7,7',8,8'-Tetrahydrolycopene (BioDeep_00000004102)
Secondary id: BioDeep_00000014476, BioDeep_00000279111
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C40H60 (540.4695)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 29.06%
分子结构信息
SMILES: CC(=CCCC(=CCCC(=CC=CC(=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C)C)C)C)C
InChI: InChI=1S/C40H78NO7P/c1-6-8-10-12-14-16-18-20-21-22-23-25-27-29-31-33-40(42)48-39(38-47-49(43,44)46-36-34-41(3,4)5)37-45-35-32-30-28-26-24-19-17-15-13-11-9-7-2/h14,16,20-21,39H,6-13,15,17-19,22-38H2,1-5H3/b16-14-,21-20-/t39-/m1/s1
描述信息
7,7,8,8-Tetrahydrolycopene, also known as zeta-carotene, is a carotenoid found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). 7,7,8,8-Tetrahydrolycopene is found in root vegetables and is a constituent of carrot oil and many other natural products.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
14 个代谢物同义名
(6E,10Z,12E,14E,16E,18E,20E,22Z,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,12,14,16,18,20,22,26,30-undecaene; (6E,10E,12E,14E,16E,18E,20E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,12,14,16,18,20,22,26,30-undecaene; (9-cis,9-cis)-7,7,8,8-Tetrahydro-psi,psi-carotene; 7,7,8,8-Tetrahydro-psi,psi-carotene; 7,7,8,8-Tetrahydro-ψ,ψ-carotene; 7,7,8,8-Tetrahydrolycopene; all-trans-zeta-Carotene; all-trans-Ζ-carotene; Carotene, zeta; zeta-Carotene; Carotene-zeta; zeta Carotene; Ζ-carotene; Z-Carotene
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:28068
- ChEBI: CHEBI:27362
- KEGG: C05430
- PubChem: 5280788
- HMDB: HMDB0036927
- Metlin: METLIN41478
- Wikipedia: Zeta-Carotene
- MeSH: zeta Carotene
- MetaCyc: CPD1F-98
- KNApSAcK: C00000934
- foodb: FDB097247
- chemspider: 4444346
- CAS: 13587-06-9
- PubChem: 7794
- LipidMAPS: LMPR01070085
- 3DMET: B00776
- NIKKAJI: J39.830F
- LOTUS: LTS0218431
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
76 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(10)
- β-carotene biosynthesis (engineered):
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- trans-lycopene biosynthesis I:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
INOH(0)
PlantCyc(63)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- β-carotene biosynthesis (engineered):
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- trans-lycopene biosynthesis I:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
29 个相关的物种来源信息
- 193297 - Aronia: LTS0218431
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1989.TB04709.X
- 661339 - Aronia melanocarpa: LTS0218431
- 28974 - Averrhoa carambola: 10.1016/S0031-9422(00)84040-6
- 3708 - Brassica napus: 10.1002/JSFA.2740100607
- 41496 - Calendula officinalis: 10.1042/BJ0580090
- 3077 - Chlorella vulgaris: 10.1515/ZNB-1954-0705
- 37334 - Citrus maxima: 10.1104/PP.28.3.550
- 82528 - Crocus sativus: 10.1016/S0031-9422(00)82412-7
- 3656 - Cucumis melo: 10.1021/JF00090A003
- 2759 - Eukaryota: LTS0218431
- 9606 - Homo sapiens: -
- 105884 - Lonicera japonica: 10.1042/BJ0510458
- 3398 - Magnoliopsida: LTS0218431
- 5141 - Neurospora crassa: 10.1016/0003-9861(57)90143-1
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(90)85164-B
- 36596 - Prunus armeniaca: 10.1021/JF00090A003
- 3760 - Prunus persica: 10.1021/JF00090A003
- 1085 - Rhodospirillum rubrum: 10.1042/BJ0560222
- 3764 - Rosa: LTS0218431
- 74635 - Rosa canina: 10.1111/J.1365-2621.1989.TB04709.X
- 74635 - Rosa canina: LTS0218431
- 74645 - Rosa rugosa: 10.1111/J.1365-2621.1989.TB04709.X
- 74645 - Rosa rugosa: LTS0218431
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 3745 - Rosaceae: LTS0218431
- 35493 - Streptophyta: LTS0218431
- 58023 - Tracheophyta: LTS0218431
- 33090 - Viridiplantae: LTS0218431
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hee Ju Yoo, Mi-Young Chung, Hyun-Ah Lee, Soo-Bin Lee, Silvana Grandillo, James J Giovannoni, Je Min Lee. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux.
Plant physiology.
2023 Jan; ?(?):. doi:
10.1093/plphys/kiad049
. [PMID: 36715630] - Aleksandr A Ashikhmin, Anton S Benditkis, Andrey A Moskalenko, Alexander A Krasnovsky. ζ-Carotene: Generation and Quenching of Singlet Oxygen, Comparison with Phytofluene.
Biochemistry. Biokhimiia.
2022 Oct; 87(10):1169-1178. doi:
10.1134/s0006297922100108
. [PMID: 36273885] - Alberto José López-Jiménez, Lucía Morote, Enrique Niza, María Mondéjar, Ángela Rubio-Moraga, Gianfranco Diretto, Oussama Ahrazem, Lourdes Gómez-Gómez. Subfunctionalization of D27 Isomerase Genes in Saffron.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810543
. [PMID: 36142456] - Jie Zhang, Honghe Sun, Shaogui Guo, Yi Ren, Maoying Li, Jinfang Wang, Yongtao Yu, Haiying Zhang, Guoyi Gong, Hongju He, Chao Zhang, Yong Xu. ClZISO mutation leads to photosensitive flesh in watermelon.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2022 May; 135(5):1565-1578. doi:
10.1007/s00122-022-04054-7
. [PMID: 35187585] - Jesús Beltrán, Eleanore T Wurtzel. Enzymatic isomerization of ζ-carotene mediated by the heme-containing isomerase Z-ISO.
Methods in enzymology.
2022; 671(?):153-170. doi:
10.1016/bs.mie.2021.09.009
. [PMID: 35878976] - Brian Kloss. Genomics-based strategies toward the identification of a Z-ISO carotenoid biosynthetic enzyme suitable for structural studies.
Methods in enzymology.
2022; 671(?):171-205. doi:
10.1016/bs.mie.2021.12.008
. [PMID: 35878977] - Lihua Liu, Mengmeng Ren, Peng Peng, Yan Chun, Lu Li, Jinfeng Zhao, Jingjing Fang, Lixiang Peng, Jijun Yan, Jinfang Chu, Yiqin Wang, Shoujiang Yuan, Xueyong Li. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice.
Journal of genetics and genomics = Yi chuan xue bao.
2021 01; 48(1):88-91. doi:
10.1016/j.jgg.2020.11.008
. [PMID: 33658152] - Xue Liu, Qingliang Hu, Jijun Yan, Kai Sun, Yan Liang, Meiru Jia, Xiangbing Meng, Shuang Fang, Yiqin Wang, Yanhui Jing, Guifu Liu, Dianxing Wu, Chengcai Chu, Steven M Smith, Jinfang Chu, Yonghong Wang, Jiayang Li, Bing Wang. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid.
Molecular plant.
2020 12; 13(12):1784-1801. doi:
10.1016/j.molp.2020.10.001
. [PMID: 33038484] - Kenjiro Sugiyama, Koh Takahashi, Keisuke Nakazawa, Masaharu Yamada, Shota Kato, Tomoko Shinomura, Yoshiki Nagashima, Hideyuki Suzuki, Takeshi Ara, Jiro Harada, Shinichi Takaichi. Oxygenic Phototrophs Need ζ-Carotene Isomerase (Z-ISO) for Carotene Synthesis: Functional Analysis in Arthrospira and Euglena.
Plant & cell physiology.
2020 Feb; 61(2):276-282. doi:
10.1093/pcp/pcz192
. [PMID: 31593237] - Jesús Beltrán, Brian Kloss, Jonathan P Hosler, Jiafeng Geng, Aimin Liu, Anuja Modi, John H Dawson, Masanori Sono, Maria Shumskaya, Charles Ampomah-Dwamena, James D Love, Eleanore T Wurtzel. Control of carotenoid biosynthesis through a heme-based cis-trans isomerase.
Nature chemical biology.
2015 Aug; 11(8):598-605. doi:
10.1038/nchembio.1840
. [PMID: 26075523] - Jessica L Cooperstone, Robin A Ralston, Ken M Riedl, Thomas C Haufe, Ralf M Schweiggert, Samantha A King, Cynthia D Timmers, David M Francis, Gregory B Lesinski, Steven K Clinton, Steven J Schwartz. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial.
Molecular nutrition & food research.
2015 Apr; 59(4):658-69. doi:
10.1002/mnfr.201400658
. [PMID: 25620547] - Elio Fantini, Giulia Falcone, Sarah Frusciante, Leonardo Giliberto, Giovanni Giuliano. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing.
Plant physiology.
2013 Oct; 163(2):986-98. doi:
10.1104/pp.113.224733
. [PMID: 24014574] - Jian Qin, Kyung-Jin Yeum, Elizabeth J Johnson, Norman I Krinsky, Robert M Russell, Guangwen Tang. Determination of 9-cis beta-carotene and zeta-carotene in biological samples.
The Journal of nutritional biochemistry.
2008 Sep; 19(9):612-8. doi:
10.1016/j.jnutbio.2007.08.006
. [PMID: 18280136] - Tal Isaacson, Gil Ronen, Dani Zamir, Joseph Hirschberg. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants.
The Plant cell.
2002 Feb; 14(2):333-42. doi:
10.1105/tpc.010303
. [PMID: 11884678] - . .
.
. doi:
. [PMID: 15503129]
- . .
.
. doi:
. [PMID: 17434985]