4-Aminobutyraldehyde (BioDeep_00000004446)

 

Secondary id: BioDeep_00001868921

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


gamma-Aminobutyraldehyde

化学式: C4H9NO (87.0684)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 8.73%

分子结构信息

SMILES: C(CC=O)CN
InChI: InChI=1S/C4H9NO/c5-3-1-2-4-6/h4H,1-3,5H2

描述信息

4-Aminobutyraldehyde is a metabolite of putrescine. It is a substrate of human liver aldehyde dehydrogenase (EC 1.2.1.3) cytoplasmic (E1) and mitochondrial (E2) isozymes (PMID 3324802). [HMDB]. 4-Aminobutyraldehyde is found in many foods, some of which are naranjilla, rambutan, oval-leaf huckleberry, and pepper (capsicum).
4-Aminobutyraldehyde is a metabolite of putrescine. It is a substrate of human liver aldehyde dehydrogenase (EC 1.2.1.3) cytoplasmic (E1) and mitochondrial (E2) isozymes (PMID 3324802).

同义名列表

7 个代谢物同义名

gamma-Aminobutyraldehyde; 4-Amino-butyraldehyde; 4-Aminobutyraldehyde; 4-Ammoniobutanal; 4-Amino-butanal; ω-aminoaldehyde; 4-aminobutanal



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

21 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(4)

WikiPathways(0)

Plant Reactome(12)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ADH5, ALDH3A2, ALDH9A1, AOC3, BDNF, CAT, CHAT, ODC1, PAOX
Peripheral membrane protein 4 ACHE, AOC1, CYP1B1, HSD17B6
Endoplasmic reticulum membrane 2 ALDH3A2, CYP1B1
Nucleus 2 ACHE, CHAT
cytosol 8 ADH5, ALDH3A2, ALDH9A1, CAT, CHAT, LEP, ODC1, PAOX
dendrite 1 BDNF
Cell membrane 3 ACHE, AOC1, AOC3
Cytoplasmic side 1 ALDH3A2
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 MPC1L
Synapse 3 ACHE, ALDH5A1, CHAT
cell surface 3 ACHE, AOC3, TNR
glutamatergic synapse 1 TNR
Golgi apparatus 2 ACHE, AOC3
mitochondrial inner membrane 1 MPC1L
neuromuscular junction 1 ACHE
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 ALDH9A1
plasma membrane 3 ACHE, AOC1, AOC3
Membrane 6 ACHE, ALDH3A2, AOC3, BDNF, CAT, CYP1B1
axon 1 BDNF
extracellular exosome 4 ADH5, ALDH9A1, AOC1, CAT
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 AOC3, HSD17B6
extracellular space 6 ACHE, AOC1, BDNF, IL17A, LEP, TNR
perinuclear region of cytoplasm 2 ACHE, BDNF
Schaffer collateral - CA1 synapse 1 TNR
bicellular tight junction 1 AOC1
mitochondrion 7 ABAT, ADH5, AGMAT, ALDH5A1, ALDH9A1, CAT, CYP1B1
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 4 ALDH3A2, CAT, CYP1B1, HSD17B6
Microsome membrane 3 ALDH3A2, CYP1B1, HSD17B6
Secreted 4 ACHE, BDNF, IL17A, LEP
extracellular region 7 ACHE, AOC1, BDNF, CAT, IL17A, LEP, TNR
Single-pass membrane protein 1 ALDH3A2
mitochondrial matrix 3 ABAT, ALDH5A1, CAT
Extracellular side 2 ACHE, AOC1
external side of plasma membrane 1 IL17A
Secreted, extracellular space, extracellular matrix 1 TNR
Early endosome 1 AOC3
Single-pass type II membrane protein 1 AOC3
Mitochondrion inner membrane 1 MPC1L
Membrane raft 1 TNR
focal adhesion 1 CAT
Peroxisome 4 ALDH3A2, AOC1, CAT, PAOX
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, PAOX
peroxisomal membrane 2 ALDH3A2, CAT
collagen-containing extracellular matrix 1 TNR
neuron projection 1 CHAT
Secreted, extracellular space 1 AOC1
Lipid-anchor, GPI-anchor 1 ACHE
microvillus 1 AOC3
side of membrane 1 ACHE
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 BDNF
specific granule lumen 1 AOC1
perineuronal net 1 TNR
synaptic cleft 1 ACHE
catalase complex 1 CAT
tenascin complex 1 TNR
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
4-aminobutyrate transaminase complex 1 ABAT


文献列表

  • Vacha Bhatt, Vitthal T Barvkar, Agnelo Furtado, Robert J Henry, Altafhusain Nadaf. Fragrance in Pandanus amaryllifoliusRoxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2. International journal of molecular sciences. 2021 Jun; 22(13):. doi: 10.3390/ijms22136968. [PMID: 34203477]
  • Barry J Shelp, Gale G Bozzo, Christopher P Trobacher, Adel Zarei, Kristen L Deyman, Carolyne J Brikis. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant science : an international journal of experimental plant biology. 2012 Sep; 193-194(?):130-135. doi: 10.1016/j.plantsci.2012.06.001. [PMID: 22794926]
  • Kultida Jiamsomboon, Witcha Treesuwan, Nonlawat Boonyalai. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Biochimie. 2012 Aug; 94(8):1773-83. doi: 10.1016/j.biochi.2012.04.009. [PMID: 22534193]
  • Shiyong Zhang, Yan Zhao. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism. Organic & biomolecular chemistry. 2012 Jan; 10(2):260-6. doi: 10.1039/c1ob06364b. [PMID: 22068436]
  • Ratree Wongpanya, Nonlawat Boonyalai, Napaporn Thammachuchourat, Natharinee Horata, Siwaret Arikit, Khin Myo Myint, Apichart Vanavichit, Kiattawee Choowongkomon. Biochemical and enzymatic study of rice BADH wild-type and mutants: an insight into fragrance in rice. The protein journal. 2011 Dec; 30(8):529-38. doi: 10.1007/s10930-011-9358-5. [PMID: 21959793]
  • David Kopečný, Martina Tylichová, Jacques Snegaroff, Hana Popelková, Marek Šebela. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. The FEBS journal. 2011 Sep; 278(17):3130-9. doi: 10.1111/j.1742-4658.2011.08239.x. [PMID: 21740525]
  • Naim Stiti, Tagnon D Missihoun, Simeon O Kotchoni, Hans-Hubert Kirch, Dorothea Bartels. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. Frontiers in plant science. 2011; 2(?):65. doi: 10.3389/fpls.2011.00065. [PMID: 22639603]
  • Martina Tylichová, David Kopecný, Solange Moréra, Pierre Briozzo, René Lenobel, Jacques Snégaroff, Marek Sebela. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. Journal of molecular biology. 2010 Mar; 396(4):870-82. doi: 10.1016/j.jmb.2009.12.015. [PMID: 20026072]
  • Louis M T Bradbury, Susan A Gillies, Donald J Brushett, Daniel L E Waters, Robert J Henry. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant molecular biology. 2008 Nov; 68(4-5):439-49. doi: 10.1007/s11103-008-9381-x. [PMID: 18704694]
  • Takashi Fujiwara, Kazuya Hori, Keiko Ozaki, Yuka Yokota, Shiro Mitsuya, Tsuyoshi Ichiyanagi, Tasuku Hattori, Tetsuko Takabe. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiologia plantarum. 2008 Sep; 134(1):22-30. doi: 10.1111/j.1399-3054.2008.01122.x. [PMID: 18429940]
  • Zhuo Wang, Xin-Guang Zhu, Yazhu Chen, Yuanyuan Li, Jing Hou, Yixue Li, Lei Liu. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria. BMC genomics. 2006 Apr; 7(?):100. doi: 10.1186/1471-2164-7-100. [PMID: 16646993]
  • Christopher P Leamon, Scott R Cooper, Gregory E Hardee. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjugate chemistry. 2003 Jul; 14(4):738-47. doi: 10.1021/bc020089t. [PMID: 12862426]
  • Jeyanthi Rebecca Livingstone, Toshiya Maruo, Izumi Yoshida, Yutaka Tarui, Kiyoo Hirooka, Yoshihiro Yamamoto, Nobuo Tsutui, Eiji Hirasawa. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. Journal of plant research. 2003 Apr; 116(2):133-40. doi: 10.1007/s10265-003-0077-7. [PMID: 12736784]
  • S Yamamoto, S Nagata, K Kusaba. Purification and characterization of homospermidine synthase in Acinetobacter tartarogenes ATCC 31105. Journal of biochemistry. 1993 Jul; 114(1):45-9. doi: 10.1093/oxfordjournals.jbchem.a124137. [PMID: 8407874]
  • H Tamura, K Horiike, H Fukuda, T Watanabe. Kinetic studies on the inhibition mechanism of diamine oxidase from porcine kidney by aminoguanidine. Journal of biochemistry. 1989 Feb; 105(2):299-306. doi: 10.1093/oxfordjournals.jbchem.a122657. [PMID: 2498301]
  • W Ambroziak, C Maśliński. Participation of aldehyde dehydrogenase in the oxidative deamination pathway of histamine and putrescine. Agents and actions. 1988 Apr; 23(3-4):311-3. doi: 10.1007/bf02142573. [PMID: 3394581]
  • J M Gaugas, D L Dewey. Hog kidney diamine oxidase conversion of biogenic diamines to inhibitors of cell proliferation. The Journal of pathology. 1981 Jul; 134(3):243-52. doi: 10.1002/path.1711340308. [PMID: 6790686]