1-Pyrroline-5-carboxylic acid (BioDeep_00000003702)
Secondary id: BioDeep_00001869326
human metabolite Endogenous natural product
代谢物信息卡片
化学式: C5H7NO2 (113.0477)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(feces) 15.62%
分子结构信息
SMILES: C1CC(N=C1)C(=O)O
InChI: InChI=1S/C5H7NO2/c7-5(8)4-2-1-3-6-4/h3-4H,1-2H2,(H,7,8)/t4-/m0/s1
描述信息
1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746).
(s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.
同义名列表
16 个代谢物同义名
delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer; (2S)-3,4-Dihydro-2H-pyrrole-2-carboxylic acid; delta-1-Pyrroline-5-carboxylate, (+-)-isomer; 3,4-dihydro-2H-pyrrole-2-carboxylic acid; delta-1-Pyrroline-5-carboxylic acid; delta1-Pyrroline-5-carboxylic acid; (S)-1-Pyrroline-5-carboxylic acid; delta-1-Pyrroline-5-carboxylate; L-1-Pyrroline-5-carboxylic acid; delta(1)Pyrroline-5-carboxylate; Δ1-Pyrroline-5-carboxylic acid; (S)-1-Pyrroline-5-carboxylate; 1-Pyrroline-5-carboxylic acid; L-1-Pyrroline-5-carboxylate; 1-Pyrroline-5-carboxylate; Pyrroline-5-carboxylate
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:371
- KEGG: C03912
- PubChem: 440162
- PubChem: 1196
- HMDB: HMDB0001301
- Metlin: METLIN63418
- Wikipedia: 1-Pyrroline-5-carboxylic acid
- MetaCyc: L-DELTA1-PYRROLINE_5-CARBOXYLATE
- KNApSAcK: C00007606
- foodb: FDB030153
- chemspider: 389153
- CAS: 64199-88-8
- PMhub: MS000011023
- ChEBI: CHEBI:17388
- PubChem: 6642
- 3DMET: B01698
- NIKKAJI: J654.872E
- RefMet: 1-Pyrroline-5-carboxylic acid
- LOTUS: LTS0069041
- LOTUS: LTS0078321
- wikidata: Q27105294
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
67 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(1)
- Urea cycle and metabolism of amino groups:
(S)-1-Pyrroline-5-carboxylate ⟶ L-Proline
Plant Reactome(0)
INOH(2)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- NADH + (S)-1-Pyrroline-5-carboxylic acid = NAD+ + L-Proline ( Arginine and Proline metabolism ):
(S)-1-Pyrroline-5-carboxylic acid + NADH ⟶ L-Proline + NAD+
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(64)
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Proline Metabolism:
Adenosine triphosphate + L-Glutamic acid + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Glutamic acid + Phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
PharmGKB(0)
23 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 6656 - Arthropoda: LTS0069041
- 2 - Bacteria: LTS0069041
- 6658 - Branchiopoda: LTS0069041
- 6668 - Daphnia: LTS0069041
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0069041
- 77658 - Daphniidae: LTS0069041
- 33682 - Euglenozoa: LTS0069041
- 2759 - Eukaryota: LTS0069041
- 1236 - Gammaproteobacteria: LTS0069041
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5653 - Kinetoplastea: LTS0069041
- 33208 - Metazoa: LTS0069041
- 135621 - Pseudomonadaceae: LTS0069041
- 286 - Pseudomonas: LTS0069041
- 287 - Pseudomonas aeruginosa: LTS0069041
- 5690 - Trypanosoma: LTS0069041
- 5691 - Trypanosoma brucei:
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0069041
- 5654 - Trypanosomatidae: LTS0069041
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Giuseppe Forlani, Giuseppe Sabbioni, Simone Barera, Dietmar Funck. A complex array of factors regulate the activity of Arabidopsis thaliana δ1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism.
Plant, cell & environment.
2024 Apr; 47(4):1348-1362. doi:
10.1111/pce.14817
. [PMID: 38223941] - Yao Zheng, Cécile Cabassa-Hourton, Holger Eubel, Guillaume Chevreux, Laurent Lignieres, Emilie Crilat, Hans-Peter Braun, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria.
Journal of experimental botany.
2023 Oct; ?(?):. doi:
10.1093/jxb/erad406
. [PMID: 37843921] - Yao Zheng, Cécile Cabassa-Hourton, Séverine Planchais, Emilie Crilat, Gilles Clément, Matthieu Dacher, Nina Durand, Marianne Bordenave-Jacquemin, Anne Guivarc'h, Corentin Dourmap, Pierre Carol, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana.
Plant, cell & environment.
2023 03; 46(3):901-917. doi:
10.1111/pce.14529
. [PMID: 36583533] - Chengcheng Chen, Xiaoyue Cui, Pingying Zhang, Zheng Wang, Jianxia Zhang. Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis.
Plant physiology and biochemistry : PPB.
2021 Nov; 168(?):188-201. doi:
10.1016/j.plaphy.2021.10.004
. [PMID: 34649022] - Xuwei Liu, Zhuoli Huang, Yuzhan Li, Wenjun Xie, Wu Li, Xiangru Tang, Umair Ashraf, Leilei Kong, Longmei Wu, Shuli Wang, Zhaowen Mo. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice.
Ecotoxicology and environmental safety.
2020 Jun; 196(?):110525. doi:
10.1016/j.ecoenv.2020.110525
. [PMID: 32224370] - Débora Bublitz Anton, Frank Lino Guzman, Nicole Moreira Vetö, Felipe Augusto Krause, Franceli Rodrigues Kulcheski, Ana Paula Durand Coelho, Guilherme Leitão Duarte, Rogério Margis, Lúcia Rebello Dillenburg, Andreia Carina Turchetto-Zolet. Characterization and expression analysis of P5CS (Δ1-pyrroline-5-carboxylate synthase) gene in two distinct populations of the Atlantic Forest native species Eugenia uniflora L.
Molecular biology reports.
2020 Feb; 47(2):1033-1043. doi:
10.1007/s11033-019-05195-7
. [PMID: 31749121] - Cong Guan, Yan-Hua Huang, Hui-Fang Cen, Xin Cui, Dan-Yang Tian, Yun-Wei Zhang. Overexpression of the Lolium perenne L. delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.).
PloS one.
2019; 14(7):e0219669. doi:
10.1371/journal.pone.0219669
. [PMID: 31310632] - Christian Blume, Julia Ost, Marco Mühlenbruch, Christoph Peterhänsel, Miriam Laxa. Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana.
PloS one.
2019; 14(1):e0210342. doi:
10.1371/journal.pone.0210342
. [PMID: 30650113] - Shumaila Muzammil, Asis Shrestha, Said Dadshani, Klaus Pillen, Shahid Siddique, Jens Léon, Ali Ahmad Naz. An Ancestral Allele of Pyrroline-5-carboxylate synthase1 Promotes Proline Accumulation and Drought Adaptation in Cultivated Barley.
Plant physiology.
2018 10; 178(2):771-782. doi:
10.1104/pp.18.00169
. [PMID: 30131422] - Dávid Aleksza, Gábor V Horváth, Györgyi Sándor, László Szabados. Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation.
Plant physiology.
2017 Sep; 175(1):555-567. doi:
10.1104/pp.17.00791
. [PMID: 28765275] - Pasqualina Woodrow, Loredana F Ciarmiello, Maria Grazia Annunziata, Severina Pacifico, Federica Iannuzzi, Antonio Mirto, Luisa D'Amelia, Emilia Dell'Aversana, Simona Piccolella, Amodio Fuggi, Petronia Carillo. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.
Physiologia plantarum.
2017 Mar; 159(3):290-312. doi:
10.1111/ppl.12513
. [PMID: 27653956] - Xuan Jun Feng, Jing Rui Li, Shi Lian Qi, Qing Fang Lin, Jing Bo Jin, Xue Jun Hua. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America.
2016 12; 113(51):E8335-E8343. doi:
10.1073/pnas.1610670114
. [PMID: 27930298] - Benjamin W Arentson, Erin L Hayes, Weidong Zhu, Harkewal Singh, John J Tanner, Donald F Becker. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.
Bioscience reports.
2016 12; 36(6):. doi:
10.1042/bsr20160435
. [PMID: 27742866] - Meijuan Li, Umair Ashraf, Hua Tian, Zhaowen Mo, Shenggang Pan, Shakeel Ahmad Anjum, Meiyang Duan, Xiangru Tang. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice.
Plant physiology and biochemistry : PPB.
2016 Jun; 103(?):167-75. doi:
10.1016/j.plaphy.2016.03.009
. [PMID: 26995311] - Vijeta Singh, Bhumi Nath Tripathi, Vinay Sharma. Interaction of Mg with heavy metals (Cu, Cd) in T. aestivum with special reference to oxidative and proline metabolism.
Journal of plant research.
2016 May; 129(3):487-97. doi:
10.1007/s10265-015-0767-y
. [PMID: 26547559] - Hamada AbdElgawad, Dirk De Vos, Gaurav Zinta, Malgorzata A Domagalska, Gerrit T S Beemster, Han Asard. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach.
The New phytologist.
2015 Oct; 208(2):354-69. doi:
10.1111/nph.13481
. [PMID: 26037253] - Madhulika Singh, Vijay Pratap Singh, Gunjan Dubey, Sheo Mohan Prasad. Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings.
Ecotoxicology and environmental safety.
2015 Jul; 117(?):164-73. doi:
10.1016/j.ecoenv.2015.03.021
. [PMID: 25881134] - Mariela Inés Monteoliva, Yanina Soledad Rizzi, Nicolás Miguel Cecchini, Mohammad-Reza Hajirezaei, María Elena Alvarez. Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis.
BMC plant biology.
2014 Jan; 14(?):21. doi:
10.1186/1471-2229-14-21
. [PMID: 24410747] - Milena Cvikrová, Lenka Gemperlová, Olga Martincová, Radomira Vanková. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
Plant physiology and biochemistry : PPB.
2013 Dec; 73(?):7-15. doi:
10.1016/j.plaphy.2013.08.005
. [PMID: 24029075] - Goon-Bo Kim, Young-Woo Nam. A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation.
Journal of plant physiology.
2013 Feb; 170(3):291-302. doi:
10.1016/j.jplph.2012.10.004
. [PMID: 23158502] - M Nagaraj Kumar, Wann-Neng Jane, Paul E Verslues. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response.
Plant physiology.
2013 Feb; 161(2):942-53. doi:
10.1104/pp.112.209791
. [PMID: 23184230] - Ziting Yao, Chengwu Zou, Hui Zhou, Jinzi Wang, Lidan Lu, Yang Li, Baoshan Chen. Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation.
PloS one.
2013; 8(9):e73483. doi:
10.1371/journal.pone.0073483
. [PMID: 24039956] - Ji Huang, Shujing Sun, Dongqing Xu, Hongxia Lan, Hui Sun, Zhoufei Wang, Yongmei Bao, Jianfei Wang, Haijuan Tang, Hongsheng Zhang. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.).
Plant molecular biology.
2012 Oct; 80(3):337-50. doi:
10.1007/s11103-012-9955-5
. [PMID: 22930448] - Muthappa Senthil-Kumar, Kirankumar S Mysore. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response.
Plant, cell & environment.
2012 Jul; 35(7):1329-43. doi:
10.1111/j.1365-3040.2012.02492.x
. [PMID: 22321246] - Mubshara Saadia, Amer Jamil, Nudrat Aisha Akram, Muhammad Ashraf. A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress.
Molecules (Basel, Switzerland).
2012 May; 17(5):5803-15. doi:
10.3390/molecules17055803
. [PMID: 22592086] - Xinguo Mao, Hongying Zhang, Xueya Qian, Ang Li, Guangyao Zhao, Ruilian Jing. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis.
Journal of experimental botany.
2012 May; 63(8):2933-46. doi:
10.1093/jxb/err462
. [PMID: 22330896] - Noppawan Nounjan, Phan Tuan Nghia, Piyada Theerakulpisut. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes.
Journal of plant physiology.
2012 Apr; 169(6):596-604. doi:
10.1016/j.jplph.2012.01.004
. [PMID: 22317787] - Emily B Merewitz, Hongmei Du, Wenjuan Yu, Yimin Liu, Thomas Gianfagna, Bingru Huang. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation.
Journal of experimental botany.
2012 Feb; 63(3):1315-28. doi:
10.1093/jxb/err372
. [PMID: 22131157] - Ruth C Martin, Kira Glover-Cutter, James C Baldwin, James E Dombrowski. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea.
BMC research notes.
2012 Jan; 5(?):66. doi:
10.1186/1756-0500-5-66
. [PMID: 22272737] - Dietmar Funck, Karen Clauß, Wolf B Frommer, Hanjo A Hellmann. The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control.
Frontiers in plant science.
2012; 3(?):80. doi:
10.3389/fpls.2012.00080
. [PMID: 22629280] - Éderson Akio Kido, José Ribamar Costa Ferreira Neto, Roberta Lane de Oliveira Silva, Valesca Pandolfi, Ana Carolina Ribeiro Guimarães, Daniela Truffi Veiga, Sabrina Moutinho Chabregas, Sérgio Crovella, Ana Maria Benko-Iseppon. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE.
TheScientificWorldJournal.
2012; 2012(?):821062. doi:
10.1100/2012/821062
. [PMID: 22629208] - Ana M Fortes, Patricia Agudelo-Romero, Marta S Silva, Kashif Ali, Lisete Sousa, Federica Maltese, Young H Choi, Jerome Grimplet, José M Martinez-Zapater, Robert Verpoorte, Maria S Pais. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.
BMC plant biology.
2011 Nov; 11(?):149. doi:
10.1186/1471-2229-11-149
. [PMID: 22047180] - Ehud Katz, Kyung Hwan Boo, Ho Youn Kim, Richard A Eigenheer, Brett S Phinney, Vladimir Shulaev, Florence Negre-Zakharov, Avi Sadka, Eduardo Blumwald. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.
Journal of experimental botany.
2011 Nov; 62(15):5367-84. doi:
10.1093/jxb/err197
. [PMID: 21841177] - Hsin-Mei Ku, Chi-Chieh Hu, Hui-Ju Chang, Yu-Tsung Lin, Fuh-Jyh Jan, Chien-Teh Chen. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions.
Plant physiology and biochemistry : PPB.
2011 Oct; 49(10):1147-54. doi:
10.1016/j.plaphy.2011.07.003
. [PMID: 21831656] - Sandeep Sharma, Joji Grace Villamor, Paul E Verslues. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential.
Plant physiology.
2011 Sep; 157(1):292-304. doi:
10.1104/pp.111.183210
. [PMID: 21791601] - Jana Goldová, Aleš Ulrych, Kamil Hercík, Pavel Branny. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence.
BMC genomics.
2011 Aug; 12(?):437. doi:
10.1186/1471-2164-12-437
. [PMID: 21880152] - Hanan Stein, Arik Honig, Gad Miller, Oran Erster, Haviva Eilenberg, Laszlo N Csonka, László Szabados, Csaba Koncz, Aviah Zilberstein. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants.
Plant science : an international journal of experimental plant biology.
2011 Aug; 181(2):140-50. doi:
10.1016/j.plantsci.2011.04.013
. [PMID: 21683879] - Lei Zhang, Shanshan Xiao, Wenqi Li, Wei Feng, Juan Li, Zhidan Wu, Xuewen Gao, Fengquan Liu, Min Shao. Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance.
Journal of experimental botany.
2011 Aug; 62(12):4229-38. doi:
10.1093/jxb/err131
. [PMID: 21527628] - Cuili Liu, Li Zhao, Guanghui Yu. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity.
Journal of integrative plant biology.
2011 Aug; 53(8):608-18. doi:
10.1111/j.1744-7909.2011.01049.x
. [PMID: 21564543] - Daofeng Li, Yunqin Zhang, Xiaona Hu, Xiaoye Shen, Lei Ma, Zhen Su, Tao Wang, Jiangli Dong. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses.
BMC plant biology.
2011 Jul; 11(?):109. doi:
10.1186/1471-2229-11-109
. [PMID: 21718548] - Elisabeth Planchet, Olivier Rannou, Claudie Ricoult, Anis M Limami. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.
Plant signaling & behavior.
2011 Jul; 6(7):1074-6. doi:
10.4161/psb.6.7.15653
. [PMID: 21633197] - W Walter Lorenz, Rob Alba, Yuan-Sheng Yu, John M Bordeaux, Marta Simões, Jeffrey F D Dean. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.).
BMC genomics.
2011 May; 12(?):264. doi:
10.1186/1471-2164-12-264
. [PMID: 21609476] - Fang He, Patrick J DiMario. Drosophila delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) is required for proline breakdown and mitochondrial integrity-Establishing a fly model for human type II hyperprolinemia.
Mitochondrion.
2011 May; 11(3):397-404. doi:
10.1016/j.mito.2010.12.001
. [PMID: 21168532] - Amit A Deokar, Vishwajith Kondawar, Pradeep K Jain, S Mohan Karuppayil, N L Raju, Vincent Vadez, Rajeev K Varshney, R Srinivasan. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
BMC plant biology.
2011 Apr; 11(?):70. doi:
10.1186/1471-2229-11-70
. [PMID: 21513527] - Guoyao Wu, Fuller W Bazer, Robert C Burghardt, Gregory A Johnson, Sung Woo Kim, Darrell A Knabe, Peng Li, Xilong Li, Jason R McKnight, M Carey Satterfield, Thomas E Spencer. Proline and hydroxyproline metabolism: implications for animal and human nutrition.
Amino acids.
2011 Apr; 40(4):1053-63. doi:
10.1007/s00726-010-0715-z
. [PMID: 20697752] - Nicolás Miguel Cecchini, Mariela Inés Monteoliva, María Elena Alvarez. Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
Plant physiology.
2011 Apr; 155(4):1947-59. doi:
10.1104/pp.110.167163
. [PMID: 21311034] - Hayati M Iskandar, Rosanne E Casu, Andrew T Fletcher, Susanne Schmidt, Jingsheng Xu, Donald J Maclean, John M Manners, Graham D Bonnett. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms.
BMC plant biology.
2011 Jan; 11(?):12. doi:
10.1186/1471-2229-11-12
. [PMID: 21226964] - Hongying Zhang, Xinguo Mao, Ruilian Jing, Xiaoping Chang, Huimin Xie. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses.
Journal of experimental botany.
2011 Jan; 62(3):975-88. doi:
10.1093/jxb/erq328
. [PMID: 21030389] - Leah DeRose-Wilson, Brandon S Gaut. Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth.
PloS one.
2011; 6(8):e22832. doi:
10.1371/journal.pone.0022832
. [PMID: 21857956] - Silke Lehmann, Christophe Gumy, Eva Blatter, Silke Boeffel, Wieland Fricke, Doris Rentsch. In planta function of compatible solute transporters of the AtProT family.
Journal of experimental botany.
2011 Jan; 62(2):787-96. doi:
10.1093/jxb/erq320
. [PMID: 20959625] - Hongying Zhang, Xinguo Mao, Chengshe Wang, Ruilian Jing. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis.
PloS one.
2010 Dec; 5(12):e16041. doi:
10.1371/journal.pone.0016041
. [PMID: 21209856] - Sandeep Sharma, Paul E Verslues. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.
Plant, cell & environment.
2010 Nov; 33(11):1838-51. doi:
10.1111/j.1365-3040.2010.02188.x
. [PMID: 20545884] - Yuchul Jung, Jungan Park, Yunjung Choi, Jin-Gweon Yang, Donggiun Kim, Beom-Gi Kim, Kyunghee Roh, Dong-Hee Lee, Chung-Kyoon Auh, Sukchan Lee. Expression analysis of proline metabolism-related genes from halophyte Arabis stelleri under osmotic stress conditions.
Journal of integrative plant biology.
2010 Oct; 52(10):891-903. doi:
10.1111/j.1744-7909.2010.00990.x
. [PMID: 20883441] - Shih-Chi Hsu, Mark F Belmonte, John J Harada, Kentaro Inoue. Indispensable Roles of Plastids in Arabidopsis thaliana Embryogenesis.
Current genomics.
2010 Aug; 11(5):338-49. doi:
10.2174/138920210791616716
. [PMID: 21286311] - Ahmed M K Nada, Haytham M Abd-Elhalim, Fotouh M El-Domyati, Rania M I Abou-Ali, Ahmed Bahieldin. Expression, detection of candidate function and homology modeling for Vicia villosa ornithine δ-aminotransferase.
GM crops.
2010 Jul; 1(4):250-6. doi:
10.4161/gmcr.1.4.13756
. [PMID: 21844680] - Shu-Jing Sun, Shu-Qiao Guo, Xia Yang, Yong-Mei Bao, Hai-Juan Tang, Hui Sun, Ji Huang, Hong-Sheng Zhang. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice.
Journal of experimental botany.
2010 Jun; 61(10):2807-18. doi:
10.1093/jxb/erq120
. [PMID: 20460361] - Marzia Giribaldi, Laurence Gény, Serge Delrot, Andrea Schubert. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries.
Journal of experimental botany.
2010 May; 61(9):2447-58. doi:
10.1093/jxb/erq079
. [PMID: 20388747] - Jibao Chen, Xiaoyan Zhang, Ruilian Jing, Matthew W Blair, Xinguo Mao, Shumin Wang. Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2010 May; 120(7):1393-404. doi:
10.1007/s00122-010-1263-3
. [PMID: 20143043] - Dietmar Funck, Sonja Eckard, Gudrun Müller. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis.
BMC plant biology.
2010 Apr; 10(?):70. doi:
10.1186/1471-2229-10-70
. [PMID: 20403182] - Xinguo Mao, Hongying Zhang, Shanjun Tian, Xiaoping Chang, Ruilian Jing. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis.
Journal of experimental botany.
2010 Mar; 61(3):683-96. doi:
10.1093/jxb/erp331
. [PMID: 20022921] - Wellington Muchero, Jeffrey D Ehlers, Philip A Roberts. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.].
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2010 Feb; 120(3):509-18. doi:
10.1007/s00122-009-1171-6
. [PMID: 19834655] - Elodie Parre, Jacques de Virville, Françoise Cochet, Anne-Sophie Leprince, Luc Richard, Delphine Lefebvre-De Vos, Mohamed Ali Ghars, Marianne Bordenave, Alain Zachowski, Arnould Savouré. A new method for accurately measuring Delta(1)-pyrroline-5-carboxylate synthetase activity.
Methods in molecular biology (Clifton, N.J.).
2010; 639(?):333-40. doi:
10.1007/978-1-60761-702-0_21
. [PMID: 20387057] - Rexford Asare, Yousef Abu Kwaik. Exploitation of host cell biology and evasion of immunity by francisella tularensis.
Frontiers in microbiology.
2010; 1(?):145. doi:
10.3389/fmicb.2010.00145
. [PMID: 21687747] - Corina Hayano-Kanashiro, Carlos Calderón-Vázquez, Enrique Ibarra-Laclette, Luis Herrera-Estrella, June Simpson. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation.
PloS one.
2009 Oct; 4(10):e7531. doi:
10.1371/journal.pone.0007531
. [PMID: 19888455] - Gad Miller, Arik Honig, Hanan Stein, Nobuhiro Suzuki, Ron Mittler, Aviah Zilberstein. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
The Journal of biological chemistry.
2009 Sep; 284(39):26482-92. doi:
10.1074/jbc.m109.009340
. [PMID: 19635803] - Paul Francis Morris, Laura Rose Schlosser, Katherine Diane Onasch, Tom Wittenschlaeger, Ryan Austin, Nicholas Provart. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome.
PloS one.
2009 Jul; 4(7):e6133. doi:
10.1371/journal.pone.0006133
. [PMID: 19582169] - Valerie Walker, Graham A Mills. N-(pyrrole-2-carboxyl) glycine a diagnostic marker of hyperprolinaemia type II: mass spectra of trimethylsilyl derivatives.
Clinica chimica acta; international journal of clinical chemistry.
2009 Jul; 405(1-2):153-4. doi:
10.1016/j.cca.2009.04.008
. [PMID: 19376100] - Hong-Wei Xue, Xu Chen, Yu Mei. Function and regulation of phospholipid signalling in plants.
The Biochemical journal.
2009 Jun; 421(2):145-56. doi:
10.1042/bj20090300
. [PMID: 19552624] - Alessio Aprile, Anna M Mastrangelo, Anna M De Leonardis, Gabor Galiba, Enrica Roncaglia, Francesco Ferrari, Luigi De Bellis, Luana Turchi, Giovanni Giuliano, Luigi Cattivelli. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome.
BMC genomics.
2009 Jun; 10(?):279. doi:
10.1186/1471-2164-10-279
. [PMID: 19552804] - Fanny Ramel, Cécile Sulmon, Matthieu Bogard, Ivan Couée, Gwenola Gouesbet. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets.
BMC plant biology.
2009 Mar; 9(?):28. doi:
10.1186/1471-2229-9-28
. [PMID: 19284649] - Hadar Less, Gad Galili. Coordinations between gene modules control the operation of plant amino acid metabolic networks.
BMC systems biology.
2009 Jan; 3(?):14. doi:
10.1186/1752-0509-3-14
. [PMID: 19171064] - Mary S Kalamaki, Dimitris Alexandrou, Diamanto Lazari, Georgios Merkouropoulos, Vasileios Fotopoulos, Irene Pateraki, Alexandros Aggelis, Armando Carrillo-López, Maria J Rubio-Cabetas, Angelos K Kanellis. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.
Journal of experimental botany.
2009; 60(6):1859-71. doi:
10.1093/jxb/erp072
. [PMID: 19357433] - Ming Chen, Zhaoshi Xu, Lanqin Xia, Liancheng Li, Xianguo Cheng, Jianhui Dong, Qiaoyan Wang, Youzhi Ma. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.).
Journal of experimental botany.
2009; 60(1):121-35. doi:
10.1093/jxb/ern269
. [PMID: 18988621] - Michael Hansen, Carsten Friis, Steve Bowra, Preben Bach Holm, Eva Vincze. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley.
Journal of experimental botany.
2009; 60(1):153-67. doi:
10.1093/jxb/ern270
. [PMID: 19015218] - Peiguo Guo, Michael Baum, Stefania Grando, Salvatore Ceccarelli, Guihua Bai, Ronghua Li, Maria von Korff, Rajeev K Varshney, Andreas Graner, Jan Valkoun. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
Journal of experimental botany.
2009; 60(12):3531-44. doi:
10.1093/jxb/erp194
. [PMID: 19561048] - John W Whitaker, Glenn A McConkey, David R Westhead. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.
Genome biology.
2009; 10(4):R36. doi:
10.1186/gb-2009-10-4-r36
. [PMID: 19368726] - Marie-Laure Rosso, Sylvie Chauvaux, Rodrigue Dessein, Caroline Laurans, Lionel Frangeul, Céline Lacroix, Angèle Schiavo, Marie-Agnès Dillies, Jeannine Foulon, Jean-Yves Coppée, Claudine Médigue, Elisabeth Carniel, Michel Simonet, Michaël Marceau. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression.
BMC microbiology.
2008 Dec; 8(?):211. doi:
10.1186/1471-2180-8-211
. [PMID: 19055764] - Xujun Chen, Zejian Guo. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice.
International journal of molecular sciences.
2008 Dec; 9(12):2601-2613. doi:
10.3390/ijms9122601
. [PMID: 19330095] - Jana Stránská, David Kopecný, Martina Tylichová, Jacques Snégaroff, Marek Sebela. Ornithine delta-aminotransferase: An enzyme implicated in salt tolerance in higher plants.
Plant signaling & behavior.
2008 Nov; 3(11):929-35. doi:
10.4161/psb.6771
. [PMID: 19513195] - Till K Pellny, Olivier Van Aken, Christelle Dutilleul, Tonja Wolff, Karin Groten, Melike Bor, Rosine De Paepe, Agnès Reyss, Frank Van Breusegem, Graham Noctor, Christine H Foyer. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.
The Plant journal : for cell and molecular biology.
2008 Jun; 54(6):976-92. doi:
10.1111/j.1365-313x.2008.03472.x
. [PMID: 18318685] - James E Dombrowski, James C Baldwin, Ruth C Martin. Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum.
Journal of plant physiology.
2008 Apr; 165(6):651-61. doi:
10.1016/j.jplph.2007.06.003
. [PMID: 17707946] - Frances M Dupont. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics.
BMC plant biology.
2008 Apr; 8(?):39. doi:
10.1186/1471-2229-8-39
. [PMID: 18419817] - William G Spollen, Wenjing Tao, Babu Valliyodan, Kegui Chen, Lindsey G Hejlek, Jong-Joo Kim, Mary E Lenoble, Jinming Zhu, Hans J Bohnert, David Henderson, Daniel P Schachtman, Georgia E Davis, Gordon K Springer, Robert E Sharp, Henry T Nguyen. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential.
BMC plant biology.
2008 Apr; 8(?):32. doi:
10.1186/1471-2229-8-32
. [PMID: 18387193] - Roberto Mattioli, Daniele Marchese, Simone D'Angeli, Maria Maddalena Altamura, Paolo Costantino, Maurizio Trovato. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis.
Plant molecular biology.
2008 Feb; 66(3):277-88. doi:
10.1007/s11103-007-9269-1
. [PMID: 18060533] - Gyöngyi Székely, Edit Abrahám, Agnes Cséplo, Gábor Rigó, Laura Zsigmond, Jolán Csiszár, Ferhan Ayaydin, Nicolai Strizhov, Jan Jásik, Elmon Schmelzer, Csaba Koncz, László Szabados. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.
The Plant journal : for cell and molecular biology.
2008 Jan; 53(1):11-28. doi:
10.1111/j.1365-313x.2007.03318.x
. [PMID: 17971042] - Claudia O Silva-Ortega, Ana E Ochoa-Alfaro, Juan A Reyes-Agüero, Gerardo A Aguado-Santacruz, Juan F Jiménez-Bremont. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear.
Plant physiology and biochemistry : PPB.
2008 Jan; 46(1):82-92. doi:
10.1016/j.plaphy.2007.10.011
. [PMID: 18054243] - Laurent G Deluc, Jérôme Grimplet, Matthew D Wheatley, Richard L Tillett, David R Quilici, Craig Osborne, David A Schooley, Karen A Schlauch, John C Cushman, Grant R Cramer. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
BMC genomics.
2007 Nov; 8(?):429. doi:
10.1186/1471-2164-8-429
. [PMID: 18034876] - Gunnhild W Takle, Ian K Toth, May B Brurberg. Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum.
BMC plant biology.
2007 Sep; 7(?):50. doi:
10.1186/1471-2229-7-50
. [PMID: 17888160] - Elodie Parre, Mohamed Ali Ghars, Anne-Sophie Leprince, Laurent Thiery, Delphine Lefebvre, Marianne Bordenave, Luc Richard, Christian Mazars, Chedly Abdelly, Arnould Savouré. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis.
Plant physiology.
2007 May; 144(1):503-12. doi:
10.1104/pp.106.095281
. [PMID: 17369432] - Taishi Umezawa, Kaoru Urano, Kazuo Shinozaki. [Molecular mechanisms of drought tolerance and signal transduction in plants].
Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.
2007 May; 52(6 Suppl):550-6. doi:
"
. [PMID: 17566353] - Shisong Ma, Hans J Bohnert. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.
Genome biology.
2007; 8(4):R49. doi:
10.1186/gb-2007-8-4-r49
. [PMID: 17408486] - Yuanqing Jiang, Michael K Deyholos. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.
BMC plant biology.
2006 Oct; 6(?):25. doi:
10.1186/1471-2229-6-25
. [PMID: 17038189] - Jose Fernando De La Torre-Sanchez, Kimberly Preis, George E Seidel. Metabolic regulation of in-vitro-produced bovine embryos. I. Effects of metabolic regulators at different glucose concentrations with embryos produced by semen from different bulls.
Reproduction, fertility, and development.
2006; 18(5):585-96. doi:
10.1071/rd05063
. [PMID: 16836965] - Heidi J Mitchell, Michael A Ayliffe, Khalid Y Rashid, Anthony J Pryor. A rust-inducible gene from flax (fis1) is involved in proline catabolism.
Planta.
2006 Jan; 223(2):213-22. doi:
10.1007/s00425-005-0079-x
. [PMID: 16079997] - Omar Borsani, Jianhua Zhu, Paul E Verslues, Ramanjulu Sunkar, Jian-Kang Zhu. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis.
Cell.
2005 Dec; 123(7):1279-91. doi:
10.1016/j.cell.2005.11.035
. [PMID: 16377568] - N L Choudhary, R K Sairam, A Tyagi. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.).
Indian journal of biochemistry & biophysics.
2005 Dec; 42(6):366-70. doi:
"
. [PMID: 16955737] - Gadi Miller, Hanan Stein, Arik Honig, Yoram Kapulnik, Aviah Zilberstein. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation.
Planta.
2005 Sep; 222(1):70-9. doi:
10.1007/s00425-005-1518-4
. [PMID: 15809861] - Tomoko Inubushi, Tomohiro Takasawa, Yasue Tuboi, Naoko Watanabe, Kenji Aki, Nobuhiko Katunuma. Changes of glucose metabolism and skin-collagen neogenesis in vitamin B6 deficiency.
BioFactors (Oxford, England).
2005; 23(2):59-67. doi:
10.1002/biof.5520230201
. [PMID: 16179747] - Akihiro Ueda, Arumugam Kathiresan, Mayumi Inada, Yukio Narita, Toshihide Nakamura, Weiming Shi, Tetsuko Takabe, John Bennett. Osmotic stress in barley regulates expression of a different set of genes than salt stress does.
Journal of experimental botany.
2004 Oct; 55(406):2213-8. doi:
10.1093/jxb/erh242
. [PMID: 15361537]