(3S,6E)-Nerolidol (BioDeep_00000003553)

 

Secondary id: BioDeep_00000018657, BioDeep_00000398317, BioDeep_00001868519

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(S-(e))-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol

化学式: C15H26O (222.1984)
中文名称: 反-(+)-橙花叔醇, 顺-橙花椒醇, CIS-橙花叔醇, 1,6,10-十二碳三烯-3-醇,3,7,11-三甲基
谱图信息: 最多检出来源 Homo sapiens(otcml) 23.28%

分子结构信息

SMILES: C=CC(O)(C)CC/C=C(C)/CC/C=C(C)/C
InChI: InChI=1S/C15H26O/c1-6-15(5,16)12-8-11-14(4)10-7-9-13(2)3/h6,9,11,16H,1,7-8,10,12H2,2-5H3/b14-11-

描述信息

(3S,6E)-Nerolidol, also known as nerolidol or peruviol, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, (3S,6E)-nerolidol is considered to be an isoprenoid lipid molecule. (3S,6E)-Nerolidol is an isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers.
An isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers [Wikipedia]
Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].
Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

同义名列表

27 个代谢物同义名

(S-(e))-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol; [S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol; (3S,6E)-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol; (3S,6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol; (S,e)-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol; (6Z)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol; cis-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol; 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol; nerolidol, (S-(Z))-isomer; nerolidol, (S-(E))-isomer; (S)-(+)-trans-Nerolidol; nerolidol, (E)-isomer; nerolidol, (Z)-isomer; (3S)-trans-Nerolidol; (S)-trans-Nerolidol; trans-(+)-Nerolidol; (+)-trans-Nerolidol; (3S)-(e)-Nerolidol; (3S,6E)-Nerolidol; (3S,e)-Nerolidol; (S,e)-Nerolidol; cis-nerolidol; Nerolidiol; nerolidol; peruviol; Nerolidol; 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

104 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(102)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

97 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 CAPN1, CASP8, CASP9, CCND1, CCNE1, CDK1, CDK2, CYP2C19, CYP2D6, CYP3A4, EIF2AK3, ERN1, HDAC2
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 8 CDK1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, CYP3A4, EIF2AK3, ERN1
Nucleus 9 CASP8, CASP9, CCND1, CCNE1, CDK1, CDK2, EIF2AK3, HDAC2, PARP1
cytosol 11 BAK1, BBC3, CAPN1, CASP8, CASP9, CCND1, CCNE1, CDK1, CDK2, EIF2AK3, PARP1
nuclear body 1 PARP1
centrosome 4 CCND1, CCNE1, CDK1, CDK2
nucleoplasm 7 CASP8, CCND1, CCNE1, CDK1, CDK2, HDAC2, PARP1
Cell membrane 2 CAPN1, IGF1R
lamellipodium 1 CASP8
Golgi apparatus 1 ATRN
neuronal cell body 1 IGF1R
Cytoplasm, cytosol 1 PARP1
Lysosome 1 CAPN1
endosome 1 CDK2
plasma membrane 4 ATRN, CAPN1, CYP2C19, IGF1R
Membrane 10 BAK1, CAPN1, CDK1, CYP1B1, CYP2D6, CYP3A4, EIF2AK3, HDAC2, IGF1R, PARP1
axon 1 IGF1R
caveola 1 IGF1R
extracellular exosome 3 ATRN, CAPN1, CDK1
endoplasmic reticulum 4 BAK1, CYP2D6, EIF2AK3, ERN1
extracellular space 1 ATRN
perinuclear region of cytoplasm 1 EIF2AK3
bicellular tight junction 1 CCND1
mitochondrion 10 BAK1, BBC3, CAPN1, CASP8, CASP9, CDK1, CYP1B1, CYP2D6, ERN1, PARP1
protein-containing complex 4 CASP8, CASP9, HDAC2, PARP1
intracellular membrane-bounded organelle 6 CYP1A2, CYP1B1, CYP2C19, CYP2D6, CYP3A4, IGF1R
Microsome membrane 4 CYP1A2, CYP1B1, CYP2D6, CYP3A4
ESC/E(Z) complex 1 HDAC2
Single-pass type I membrane protein 4 ATRN, EIF2AK3, ERN1, IGF1R
extracellular region 1 CAPN1
Mitochondrion outer membrane 1 BAK1
Single-pass membrane protein 2 BAK1, CYP2D6
mitochondrial outer membrane 3 BAK1, BBC3, CASP8
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 1 CDK1
transcription regulator complex 2 CDK2, PARP1
BAK complex 1 BAK1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CDK1, CDK2
Nucleus membrane 1 CCND1
Bcl-2 family protein complex 1 BAK1
nuclear membrane 1 CCND1
T-tubule 1 IGF1R
nucleolus 1 PARP1
midbody 1 CDK1
Cell projection, lamellipodium 1 CASP8
pore complex 1 BAK1
focal adhesion 1 CAPN1
nuclear inner membrane 1 ERN1
receptor complex 1 IGF1R
chromatin 2 HDAC2, PARP1
mitotic spindle 1 CDK1
Chromosome 1 PARP1
cytoskeleton 1 CASP8
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 4 CDK1, CDK2, HDAC2, PARP1
site of double-strand break 1 PARP1
[Isoform 3]: Secreted 1 ATRN
nuclear envelope 2 CDK2, PARP1
Cornified envelope 1 CAPN1
cell body 1 CASP8
ficolin-1-rich granule lumen 1 CAPN1
transcription repressor complex 1 CCND1
male germ cell nucleus 1 CDK2
histone deacetylase complex 1 HDAC2
NuRD complex 1 HDAC2
apoptosome 1 CASP9
Cajal body 1 CDK2
Sin3-type complex 1 HDAC2
protein-DNA complex 1 PARP1
spindle microtubule 1 CDK1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 1 CASP8
ripoptosome 1 CASP8
[Isoform 1]: Cell membrane 1 ATRN
condensed chromosome 1 CDK2
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
site of DNA damage 1 PARP1
AIP1-IRE1 complex 1 ERN1
Ire1 complex 1 ERN1
IRE1-RACK1-PP2A complex 1 ERN1
IRE1-TRAF2-ASK1 complex 1 ERN1
cyclin-dependent protein kinase holoenzyme complex 3 CCND1, CDK1, CDK2
cyclin E1-CDK2 complex 2 CCNE1, CDK2
cyclin E2-CDK2 complex 1 CDK2
calpain complex 1 CAPN1
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1R
insulin receptor complex 1 IGF1R
cyclin A1-CDK1 complex 1 CDK1
cyclin A2-CDK1 complex 1 CDK1
cyclin B1-CDK1 complex 1 CDK1
protein kinase complex 1 IGF1R
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
cyclin D1-CDK4 complex 1 CCND1
cyclin A2-CDK2 complex 1 CDK2
cyclin D1-CDK6 complex 1 CCND1
cyclin A1-CDK2 complex 1 CDK2
caspase complex 1 CASP9


文献列表

  • Guangcai Zhang, Xiaohui Zhou, Qifan Feng, Weihua Ke, Jiahui Pan, Haiying Zhang, Yixian Luan, Beibei Lei. Nerolidol reduces depression-like behavior in mice and suppresses microglia activation by down-regulating DNA methyltransferase 1. Neuroreport. 2024 May; 35(7):457-465. doi: 10.1097/wnr.0000000000002029. [PMID: 38526920]
  • Wu Wang, Mindy Wang, Jiao Feng, Shijie Zhang, Yu Chen, Yuqiang Zhao, Ruiping Tian, Cancan Zhu, Niels J Nieuwenhuizen. Terpene Synthase Gene Family in Chinese Chestnut (Castanea mollissima BL.) Harbors Two Sesquiterpene Synthase Genes Implicated in Defense against Gall Wasp Dryocosmus kuriphilus. Journal of agricultural and food chemistry. 2024 Jan; 72(3):1571-1581. doi: 10.1021/acs.jafc.3c07086. [PMID: 38206573]
  • John Staton Laws, Scott D Smid. Characterizing cannabis-prevalent terpenes for neuroprotection reveal a role for α and β-pinenes in mitigating amyloid β-evoked neurotoxicity and aggregation in vitro. Neurotoxicology. 2024 Jan; 100(?):16-24. doi: 10.1016/j.neuro.2023.12.004. [PMID: 38070653]
  • Diksha, Sumit Singh, Evani Mahajan, Satwinder Kaur Sohal. Immunomodulatory, cyto-genotoxic, and growth regulatory effects of nerolidol on melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Toxicon : official journal of the International Society on Toxinology. 2023 Sep; 233(?):107248. doi: 10.1016/j.toxicon.2023.107248. [PMID: 37562702]
  • Hanyang Dai, Baosheng Liu, Lei Yang, Yu Yao, Mengyun Liu, Wenqing Xiao, Shuai Li, Rui Ji, Yang Sun. Investigating the Regulatory Mechanism of the Sesquiterpenol Nerolidol from a Plant on Juvenile Hormone-Related Genes in the Insect Spodoptera exigua. International journal of molecular sciences. 2023 Aug; 24(17):. doi: 10.3390/ijms241713330. [PMID: 37686136]
  • Nicola Tan, Leonard Ong, Sudha Shukal, Xixian Chen, Congqiang Zhang. High-Yield Biosynthesis of trans-Nerolidol from Sugar and Glycerol. Journal of agricultural and food chemistry. 2023 May; ?(?):. doi: 10.1021/acs.jafc.3c01161. [PMID: 37148252]
  • Neşe Başak Türkmen, Hande Yüce, Muhterem Aydın, Aslı Taşlıdere, Ayşegül Doğan, Dilan Aşkın Özek, Taha Bartu Hayal, Şeyma Yaşar, Osman Çiftçi, Songül Ünüvar. Nerolidol attenuates dehydroepiandrosterone-induced polycystic ovary syndrome in rats by regulating oxidative stress and decreasing apoptosis. Life sciences. 2023 Feb; 315(?):121380. doi: 10.1016/j.lfs.2023.121380. [PMID: 36640898]
  • Arodí P Favaris, Amanda C Túler, Weliton D Silva, Marvin Pec, Sérgio R Rodrigues, Artur C D Maia, José Maurício S Bento. Methyl benzoate and nerolidol attract the cyclocephaline beetle Cyclocephala paraguayensis to trumpet flowers. Die Naturwissenschaften. 2023 Jan; 110(1):3. doi: 10.1007/s00114-023-01831-2. [PMID: 36700962]
  • Idglan Sá de Lima, Maria Onaira Gonçalves Ferreira, Esmeralda Maria Lustosa Barros, Marcia Dos Santos Rizzo, Jailson de Araújo Santos, Alessandra Braga Ribeiro, Josy Anteveli Osajima Furtini, Edson C Silva-Filho, Leticia M Estevinho. Antibacterial and Healing Effect of Chicha Gum Hydrogel (Sterculia striata) with Nerolidol. International journal of molecular sciences. 2023 Jan; 24(3):. doi: 10.3390/ijms24032210. [PMID: 36768534]
  • Ting Zhang, Yongjie Zheng, Chao Fu, Haikuan Yang, Xinliang Liu, Fengying Qiu, Xindong Wang, Zongde Wang. Chemical Variation and Environmental Influence on Essential Oil of Cinnamomum camphora. Molecules (Basel, Switzerland). 2023 Jan; 28(3):. doi: 10.3390/molecules28030973. [PMID: 36770639]
  • Mwafaq Ibdah, Shada Hino, Bhagwat Nawade, Mosaab Yahyaa, Tejas C Bosamia, Liora Shaltiel-Harpaz. Identification and characterization of three nearly identical linalool/nerolidol synthase from Acorus calamus. Phytochemistry. 2022 Oct; 202(?):113318. doi: 10.1016/j.phytochem.2022.113318. [PMID: 35872238]
  • Shabi Parvez, Archana Karole, Shyam Lal Mudavath. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids and surfaces. B, Biointerfaces. 2022 Jul; 215(?):112520. doi: 10.1016/j.colsurfb.2022.112520. [PMID: 35489319]
  • Usman Sabir, Hafiz Muhammad Irfan, Alamgeer, Aman Ullah, Yusuf S Althobaiti, Fahad S Alshehri, Zahid Rasul Niazi. Downregulation of hepatic fat accumulation, inflammation and fibrosis by nerolidol in purpose built western-diet-induced multiple-hit pathogenesis of NASH animal model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jun; 150(?):112956. doi: 10.1016/j.biopha.2022.112956. [PMID: 35447548]
  • Vaitheeswari Balakrishnan, Sindhu Ganapathy, Vinothkumar Veerasamy, Ramachandhiran Duraisamy, Vigil Anbiah Sathiavakoo, Vasudevan Krishnamoorthy, Vennila Lakshmanan. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis. Journal of biochemical and molecular toxicology. 2022 Jun; 36(6):e23029. doi: 10.1002/jbt.23029. [PMID: 35243731]
  • Lais Alonso, Laryssa Ketelyn Lima Pimenta, André Kipnis, Antonio Alonso. Mycobacterium abscessus cell wall and plasma membrane characterization by EPR spectroscopy and effects of amphotericin B, miltefosine and nerolidol. Biochimica et biophysica acta. Biomembranes. 2022 05; 1864(5):183872. doi: 10.1016/j.bbamem.2022.183872. [PMID: 35085568]
  • Shanila Akhter, Hafiz Muhammad Irfan, Alamgeer, Shah Jahan, Muhammad Shahzad, Muhammad Bilal Latif. Nerolidol: a potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology. 2022 Apr; 30(2):537-548. doi: 10.1007/s10787-022-00930-2. [PMID: 35212850]
  • Nengmei Jiang, Yuanyuan Zhang. Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Human & experimental toxicology. 2022 Jan; 41(?):9603271221126487. doi: 10.1177/09603271221126487. [PMID: 36169646]
  • Varvara K Leonardou, Evangelos Doudoumis, Evangelos Tsormpatsidis, Eleni Vysini, Theofanis Papanikolopoulos, Vasileios Papasotiropoulos, Fotini N Lamari. Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413499. [PMID: 34948297]
  • Zhan-Ku Shi, Xiao-Wei Gong, Jiang-Yuan Zhao, Ming-Gang Li, Xiu-Lin Han, Meng-Liang Wen. Functional Characterization of a New Bifunctional Terpene Synthase LpNES1 from a Medicinal Plant Laggera pter odonta. Journal of oleo science. 2021 Nov; 70(11):1641-1650. doi: 10.5650/jos.ess21172. [PMID: 34645748]
  • Salim M A Bastaki, Naheed Amir, Ernest Adeghate, Shreesh Ojha. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Molecular and cellular biochemistry. 2021 Sep; 476(9):3497-3512. doi: 10.1007/s11010-021-04094-5. [PMID: 33999335]
  • Nur Suhanawati Ashaari, Mohd Hairul Ab Rahim, Suriana Sabri, Kok Song Lai, Adelene Ai-Lian Song, Raha Abdul Rahim, Janna Ong Abdullah. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus. Scientific reports. 2021 08; 11(1):17094. doi: 10.1038/s41598-021-96524-z. [PMID: 34429465]
  • Paula Piekarski-Barchik, Suelen Ávila, Sila M R Ferreira, Nayana C S Santos, Francisco A Marques, Mayara P Dos Santos, Marco T Grassi, Marilis D Miguel, Obdulio G Miguel. Mineral Content, Antioxidant Activity and Essential Oil of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. Leaves: Plant from South American Biodiversity. Chemistry & biodiversity. 2021 Aug; 18(8):e2100257. doi: 10.1002/cbdv.202100257. [PMID: 34101363]
  • Leandro P Bolzan, Danilo C Barroso, Carine F Souza, Fernanda C Oliveira, Roger Wagner, Bernardo Baldisserotto, Adalberto L Val, Matheus D Baldissera. Dietary supplementation with nerolidol improves the antioxidant capacity and muscle fatty acid profile of Brycon amazonicus exposed to acute heat stress. Journal of thermal biology. 2021 Jul; 99(?):103003. doi: 10.1016/j.jtherbio.2021.103003. [PMID: 34420634]
  • Prema, Takeshi Kodama, Hnin Htet Wai Nyunt, Hla Ngwe, Ikuro Abe, Hiroyuki Morita. Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida. Journal of natural medicines. 2021 Jun; 75(3):489-498. doi: 10.1007/s11418-020-01480-z. [PMID: 33687660]
  • Yueh-Min Lin, Khan Farheen Badrealam, Chia-Hua Kuo, Jayasimharayalu Daddam, Marthandam Asokan Shibu, Kuan-Ho Lin, Tsung-Jung Ho, Vijaya Padma Viswanadha, Wei-Wen Kuo, Chih-Yang Huang. Small Molecule Compound Nerolidol attenuates Hypertension induced hypertrophy in spontaneously hypertensive rats through modulation of Mel-18-IGF-IIR signalling. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153450. doi: 10.1016/j.phymed.2020.153450. [PMID: 33611212]
  • Xinhua Zhang, Jaime A Teixeira da Silva, Meiyun Niu, Ting Zhang, Huanfang Liu, Feng Zheng, Yunfei Yuan, Yuan Li, Lin Fang, Songjun Zeng, Guohua Ma. Functional characterization of an Indian sandalwood (Santalum album L.) dual-localized bifunctional nerolidol/linalool synthase gene involved in stress response. Phytochemistry. 2021 Mar; 183(?):112610. doi: 10.1016/j.phytochem.2020.112610. [PMID: 33383368]
  • Eloísa Portugal Barros Silva Soares de Souza, Marcelo Vinicius Lins Dantas Gomes, Bruno Dos Santos Lima, Luiz André Santos Silva, Saravanan Shanmugan, Marcelo Duarte Cavalcanti, Ricardo Luiz Cavalcanti de Albuquerque Júnior, Flavio Machado de Souza Carvalho, Ricardo Neves Marreto, Claudio Moreira de Lima, Lucindo José Quintans Júnior, Adriano Antunes de Souza Araújo. Nerolidol-beta-cyclodextrin inclusion complex enhances anti-inflammatory activity in arthritis model and improves gastric protection. Life sciences. 2021 Jan; 265(?):118742. doi: 10.1016/j.lfs.2020.118742. [PMID: 33181176]
  • Yueh-Min Lin, Khan Farheen Badrealam, Wei-Wen Kuo, Pei Fang Lai, William Shao-Tsu Chen, Cecilia Hsuan Day, Tsung-Jung Ho, Vijaya Padma Viswanadha, Marthandam Asokan Shibu, Chih-Yang Huang. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Jan; 147(?):111837. doi: 10.1016/j.fct.2020.111837. [PMID: 33212213]
  • Mahpara Qadir, Antim Kumar Maurya, Vijai Kant Agnihotri, Wajaht A Shah. Volatile composition, antibacterial and antioxidant activities of artemisia tournefortiana Reichb. from Kashmir, India. Natural product research. 2021 Jan; 35(1):152-156. doi: 10.1080/14786419.2019.1613990. [PMID: 31135230]
  • Ashif Iqubal, Mansoor Ali Syed, Abul Kalam Najmi, Faizul Azam, George E Barreto, Mohammad Kashif Iqubal, Javed Ali, Syed Ehtaishamul Haque. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1. Experimental neurology. 2020 12; 334(?):113464. doi: 10.1016/j.expneurol.2020.113464. [PMID: 32941795]
  • Yuanxin Wang, Yanhong Liu, Xingchun Wang, Dong Jia, Jun Hu, Ling-Ling Gao, Ruiyan Ma. Agasicles hygrophila attack increases nerolidol synthase gene expression in Alternanthera philoxeroides, facilitating host finding. Scientific reports. 2020 10; 10(1):16994. doi: 10.1038/s41598-020-73130-z. [PMID: 33046727]
  • Guanhua Liu, Mei Yang, Jianyu Fu. Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis). Plant physiology and biochemistry : PPB. 2020 Oct; 155(?):650-657. doi: 10.1016/j.plaphy.2020.08.004. [PMID: 32858427]
  • Mingyue Zhao, Lu Wang, Jingming Wang, Jieyang Jin, Na Zhang, Lei Lei, Ting Gao, Tingting Jing, Shangrui Zhang, Yi Wu, Bin Wu, Yunqing Hu, Xiaochun Wan, Wilfried Schwab, Chuankui Song. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of integrative plant biology. 2020 Oct; 62(10):1461-1468. doi: 10.1111/jipb.12937. [PMID: 32275096]
  • Matheus D Baldissera, Carine F Souza, Maiara C Velho, Vitória A Bassotto, Aline F Ourique, Aleksandro S Da Silva, Bernardo Baldisserotto. Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus). Naunyn-Schmiedeberg's archives of pharmacology. 2020 05; 393(5):751-759. doi: 10.1007/s00210-020-01824-2. [PMID: 31953674]
  • Anna Wróblewska-Kurdyk, Katarzyna Dancewicz, Anna Gliszczyńska, Beata Gabryś. New insight into the behaviour modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Homoptera: Aphididae). Bulletin of entomological research. 2020 Apr; 110(2):249-258. doi: 10.1017/s0007485319000609. [PMID: 31559933]
  • Matheus D Baldissera, Carine F Souza, Aleksandro S da Silva, Maiara C Velho, Aline F Ourique, Bernardo Baldisserotto. Benefits of nanotechnology: Dietary supplementation with nerolidol-loaded nanospheres increases survival rates, reduces bacterial loads and prevents oxidative damage in brains of Nile tilapia experimentally infected by Streptococcus agalactiae. Microbial pathogenesis. 2020 Apr; 141(?):103989. doi: 10.1016/j.micpath.2020.103989. [PMID: 31982567]
  • Nur Suhanawati Ashaari, Mohd Hairul Ab Rahim, Suriana Sabri, Kok Song Lai, Adelene Ai-Lian Song, Raha Abdul Rahim, Wan Muhamad Asrul Nizam Wan Abdullah, Janna Ong Abdullah. Functional characterization of a new terpene synthase from Plectranthus amboinicus. PloS one. 2020; 15(7):e0235416. doi: 10.1371/journal.pone.0235416. [PMID: 32614884]
  • A Špičáková, V Bazgier, L Skálová, M Otyepka, P Anzenbacher. beta-caryophyllene oxide and trans-nerolidol affect enzyme activity of CYP3A4 - in vitro and in silico studies. Physiological research. 2019 11; 68(Suppl 1):S51-S58. doi: 10.33549/physiolres.934323. [PMID: 31755290]
  • Shuang-Feng Sun, Fang-Fang Zeng, Shan-Cheng Yi, Man-Qun Wang. Molecular Screening of Behaviorally Active Compounds with CmedOBP14 from the Rice Leaf Folder Cnaphalocrocis medinalis. Journal of chemical ecology. 2019 Oct; 45(10):849-857. doi: 10.1007/s10886-019-01106-z. [PMID: 31512099]
  • Michaela Šadibolová, Tomáš Zárybnický, Tomáš Smutný, Petr Pávek, Zdeněk Šubrt, Petra Matoušková, Lenka Skálová, Iva Boušová. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver. International journal of molecular sciences. 2019 Sep; 20(18):. doi: 10.3390/ijms20184562. [PMID: 31540101]
  • Loordhurani Asaikumar, Lakshmanan Vennila, Palaniyandi Akila, Subramanian Sivasangari, Kaliyamoorthi Kanimozhi, Vengatesan Premalatha, Ganapathi Sindhu. Preventive effect of nerolidol on isoproterenol induced myocardial damage in Wistar rats: Evidences from biochemical and histopathological studies. Drug development research. 2019 09; 80(6):814-823. doi: 10.1002/ddr.21564. [PMID: 31313346]
  • Mummadireddy Ramya, Pue Hee Park, Yu-Chen Chuang, Oh Keun Kwon, Hye Ryun An, Pil Man Park, Yun Su Baek, Byoung-Chorl Kang, Wen-Chieh Tsai, Hong-Hwa Chen. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC plant biology. 2019 Aug; 19(1):337. doi: 10.1186/s12870-019-1940-6. [PMID: 31375064]
  • Lais Alonso, Kelly Souza Fernandes, Sebastião Antônio Mendanha, Pablo José Gonçalves, Rodrigo Saar Gomes, Miriam Leandro Dorta, Antonio Alonso. In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics. Biochimica et biophysica acta. Biomembranes. 2019 06; 1861(6):1049-1056. doi: 10.1016/j.bbamem.2019.03.006. [PMID: 30890467]
  • Qin-Qin Shen, Li-Ping Wang, Jin Liang, Li-Jun Liu, Qiang Wang. [Functional characterization of SsNES responsible for nerolidol biosynthesis in Senecio scandens]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2019 Apr; 44(7):1334-1340. doi: 10.19540/j.cnki.cjcmm.20181204.009. [PMID: 31090289]
  • E-Eum Woo, Ji-Yul Kim, Jeong-Seon Kim, Soon-Wo Kwon, In-Kyoung Lee, Bong-Sik Yun. Mannonerolidol, a new nerolidol mannoside from culture broth of Schizophyllum commune. The Journal of antibiotics. 2019 03; 72(3):178-180. doi: 10.1038/s41429-018-0130-3. [PMID: 30542161]
  • Farhat Abbas, Yanguo Ke, Rangcai Yu, Yanping Fan. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'. Planta. 2019 Jan; 249(1):71-93. doi: 10.1007/s00425-018-3006-7. [PMID: 30218384]
  • Yung-Lun Ni, Huan-Ting Shen, Chun-Hung Su, Wen-Ying Chen, Rosa Huang-Liu, Chun-Jung Chen, Shih-Pin Chen, Yu-Hsiang Kuan. Nerolidol Suppresses the Inflammatory Response during Lipopolysaccharide-Induced Acute Lung Injury via the Modulation of Antioxidant Enzymes and the AMPK/Nrf-2/HO-1 Pathway. Oxidative medicine and cellular longevity. 2019; 2019(?):9605980. doi: 10.1155/2019/9605980. [PMID: 31827712]
  • Kyvia F Alves, Flávio H Caetano, Israel J Pereira Garcia, Hérica L Santos, Denise B Silva, João M Siqueira, Aparecida S Tanaka, Stênio N Alves. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environmental science and pollution research international. 2018 Nov; 25(31):31718-31726. doi: 10.1007/s11356-018-3149-x. [PMID: 30209768]
  • Kateřina Lněničková, Hana Svobodová, Lenka Skálová, Martin Ambrož, Filip Novák, Petra Matoušková. The impact of sesquiterpenes β-caryophyllene oxide and trans-nerolidol on xenobiotic-metabolizing enzymes in mice in vivo. Xenobiotica; the fate of foreign compounds in biological systems. 2018 Nov; 48(11):1089-1097. doi: 10.1080/00498254.2017.1398359. [PMID: 29098926]
  • Bing Mu, Yin Zhu, Hai-Peng Lv, Han Yan, Qun-Hua Peng, Zhi Lin. The enantiomeric distributions of volatile constituents in different tea cultivars. Food chemistry. 2018 Nov; 265(?):329-336. doi: 10.1016/j.foodchem.2018.05.094. [PMID: 29884390]
  • Lin Ni, Li Li, Yatie Qiu, Fang-You Chen, Chuang-Jun Li, Jie Ma, Dongming Zhang. Triptergosidols A-D, nerolidol-type sesquiterpene glucosides from the leaves of Tripterygium wilfordii. Fitoterapia. 2018 Jul; 128(?):187-191. doi: 10.1016/j.fitote.2018.05.018. [PMID: 29778574]
  • Jean-Louis Magnard, Aurélie Rius Bony, Fabienne Bettini, Ausilia Campanaro, Bernard Blerot, Sylvie Baudino, Frédéric Jullien. Linalool and linalool nerolidol synthases in roses, several genes for little scent. Plant physiology and biochemistry : PPB. 2018 Jun; 127(?):74-87. doi: 10.1016/j.plaphy.2018.03.009. [PMID: 29550664]
  • Ling Chuang, Chi-Hsiang Wen, Yi-Ru Lee, Yan-Liang Lin, Li-Ren Hsu, Sheng-Yang Wang, Fang-Hua Chu. Identification, Functional Characterization, and Seasonal Expression Patterns of Five Sesquiterpene Synthases in Liquidambar formosana. Journal of natural products. 2018 05; 81(5):1162-1172. doi: 10.1021/acs.jnatprod.7b00773. [PMID: 29746128]
  • Efat Jafari, Gholamabbas Ghanbarian, Atefeh Bahmanzadegan. Essential oil composition of aerial parts of Micromeria persica Boiss. from Western of Shiraz, Iran. Natural product research. 2018 Apr; 32(8):991-996. doi: 10.1080/14786419.2017.1374270. [PMID: 28893105]
  • Ming-Xing Zhou, Guo-Hui Li, Bin Sun, You-Wei Xu, Ai-Ling Li, Yan-Ru Li, Dong-Mei Ren, Xiao-Ning Wang, Xue-Sen Wen, Hong-Xiang Lou, Tao Shen. Identification of novel Nrf2 activators from Cinnamomum chartophyllum H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells. Redox biology. 2018 04; 14(?):154-163. doi: 10.1016/j.redox.2017.09.004. [PMID: 28942193]
  • Paola Andrade, David Manzano, Karla Ramirez-Estrada, Daniel Caudepon, Montserrat Arro, Albert Ferrer, Michael A Phillips. Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1. Plant science : an international journal of experimental plant biology. 2018 Feb; 267(?):112-123. doi: 10.1016/j.plantsci.2017.11.013. [PMID: 29362090]
  • Guo-Feng Liu, Jing-Jing Liu, Zhi-Rong He, Fu-Min Wang, Hua Yang, Yi-Feng Yan, Ming-Jun Gao, Margaret Y Gruber, Xiao-Chun Wan, Shu Wei. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant, cell & environment. 2018 Jan; 41(1):176-186. doi: 10.1111/pce.13080. [PMID: 28963730]
  • Soufiane M'sou, Mohamed Alifriqui, Abderrahmane Romane. Phytochemical study and biological effects of the essential oil of Fraxinus dimorpha Coss & Durieu §. Natural product research. 2017 Dec; 31(23):2797-2800. doi: 10.1080/14786419.2017.1294173. [PMID: 28278638]
  • Veronika Hanušová, Kateřina Caltová, Hana Svobodová, Martin Ambrož, Adam Skarka, Natálie Murínová, Věra Králová, Pavel Tomšík, Lenka Skálová. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):828-836. doi: 10.1016/j.biopha.2017.09.008. [PMID: 28903178]
  • Sebastião Antonio Mendanha, Cássia Alessandra Marquezin, Amando Siuiti Ito, Antonio Alonso. Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. International journal of pharmaceutics. 2017 Oct; 532(1):547-554. doi: 10.1016/j.ijpharm.2017.09.046. [PMID: 28935253]
  • Bruna Isabela Biazi, Thalita Alves Zanetti, Adrivanio Baranoski, Amanda Cristina Corveloni, Mário Sérgio Mantovani. Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation. Basic & clinical pharmacology & toxicology. 2017 Oct; 121(4):334-341. doi: 10.1111/bcpt.12772. [PMID: 28256105]
  • Huijuanzi Rao, Pengxiang Lai, Yang Gao. Chemical Composition, Antibacterial Activity, and Synergistic Effects with Conventional Antibiotics and Nitric Oxide Production Inhibitory Activity of Essential Oil from Geophila repens (L.) I.M. Johnst. Molecules (Basel, Switzerland). 2017 Sep; 22(9):. doi: 10.3390/molecules22091561. [PMID: 28926976]
  • Ying Zhou, Lanting Zeng, Xiaoyu Liu, Jiadong Gui, Xin Mei, Xiumin Fu, Fang Dong, Jingchi Tang, Lingyun Zhang, Ziyin Yang. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food chemistry. 2017 Sep; 231(?):78-86. doi: 10.1016/j.foodchem.2017.03.122. [PMID: 28450026]
  • Marcos P Silva, Rosimeire N de Oliveira, Ana C Mengarda, Daniel B Roquini, Silmara M Allegretti, Maria C Salvadori, Fernanda S Teixeira, Damião P de Sousa, Pedro L S Pinto, Ademar A da Silva Filho, Josué de Moraes. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. International journal of antimicrobial agents. 2017 Sep; 50(3):467-472. doi: 10.1016/j.ijantimicag.2017.06.005. [PMID: 28666754]
  • Ligia Fernanda Ceole, Maria DAS Graças Cardoso, Maurilio José Soares. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology. 2017 Aug; 144(9):1179-1190. doi: 10.1017/s0031182017000452. [PMID: 28482935]
  • Laura Scalvenzi, Alessandro Grandini, Antonella Spagnoletti, Massimo Tacchini, David Neill, José Luis Ballesteros, Gianni Sacchetti, Alessandra Guerrini. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile. Molecules (Basel, Switzerland). 2017 Jul; 22(7):. doi: 10.3390/molecules22071163. [PMID: 28704964]
  • Mehrnaz Riasat, Ali Ashraf Jafari, Atefeh Bahmanzadegan, Ahmad Hatami, Faraneh Zareiyan. The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum. Natural product research. 2017 Jul; 31(14):1709-1712. doi: 10.1080/14786419.2017.1286484. [PMID: 28278666]
  • Alena Špičáková, Barbora Szotáková, Diana Dimunová, Zuzana Myslivečková, Vladimír Kubíček, Martin Ambrož, Kateřina Lněničková, Kristýna Krasulová, Pavel Anzenbacher, Lenka Skálová. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions. Molecules (Basel, Switzerland). 2017 Mar; 22(4):. doi: 10.3390/molecules22040509. [PMID: 28338641]
  • Lu Zhang, Dandan Sun, Yan Bao, Yan Shi, Yan Cui, Minghao Guo. Nerolidol Protects Against LPS-induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Signaling. Phytotherapy research : PTR. 2017 Mar; 31(3):459-465. doi: 10.1002/ptr.5770. [PMID: 28093813]
  • Ping Su, Tianyuan Hu, Yujia Liu, Yuru Tong, Hongyu Guan, Yifeng Zhang, Jiawei Zhou, Luqi Huang, Wei Gao. Functional characterization of NES and GES responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool in Tripterygium wilfordii. Scientific reports. 2017 01; 7(?):40851. doi: 10.1038/srep40851. [PMID: 28128232]
  • Bingyin Peng, Manuel R Plan, Panagiotis Chrysanthopoulos, Mark P Hodson, Lars K Nielsen, Claudia E Vickers. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metabolic engineering. 2017 01; 39(?):209-219. doi: 10.1016/j.ymben.2016.12.003. [PMID: 27939849]
  • Emmanuel O Ogah, Lesley E Smart, Christine M Woodcock, John C Caulfield, Michael A Birkett, John A Pickett, Francis E Nwilene, Toby J Bruce. Electrophysiological and behavioral responses of female African rice gall midge, Orseolia oryzivora Harris and Gagné, to host plant volatiles. Journal of chemical ecology. 2017 Jan; 43(1):13-16. doi: 10.1007/s10886-016-0788-6. [PMID: 27815665]
  • Annett Richter, Claudia Schaff, Zhiwu Zhang, Alexander E Lipka, Feng Tian, Tobias G Köllner, Christiane Schnee, Susanne Preiß, Sandra Irmisch, Georg Jander, Willhelm Boland, Jonathan Gershenzon, Edward S Buckler, Jörg Degenhardt. Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in Zea mays. The Plant cell. 2016 10; 28(10):2651-2665. doi: 10.1105/tpc.15.00919. [PMID: 27662898]
  • Hayate Javed, Sheikh Azimullah, Salema B Abul Khair, Shreesh Ojha, M Emdadul Haque. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC neuroscience. 2016 08; 17(1):58. doi: 10.1186/s12868-016-0293-4. [PMID: 27549180]
  • Xiang Chen, Yuwei Wang, Jia Sun, Jin Wang, Hang Xun, Feng Tang. Cloning, expression and functional characterization of two sesquiterpene synthase genes from moso bamboo (Phyllostachys edulis). Protein expression and purification. 2016 Apr; 120(?):1-6. doi: 10.1016/j.pep.2015.11.019. [PMID: 26626450]
  • Dimitrije Markovic, Neda Nikolic, Robert Glinwood, Gulaim Seisenbaeva, Velemir Ninkovic. Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection?. PloS one. 2016; 11(11):e0165742. doi: 10.1371/journal.pone.0165742. [PMID: 27828995]
  • Shunichi Utsumi, Tomohiro Nakamura, Yasuko Obata, Noboru Ohta, Kozo Takayama. Effect of Nerolidol and/or Levulinic Acid on the Thermotropic Behavior of Lipid Lamellar Structures in the Stratum Corneum. Chemical & pharmaceutical bulletin. 2016; 64(12):1692-1697. doi: 10.1248/cpb.c16-00515. [PMID: 27904078]
  • Mariela Pontin, Rubén Bottini, José Luis Burba, Patricia Piccoli. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry. 2015 Jul; 115(?):152-60. doi: 10.1016/j.phytochem.2015.02.003. [PMID: 25819001]
  • Rodrigo Alonso, Federico J Berli, Rubén Bottini, Patricia Piccoli. Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant physiology and biochemistry : PPB. 2015 Jun; 91(?):56-60. doi: 10.1016/j.plaphy.2015.03.011. [PMID: 25885355]
  • Emmanoel V Costa, Leociley R A Menezes, Suellen L A Rocha, Ingrid R S Baliza, Rosane B Dias, Clarissa A Gurgel Rocha, Milena B P Soares, Daniel P Bezerra. Antitumor Properties of the leaf essential oil of Zornia brasiliensis. Planta medica. 2015 May; 81(7):563-7. doi: 10.1055/s-0035-1545842. [PMID: 25856436]
  • Yi Cai, Feng-feng Xie, Ping-hua Yan, Ri-cheng Gan, Hua Zhu. [Volatile Oil Analysis of Piper hongkongense form Different Hatbitats by GC-MS]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Feb; 38(2):323-6. doi: ". [PMID: 26415410]
  • Tiago Coelho de Assis Lage, Ricardo Marques Montanari, Sergio Antonio Fernandes, Caio Márcio de Oliveira Monteiro, Tatiane de Oliveira Souza Senra, Viviane Zeringota, Renata da Silva Matos, Erik Daemon. Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Experimental parasitology. 2015 Jan; 148(?):24-9. doi: 10.1016/j.exppara.2014.10.011. [PMID: 25448290]
  • Sabine Krist, Daniel Banovac, Nurhayat Tabanca, David E Wedge, Velizar K Gochev, Jürgen Wanner, Erich Schmidt, Leopold Jirovetz. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Natural product communications. 2015 Jan; 10(1):143-8. doi: . [PMID: 25920237]
  • Alexandre Yukio Saito, Rodrigo Antonio Ceschini Sussmann, Emilia Akemi Kimura, Maria Belen Cassera, Alejandro Miguel Katzin. Quantification of nerolidol in mouse plasma using gas chromatography-mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2015; 111(?):100-3. doi: 10.1016/j.jpba.2015.03.030. [PMID: 25880240]
  • Bao-Qing Zhu, Jian Cai, Zhi-Qun Wang, Xiao-Qing Xu, Chang-Qing Duan, Qiu-Hong Pan. Identification of a plastid-localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries. International journal of molecular sciences. 2014 Dec; 15(12):21992-2010. doi: 10.3390/ijms151221992. [PMID: 25470020]
  • Meryem Sedef Erdal, Ayca Yıldız Peköz, Buket Aksu, Ahmet Araman. Impacts of chemical enhancers on skin permeation and deposition of terbinafine. Pharmaceutical development and technology. 2014 Aug; 19(5):565-70. doi: 10.3109/10837450.2013.813538. [PMID: 23841559]
  • C Le Thanh, Kamlesh R Chauhan. Simple and short synthesis of trans-(R)-nerolidol, a pheromone component of fruit spotting bug. Natural product communications. 2014 Mar; 9(3):297-8. doi: . [PMID: 24689198]
  • Hoang D Trung, Tran D Thang, Pham H Ban, Tran M Hoi, Do N Dai, Isiaka A Ogunwande. Terpene constituents of the leaves of five Vietnamese species of Clausena (Rutaceae). Natural product research. 2014; 28(9):622-30. doi: 10.1080/14786419.2014.888555. [PMID: 24617735]
  • Andja Vucetic, Iris Dahlin, Olivera Petrovic-Obradovic, Robert Glinwood, Ben Webster, Velemir Ninkovic. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant signaling & behavior. 2014; 9(8):e29517. doi: 10.4161/psb.29517. [PMID: 25763628]
  • Heverton Silva Camargos, Rodrigo Alves Moreira, Sebastião Antonio Mendanha, Kelly Souza Fernandes, Miriam Leandro Dorta, Antonio Alonso. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PloS one. 2014; 9(8):e104429. doi: 10.1371/journal.pone.0104429. [PMID: 25101672]
  • Ayşegül Bektaş, Erdal Cevher, Sevgi Güngör, Yıldız Ozsoy. Design and evaluation of polysaccharide-based transdermal films for the controlled delivery of nifedipine. Chemical & pharmaceutical bulletin. 2014; 62(2):144-52. doi: 10.1248/cpb.c13-00579. [PMID: 24492584]
  • Paula Pimentel Valente, Juliana Mendes Amorim, Rachel Oliveira Castilho, Romário Cerqueira Leite, Múcio Flávio Barbosa Ribeiro. In vitro acaricidal efficacy of plant extracts from Brazilian flora and isolated substances against Rhipicephalus microplus (Acari: Ixodidae). Parasitology research. 2014 Jan; 113(1):417-23. doi: 10.1007/s00436-013-3670-2. [PMID: 24221889]
  • Prajwal Paudel, Prabodh Satyal, Samjhana Maharjan, Nawal Shrestha, William N Setzer. Volatile analysis and antimicrobial screening of the parasitic plant Cuscuta reflexa Roxb. from Nepal. Natural product research. 2014; 28(2):106-10. doi: 10.1080/14786419.2013.847440. [PMID: 24116676]
  • Chunhua Ma, Yanqin Qu, Yingxue Zhang, Bin Qiu, Yiru Wang, Xi Chen. Determination of nerolidol in teas using headspace solid phase microextraction-gas chromatography. Food chemistry. 2014; 152(?):285-90. doi: 10.1016/j.foodchem.2013.11.010. [PMID: 24444938]
  • Guesmia Khaoukha, Mariem Ben Jemia, Smain Amira, Hocine Laouer, Maurizio Bruno, Elia Scandolera, Felice Senatore. Characterisation and antimicrobial activity of the volatile components of the flowers of Magydaris tomentosa (Desf.) DC. collected in Sicily and Algeria. Natural product research. 2014; 28(15):1152-8. doi: 10.1080/14786419.2014.919289. [PMID: 24871127]
  • José Damasceno Nogueira Neto, Antonia Amanda Cardoso de Almeida, Johanssy da Silva Oliveira, Pauline Sousa Dos Santos, Damião Pergentino de Sousa, Rivelilson Mendes de Freitas. Antioxidant effects of nerolidol in mice hippocampus after open field test. Neurochemical research. 2013 Sep; 38(9):1861-70. doi: 10.1007/s11064-013-1092-2. [PMID: 23765368]
  • A R M Sperotto, D J Moura, V F Péres, F C Damasceno, E B Caramão, J A P Henriques, J Saffi. Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013 Jul; 57(?):57-68. doi: 10.1016/j.fct.2013.03.013. [PMID: 23523831]
  • Aleksandra Dorđević, Jelena Lazarević, Andrija Smelcerović, Gordana Stojanović. The case of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. essential oils: chemical composition and antimicrobial activity. Journal of pharmaceutical and biomedical analysis. 2013 Apr; 77(?):145-8. doi: 10.1016/j.jpba.2013.01.024. [PMID: 23416368]
  • Hamidou F Sakhanokho, Blair J Sampson, Nurhayat Tabanca, David E Wedge, Betul Demirci, Kemal Husnu Can Baser, Ulrich R Bernier, Maia Tsikolia, Natasha M Agramonte, James J Becnel, Jian Chen, Kanniah Rajasekaran, James M Spiers. Chemical composition, antifungal and insecticidal activities of Hedychium essential oils. Molecules (Basel, Switzerland). 2013 Apr; 18(4):4308-27. doi: 10.3390/molecules18044308. [PMID: 23579997]