Sphinganine 1-phosphate (BioDeep_00000004579)
Secondary id: BioDeep_00000171690, BioDeep_00000413223
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C18H40NO5P (381.2644)
中文名称: D-赤式 - 二氢-D-鞘氨醇-1 - 磷酸
谱图信息:
最多检出来源 Homo sapiens(blood) 17.32%
Last reviewed on 2024-09-13.
Cite this Page
Sphinganine 1-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/sphinganine_1-phosphate (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000004579). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCCCCCCCCC(C(COP(=O)(O)O)N)O
InChI: InChI=1S/C18H40NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(20)17(19)16-24-25(21,22)23/h17-18,20H,2-16,19H2,1H3,(H2,21,22,23)
描述信息
Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3. [HMDB]. Sphinganine 1-phosphate is found in many foods, some of which are winter squash, chicory roots, star fruit, and butternut squash.
Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3.
同义名列表
15 个代谢物同义名
(2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphoric acid; {[(2S,3R)-2-amino-3-hydroxyoctadecyl]oxy}phosphonic acid; (2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphate; 2-Amino-3-hydroxyoctadecyl dihydrogen phosphate; Dihydrosphingosine-1-phosphoric acid; Dihydrosphingosine 1-phosphoric acid; (2S,3R)-Sphinganine 1-phosphate; Dihydrosphingosine 1-phosphate; Dihydrosphingosine-1-phosphate; Sphinganine 1-phosphoric acid; Dihydrosphingosine phosphate; Sphinganine 1-phosphate; Sphinganine-1-phosphate; Sphinganine-phosphate; Sphinganine 1-phosphate
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:16893
- KEGG: C01120
- PubChem: 644260
- PubChem: 520
- HMDB: HMDB0001383
- Metlin: METLIN3512
- ChEMBL: CHEMBL78494
- MetaCyc: CPD-649
- KNApSAcK: C00007541
- foodb: FDB022594
- chemspider: 559277
- CAS: 19794-97-9
- PMhub: MS000017106
- PubChem: 4351
- LipidMAPS: LMSP01050002
- 3DMET: B04771
- NIKKAJI: J773.227I
- RefMet: Sphinganine 1-phosphate
- LOTUS: LTS0090210
- KNApSAcK: 16893
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
267 个相关的代谢反应过程信息。
Reactome(12)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
BioCyc(3)
- sphingolipid metabolism:
NADP+ + a sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- sphingolipid metabolism:
L-serine + palmitoyl CoA ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
WikiPathways(5)
- Sphingolipid pathway:
Serine ⟶ 3-ketosphinganine
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism (integrated pathway):
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism: integrated pathway:
Palmitoyl-CoA ⟶ 3-keto-sphinganine
Plant Reactome(225)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(22)
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Sphingolipid Metabolism:
L-Serine + Palmityl-CoA ⟶ 3-Dehydrosphinganine + Carbon dioxide
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Aissa Miriam Röhrig, Katja Jakobi, Julia Dietz, Dominique Thomas, Eva Herrmann, Christoph Welsch, Christoph Sarrazin, Josef Pfeilschifter, Stefan Zeuzem, Georgios Grammatikos. The role of serum sphingolipids as potential biomarkers of non-response to direct acting antiviral therapy in chronic hepatitis C virus infection.
Journal of viral hepatitis.
2023 Feb; 30(2):138-147. doi:
10.1111/jvh.13776
. [PMID: 36463431] - Qi Qian, Yanhua Gao, Ge Xun, Xu Wang, Jiachen Ge, Huaxing Zhang, Feifei Mou, Suwen Su, Qiao Wang. Synchronous Investigation of the Mechanism and Substance Basis of Tripterygium Glycosides Tablets on Anti-rheumatoid Arthritis and Hepatotoxicity.
Applied biochemistry and biotechnology.
2022 Nov; 194(11):5333-5352. doi:
10.1007/s12010-022-04011-6
. [PMID: 35763252] - Dev K Ranjit, Zachary D Moye, Fernanda G Rocha, Gregory Ottenberg, Frank C Nichols, Hey-Min Kim, Alejandro R Walker, Frank C Gibson, Mary E Davey. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P.
Microbiology spectrum.
2022 04; 10(2):e0000222. doi:
10.1128/spectrum.00002-22
. [PMID: 35286133] - Tomasz Charytoniuk, Klaudia Sztolsztener, Patrycja Bielawiec, Adrian Chabowski, Karolina Konstantynowicz-Nowicka, Ewa Harasim-Symbor. Cannabidiol Downregulates Myocardial de Novo Ceramide Synthesis Pathway in a Rat Model of High-Fat Diet-Induced Obesity.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23042232
. [PMID: 35216351] - Jinichiro Koga, Makoto Yazawa, Koji Miyamoto, Emi Yumoto, Tomoyoshi Kubota, Tomoko Sakazawa, Syun Hashimoto, Masaki Sato, Hisakazu Yamane. Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants.
The Journal of biological chemistry.
2021 11; 297(5):101236. doi:
10.1016/j.jbc.2021.101236
. [PMID: 34563538] - Ruth R Magaye, Feby Savira, Yue Hua, Xin Xiong, Li Huang, Christopher Reid, Bernard L Flynn, David Kaye, Danny Liew, Bing H Wang. Attenuating PI3K/Akt- mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells.
The international journal of biochemistry & cell biology.
2021 05; 134(?):105952. doi:
10.1016/j.biocel.2021.105952
. [PMID: 33609744] - Ruth R Magaye, Feby Savira, Yue Hua, Xin Xiong, Li Huang, Christopher Reid, Bernard Flynn, David Kaye, Danny Liew, Bing H Wang. Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1.
Cellular signalling.
2020 08; 72(?):109629. doi:
10.1016/j.cellsig.2020.109629
. [PMID: 32278008] - Vadim Dolgin, Rachel Straussberg, Ruijuan Xu, Izolda Mileva, Yuval Yogev, Raed Khoury, Osnat Konen, Yael Barhum, Alex Zvulunov, Cungui Mao, Ohad S Birk. DEGS1 variant causes neurological disorder.
European journal of human genetics : EJHG.
2019 11; 27(11):1668-1676. doi:
10.1038/s41431-019-0444-z
. [PMID: 31186544] - Cuiqing Zhao, Liming Liu, Qi Liu, Fengyuan Li, Lihua Zhang, Fenxia Zhu, Tuo Shao, Shirish Barve, Yiping Chen, Xiaokun Li, Craig J McClain, Wenke Feng. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice.
Molecular metabolism.
2019 11; 29(?):145-157. doi:
10.1016/j.molmet.2019.08.020
. [PMID: 31668386] - Robert Brunkhorst, Waltraud Pfeilschifter, Natasa Rajkovic, Martina Pfeffer, Claudia Fischer, Horst-Werner Korf, Christina Christoffersen, Sandra Trautmann, Dominique Thomas, Josef Pfeilschifter, Alexander Koch. Diurnal regulation of sphingolipids in blood.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2019 03; 1864(3):304-311. doi:
10.1016/j.bbalip.2018.12.001
. [PMID: 30557628] - Yuko Mishima, Makoto Kurano, Tamaki Kobayashi, Masako Nishikawa, Ryunosuke Ohkawa, Minoru Tozuka, Yutaka Yatomi. Dihydro-sphingosine 1-phosphate interacts with carrier proteins in a manner distinct from that of sphingosine 1-phosphate.
Bioscience reports.
2018 10; 38(5):. doi:
10.1042/bsr20181288
. [PMID: 30279204] - Olivier Blanchard, Bisera Stepanovska, Manuel Starck, Martin Erhardt, Isolde Römer, Dagmar Meyer Zu Heringdorf, Josef Pfeilschifter, Uwe Zangemeister-Wittke, Andrea Huwiler. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2) Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells.
International journal of molecular sciences.
2018 May; 19(5):. doi:
10.3390/ijms19051498
. [PMID: 29772789] - Nicole M Gardner, Ronald T Riley, Jency L Showker, Kenneth A Voss, Andrew J Sachs, Joyce R Maddox, Janee B Gelineau-van Waes. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.
Toxicology and applied pharmacology.
2016 May; 298(?):56-65. doi:
10.1016/j.taap.2016.02.018
. [PMID: 26905748] - Georgios Grammatikos, Niklas Schoell, Nerea Ferreirós, Dimitra Bon, Eva Herrmann, Harald Farnik, Verena Köberle, Albrecht Piiper, Stefan Zeuzem, Bernd Kronenberger, Oliver Waidmann, Josef Pfeilschifter. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma.
Oncotarget.
2016 Apr; 7(14):18095-105. doi:
10.18632/oncotarget.7741
. [PMID: 26933996] - Maryline Magnin-Robert, Doriane Le Bourse, Jonathan Markham, Stéphan Dorey, Christophe Clément, Fabienne Baillieul, Sandrine Dhondt-Cordelier. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.
Plant physiology.
2015 Nov; 169(3):2255-74. doi:
10.1104/pp.15.01126
. [PMID: 26378098] - Ronald T Riley, Jency L Showker, Christine M Lee, Cody E Zipperer, Trevor R Mitchell, Kenneth A Voss, Nicholas C Zitomer, Olga Torres, Jorge Matute, Simon G Gregory, Allison E Ashley-Koch, Joyce R Maddox, Nicole Gardner, Janee B Gelineau-Van Waes. A blood spot method for detecting fumonisin-induced changes in putative sphingolipid biomarkers in LM/Bc mice and humans.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2015; 32(6):934-49. doi:
10.1080/19440049.2015.1027746
. [PMID: 25833119] - Uta Ceglarek, Julia Dittrich, Christin Helmschrodt, Kristin Wagner, Jerzy-Roch Nofer, Joachim Thiery, Susen Becker. Preanalytical standardization of sphingosine-1-phosphate, sphinganine-1-phosphate and sphingosine analysis in human plasma by liquid chromatography-tandem mass spectrometry.
Clinica chimica acta; international journal of clinical chemistry.
2014 Aug; 435(?):1-6. doi:
10.1016/j.cca.2014.04.010
. [PMID: 24768784] - Yoshibumi Shimizu, Yoshiyuki Morikawa, Shinichi Okudaira, Shigenobu Kimoto, Tamotsu Tanaka, Junken Aoki, Akira Tokumura. Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin.
The American journal of pathology.
2014 May; 184(5):1593-603. doi:
10.1016/j.ajpath.2014.01.029
. [PMID: 24641902] - Małgorzata Knapp, Małgorzata Zendzian-Piotrowska, Agnieszka Błachnio-Zabielska, Piotr Zabielski, Krzysztof Kurek, Jan Górski. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat.
Basic research in cardiology.
2012 Nov; 107(6):294. doi:
10.1007/s00395-012-0294-0
. [PMID: 22961594] - You-Xun Jin, Xi-Hua Cui, Kee-Yoeup Paek, Yong-Hyeon Yim. A strategy for enrichment of the bioactive sphingoid base-1-phosphates produced by Hypericum perforatum L. in a balloon type airlift reactor.
Bioresource technology.
2012 Nov; 123(?):284-9. doi:
10.1016/j.biortech.2012.07.042
. [PMID: 22940331] - Janee Gelineau-van Waes, Mark A Rainey, Joyce R Maddox, Kenneth A Voss, Andrew J Sachs, Nicole M Gardner, Justin D Wilberding, Ronald T Riley. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720.
Birth defects research. Part A, Clinical and molecular teratology.
2012 Oct; 94(10):790-803. doi:
10.1002/bdra.23074
. [PMID: 22991331] - Irina Gorshkova, Tong Zhou, Biji Mathew, Jeffrey R Jacobson, Daisuke Takekoshi, Palash Bhattacharya, Brett Smith, Bulent Aydogan, Ralph R Weichselbaum, Viswanathan Natarajan, Joe G N Garcia, Evgeny V Berdyshev. Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression.
Journal of lipid research.
2012 Aug; 53(8):1553-68. doi:
10.1194/jlr.m026039
. [PMID: 22615416] - Daisuke Saigusa, Kanako Shiba, Asuka Inoue, Kotaro Hama, Michiyo Okutani, Nagisa Iida, Masayoshi Saito, Kaori Suzuki, Tohru Kaneko, Naoto Suzuki, Hiroaki Yamaguchi, Nariyasu Mano, Junichi Goto, Takanori Hishinuma, Junken Aoki, Yoshihisa Tomioka. Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry.
Analytical and bioanalytical chemistry.
2012 Jun; 403(7):1897-905. doi:
10.1007/s00216-012-6004-9
. [PMID: 22538778] - Robert Berkey, Dipti Bendigeri, Shunyuan Xiao. Sphingolipids and plant defense/disease: the 'death' connection and beyond.
Frontiers in plant science.
2012; 3(?):68. doi:
10.3389/fpls.2012.00068
. [PMID: 22639658] - Susanne E Horvath, Andrea Wagner, Ernst Steyrer, Günther Daum. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae.
Biochimica et biophysica acta.
2011 Dec; 1811(12):1030-7. doi:
10.1016/j.bbalip.2011.08.007
. [PMID: 21875690] - M Baranowski, M Charmas, B Długołęcka, J Górski. Exercise increases plasma levels of sphingoid base-1 phosphates in humans.
Acta physiologica (Oxford, England).
2011 Nov; 203(3):373-80. doi:
10.1111/j.1748-1716.2011.02322.x
. [PMID: 21535416] - Kelley M Argraves, Amar A Sethi, Patrick J Gazzolo, Brent A Wilkerson, Alan T Remaley, Anne Tybjaerg-Hansen, Børge G Nordestgaard, Sharon D Yeatts, Katherine S Nicholas, Jeremy L Barth, W Scott Argraves. S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease.
Lipids in health and disease.
2011 May; 10(?):70. doi:
10.1186/1476-511x-10-70
. [PMID: 21554699] - B Alvarez Sánchez, F Priego Capote, M D Luque de Castro. Targeted analysis of sphingoid precursors in human biofluids by solid-phase extraction with in situ derivatization prior to μ-LC-LIF determination.
Analytical and bioanalytical chemistry.
2011 May; 400(3):757-65. doi:
10.1007/s00216-011-4821-x
. [PMID: 21394454] - Ikuko Yonamine, Takeshi Bamba, Niraj K Nirala, Nahid Jesmin, Teresa Kosakowska-Cholody, Kunio Nagashima, Eiichiro Fukusaki, Jairaj K Acharya, Usha Acharya. Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors.
The Journal of cell biology.
2011 Feb; 192(4):557-67. doi:
10.1083/jcb.201004098
. [PMID: 21321100] - Evgeny V Berdyshev, Irina Gorshkova, Peter Usatyuk, Satish Kalari, Yutong Zhao, Nigel J Pyne, Susan Pyne, Roger A Sabbadini, Joe G N Garcia, Viswanathan Natarajan. Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase.
PloS one.
2011 Jan; 6(1):e16571. doi:
10.1371/journal.pone.0016571
. [PMID: 21304987] - Deanna L Siow, Charles D Anderson, Evgeny V Berdyshev, Anastasia Skobeleva, Viswanathan Natarajan, Stuart M Pitson, Binks W Wattenberg. Sphingosine kinase localization in the control of sphingolipid metabolism.
Advances in enzyme regulation.
2011; 51(1):229-44. doi:
10.1016/j.advenzreg.2010.09.004
. [PMID: 21075134] - Lei Wang, Wei Chen, Yun Feng, Yan Ren, Zhennan Gu, Haiqin Chen, Hongchao Wang, Michael J Thomas, Baixi Zhang, Isabelle M Berquin, Yang Li, Jiansheng Wu, Huanxin Zhang, Yuanda Song, Xiang Liu, James S Norris, Suriguga Wang, Peng Du, Junguo Shen, Na Wang, Yanlin Yang, Wei Wang, Lu Feng, Colin Ratledge, Hao Zhang, Yong Q Chen. Genome characterization of the oleaginous fungus Mortierella alpina.
PloS one.
2011; 6(12):e28319. doi:
10.1371/journal.pone.0028319
. [PMID: 22174787] - Oriol Gallego, Matthew J Betts, Jelena Gvozdenovic-Jeremic, Kenji Maeda, Christian Matetzki, Carmen Aguilar-Gurrieri, Pedro Beltran-Alvarez, Stefan Bonn, Carlos Fernández-Tornero, Lars Juhl Jensen, Michael Kuhn, Jamie Trott, Vladimir Rybin, Christoph W Müller, Peer Bork, Marko Kaksonen, Robert B Russell, Anne-Claude Gavin. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae.
Molecular systems biology.
2010 Nov; 6(?):430. doi:
10.1038/msb.2010.87
. [PMID: 21119626] - Adele Cutignano, Ugo Chiuminatto, Filomena Petruzziello, Filomena Monica Vella, Angelo Fontana. UPLC-MS/MS method for analysis of sphingosine 1-phosphate in biological samples.
Prostaglandins & other lipid mediators.
2010 Sep; 93(1-2):25-9. doi:
10.1016/j.prostaglandins.2010.06.001
. [PMID: 20601074] - Sang Won Park, Mihwa Kim, Sean W C Chen, Kevin M Brown, Vivette D D'Agati, H Thomas Lee. Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation.
Laboratory investigation; a journal of technical methods and pathology.
2010 Aug; 90(8):1209-24. doi:
10.1038/labinvest.2010.102
. [PMID: 20458275] - Małgorzata Knapp, Marcin Baranowski, Dariusz Czarnowski, Anna Lisowska, Piotr Zabielski, Jan Górski, Włodzimierz Musiał. Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction.
Medical science monitor : international medical journal of experimental and clinical research.
2009 Sep; 15(9):CR490-3. doi:
. [PMID: 19721401]
- Max Scherer, Gerd Schmitz, Gerhard Liebisch. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry.
Clinical chemistry.
2009 Jun; 55(6):1218-22. doi:
10.1373/clinchem.2008.113779
. [PMID: 19325012] - Nicholas J Machesky, Guojuan Zhang, Bindu Raghavan, Pete Zimmerman, Samuel L Kelly, Alfred H Merrill, W James Waldman, James R Van Brocklyn, Joanne Trgovcich. Human cytomegalovirus regulates bioactive sphingolipids.
The Journal of biological chemistry.
2008 Sep; 283(38):26148-60. doi:
10.1074/jbc.m710181200
. [PMID: 18644793] - Shizhong Bu, Bagrat Kapanadze, Tien Hsu, Maria Trojanowska. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway.
The Journal of biological chemistry.
2008 Jul; 283(28):19593-602. doi:
10.1074/jbc.m802417200
. [PMID: 18482992] - Ryunosuke Ohkawa, Kazuhiro Nakamura, Shigeo Okubo, Shigemi Hosogaya, Yukio Ozaki, Minoru Tozuka, Noriko Osima, Hiromitsu Yokota, Hitoshi Ikeda, Yutaka Yatomi. Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters.
Annals of clinical biochemistry.
2008 Jul; 45(Pt 4):356-63. doi:
10.1258/acb.2007.007189
. [PMID: 18583619] - Lihua Shi, Jacek Bielawski, Jinye Mu, Haili Dong, Chong Teng, Jian Zhang, Xiaohui Yang, Nario Tomishige, Kentaro Hanada, Yusuf A Hannun, Jianru Zuo. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis.
Cell research.
2007 Dec; 17(12):1030-40. doi:
10.1038/cr.2007.100
. [PMID: 18059378] - Qingsong Cai, Lili Tang, Jia-Sheng Wang. Validation of fumonisin biomarkers in F344 rats.
Toxicology and applied pharmacology.
2007 Nov; 225(1):28-39. doi:
10.1016/j.taap.2007.06.027
. [PMID: 17904604] - Dong-Hyun Kim, Youn-Sun Lee, Yong-Moon Lee, Seikwan Oh, Yeo-Pyo Yun, Hwan-Soo Yoo. Elevation of sphingoid base 1-phosphate as a potential contributor to hepatotoxicity in fumonisin B1-exposed mice.
Archives of pharmacal research.
2007 Aug; 30(8):962-9. doi:
10.1007/bf02993964
. [PMID: 17879749] - F Dahm, A Nocito, A Bielawska, K S Lang, P Georgiev, L M Asmis, J Bielawski, J Madon, Y A Hannun, P-A Clavien. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation.
Journal of thrombosis and haemostasis : JTH.
2006 Dec; 4(12):2704-9. doi:
10.1111/j.1538-7836.2006.02241.x
. [PMID: 17010150] - Dong-Hyun Kim, Hwan-Soo Yoo, Yong-Moon Lee, Jeong-Hae Kie, Soyong Jang, Seikwan Oh. Elevation of sphinganine 1-phosphate as a predictive biomarker for fumonisin exposure and toxicity in mice.
Journal of toxicology and environmental health. Part A.
2006 Dec; 69(23):2071-82. doi:
10.1080/15287390600746215
. [PMID: 17060094] - Helmut Schmidt, Ronald Schmidt, Gerd Geisslinger. LC-MS/MS-analysis of sphingosine-1-phosphate and related compounds in plasma samples.
Prostaglandins & other lipid mediators.
2006 Dec; 81(3-4):162-70. doi:
10.1016/j.prostaglandins.2006.09.003
. [PMID: 17085324] - Evgeny V Berdyshev, Irina A Gorshkova, Peter Usatyuk, Yutong Zhao, Bahman Saatian, Walter Hubbard, Viswanathan Natarajan. De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells.
Cellular signalling.
2006 Oct; 18(10):1779-92. doi:
10.1016/j.cellsig.2006.01.018
. [PMID: 16529909] - Xuntian Jiang, Xianlin Han. Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: a shotgun lipidomics approach.
Journal of lipid research.
2006 Aug; 47(8):1865-73. doi:
10.1194/jlr.d600012-jlr200
. [PMID: 16682747] - D Tardieu, S T Tran, A Auvergne, R Babilé, G Benard, J D Bailly, P Guerre. Effects of fumonisins on liver and kidney sphinganine and the sphinganine to sphingosine ratio during chronic exposure in ducks.
Chemico-biological interactions.
2006 Mar; 160(1):51-60. doi:
10.1016/j.cbi.2005.11.004
. [PMID: 16412405] - Shizhong Bu, Masayoshi Yamanaka, Huiping Pei, Alicja Bielawska, Jacek Bielawski, Yusuf A Hannun, Lina Obeid, Maria Trojanowska. Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2006 Jan; 20(1):184-6. doi:
10.1096/fj.05-4646fje
. [PMID: 16278291] - Harsimran S Saini, Rochelle P Coelho, Sravan K Goparaju, Puneet S Jolly, Michael Maceyka, Sarah Spiegel, Carmen Sato-Bigbee. Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors.
Journal of neurochemistry.
2005 Dec; 95(5):1298-310. doi:
10.1111/j.1471-4159.2005.03451.x
. [PMID: 16313513] - Mika Ikeda, Akio Kihara, Yuki Kariya, Yong-Moon Lee, Yasuyuki Igarashi. Sphingolipid-to-glycerophospholipid conversion in SPL-null cells implies the existence of an alternative isozyme.
Biochemical and biophysical research communications.
2005 Apr; 329(2):474-9. doi:
10.1016/j.bbrc.2005.02.014
. [PMID: 15737611] - Evgeny V Berdyshev, Irina A Gorshkova, Joe G N Garcia, Viswanathan Natarajan, Walter C Hubbard. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry.
Analytical biochemistry.
2005 Apr; 339(1):129-36. doi:
10.1016/j.ab.2004.12.006
. [PMID: 15766719] - Mika Ikeda, Akio Kihara, Yasuyuki Igarashi. Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5'-phosphate binding domain exposed to the cytosol.
Biochemical and biophysical research communications.
2004 Dec; 325(1):338-43. doi:
10.1016/j.bbrc.2004.10.036
. [PMID: 15522238] - James Fossetta, Gregory Deno, Waldemar Gonsiorek, Xuedong Fan, Brian Lavey, Pradip Das, Charles Lunn, Paul J Zavodny, Daniel Lundell, R William Hipkin. Pharmacological characterization of human S1P4 using a novel radioligand, [4,5-3H]-dihydrosphingosine-1-phosphate.
British journal of pharmacology.
2004 Jul; 142(5):851-60. doi:
10.1038/sj.bjp.0705856
. [PMID: 15197107] - Sarah E Abbey-Hosch, Alyssa N Cody, Lincoln R Potter. Sphingosine-1-phosphate inhibits C-type natriuretic peptide activation of guanylyl cyclase B (GC-B/NPR-B).
Hypertension (Dallas, Tex. : 1979).
2004 May; 43(5):1103-9. doi:
10.1161/01.hyp.0000124668.80811.d3
. [PMID: 15037564] - Anke Niedernberg, Sorin Tunaru, Andree Blaukat, Bruce Harris, Evi Kostenis. Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors.
Journal of biomolecular screening.
2003 Oct; 8(5):500-10. doi:
10.1177/1087057103257555
. [PMID: 14567777] - Akio Kihara, Takamitsu Sano, Soichiro Iwaki, Yasuyuki Igarashi. Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p.
Genes to cells : devoted to molecular & cellular mechanisms.
2003 Jun; 8(6):525-35. doi:
10.1046/j.1365-2443.2003.00653.x
. [PMID: 12786943] - Anke Niedernberg, Sorin Tunaru, Andree Blaukat, Ali Ardati, Evi Kostenis. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63.
Cellular signalling.
2003 Apr; 15(4):435-46. doi:
10.1016/s0898-6568(02)00119-5
. [PMID: 12618218] - Kirsten Uhlenbrock, Hans Gassenhuber, Evi Kostenis. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors.
Cellular signalling.
2002 Nov; 14(11):941-53. doi:
10.1016/s0898-6568(02)00041-4
. [PMID: 12220620] - Christelle Benaud, Michael Oberst, John P Hobson, Sarah Spiegel, Robert B Dickson, Chen-Yong Lin. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase.
The Journal of biological chemistry.
2002 Mar; 277(12):10539-46. doi:
10.1074/jbc.m109064200
. [PMID: 11792696] - L Ruwisch, M Schäfer-Korting, B Kleuser. An improved high-performance liquid chromatographic method for the determination of sphingosine-1-phosphate in complex biological materials.
Naunyn-Schmiedeberg's archives of pharmacology.
2001 Mar; 363(3):358-63. doi:
10.1007/s002100000365
. [PMID: 11284453] - K Tamama, J Kon, K Sato, H Tomura, A Kuwabara, T Kimura, T Kanda, H Ohta, M Ui, I Kobayashi, F Okajima. Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells.
The Biochemical journal.
2001 Jan; 353(Pt 1):139-146. doi:
. [PMID: 11115407]
- T Fordham-Skelton, K Lindsey. Signaling in plants.
Genome biology.
2001; 2(1):REPORTS4001. doi:
10.1186/gb-2000-2-1-reports4001
. [PMID: 11178277] - D S Im, C E Heise, N Ancellin, B F O'Dowd, G J Shei, R P Heavens, M R Rigby, T Hla, S Mandala, G McAllister, S R George, K R Lynch. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8.
The Journal of biological chemistry.
2000 May; 275(19):14281-6. doi:
10.1074/jbc.275.19.14281
. [PMID: 10799507] - C Mao, L M Obeid. Yeast sphingosine-1-phosphate phosphatases: assay, expression, deletion, purification, and cellular localization by GFP tagging.
Methods in enzymology.
2000; 311(?):223-32. doi:
10.1016/s0076-6879(00)11085-7
. [PMID: 10563329] - N Ancellin, T Hla. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5.
The Journal of biological chemistry.
1999 Jul; 274(27):18997-9002. doi:
10.1074/jbc.274.27.18997
. [PMID: 10383399] - S Gijsbers, G P Mannaerts, B Himpens, P P Van Veldhoven. N-acetyl-sphingenine-1-phosphate is a potent calcium mobilizing agent.
FEBS letters.
1999 Jun; 453(3):269-72. doi:
10.1016/s0014-5793(99)00735-8
. [PMID: 10405158] - A Boumendjel, S P Miller. Synthesis of sphingosine-1-phosphate and dihydrosphingosine-1-phosphate.
Journal of lipid research.
1994 Dec; 35(12):2305-11. doi:
10.1016/s0022-2275(20)39936-3
. [PMID: 7897327] - E Goldin, C F Roff, S P Miller, C Rodriguez-Lafrasse, M T Vanier, R O Brady, P G Pentchev. Type C Niemann-Pick disease: a murine model of the lysosomal cholesterol lipidosis accumulates sphingosine and sphinganine in liver.
Biochimica et biophysica acta.
1992 Aug; 1127(3):303-11. doi:
10.1016/0005-2760(92)90236-o
. [PMID: 1324734] - P P Van Veldhoven, R J Foglesong, R M Bell. A facile enzymatic synthesis of sphingosine-1-phosphate and dihydrosphingosine-1-phosphate.
Journal of lipid research.
1989 Apr; 30(4):611-6. doi:
. [PMID: 2754341]
- . .
.
. doi:
. [PMID: 12815058]
- . .
.
. doi:
. [PMID: 9016824]
- . .
.
. doi:
. [PMID: 20919643]