on drug metabolism & toxicology. 2021 Jul; 17(7):857-865. doi: 10.1080/17425255.2021.1940951. [PMID: 34102941]
  • Xia Zhang, Yaru Li, Xinchen Wei, Yali Hou, Siqi Jia, Siqi Li, Xiujuan Zhao. Metabolomics analysis of the effects of quercetin on hepatotoxicity induced by acrylamide exposure in rats. Free radical research. 2021 Jul; 55(7):831-841. doi: 10.1080/10715762.2021.1950705. [PMID: 34238086]
  • Fevzi Bedir, Hüseyin Kocatürk, Turgut Yapanoğlu, Cebrail Gürsul, Remzi Arslan, Renad Mammadov, Abdülkadir Çoban, Durdu Altuner, Halis Suleyman. Protective effect of taxifolin against prooxidant and proinflammatory kidney damage associated with acrylamide in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Jul; 139(?):111660. doi: 10.1016/j.biopha.2021.111660. [PMID: 34243628]
  • May N Bin-Jumah, Arwa Abdulkreem Al-Huqail, Noha Abdelnaeim, Mohamed Kamel, Maged M A Fouda, Mahmoud M A Abulmeaty, Islam M Saadeldin, Mohamed M Abdel-Daim. Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environmental science and pollution research international. 2021 Jun; 28(21):26653-26663. doi: 10.1007/s11356-021-12422-x. [PMID: 33492591]
  • Iokfai Cheang, Shengen Liao, Xu Zhu, Xinyi Lu, Qingqing Zhu, Wenming Yao, Yanli Zhou, Haifeng Zhang, Xinli Li. Association of acrylamide hemoglobin biomarkers with serum lipid levels in general US population: NHANES 2013-2016. Ecotoxicology and environmental safety. 2021 May; 214(?):112111. doi: 10.1016/j.ecoenv.2021.112111. [PMID: 33690009]
  • Maria Alessia Schouten, Silvia Tappi, Simone Angeloni, Manuela Cortese, Giovanni Caprioli, Sauro Vittori, Santina Romani. Acrylamide formation and antioxidant activity in coffee during roasting - A systematic study. Food chemistry. 2021 May; 343(?):128514. doi: 10.1016/j.foodchem.2020.128514. [PMID: 33187741]