Thiamine monophosphate (BioDeep_00000003425)
Secondary id: BioDeep_00000415873
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: [C12H18N4O4PS]+ (345.0786)
中文名称: 一磷酸硫胺, 硫胺素一磷酸
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 25.19%
分子结构信息
SMILES: Cc(n2)nc(N)c(c2)C[n+1](c1)c(C)c(CCOP(O)(O)=O)s1
InChI: InChI=1S/C12H17N4O4PS/c1-8-11(3-4-20-21(17,18)19)22-7-16(8)6-10-5-14-9(2)15-12(10)13/h5,7H,3-4,6H2,1-2H3,(H3-,13,14,15,17,18,19)
描述信息
Thiamine monophosphate, also known as thiamin phosphoric acid or TMP, belongs to the class of organic compounds known as thiamine phosphates. These are thiamine derivatives in which the hydroxyl group of the ethanol moiety is substituted by a phosphate group. Thiamine monophosphate is a very strong basic compound (based on its pKa). Thiamine monophosphate is one of the five known natural thiamine phosphate derivatives. Thiamine (vitamin B1) is the transport form of the vitamin while the phosphorylated derivatives are the active forms.
Thiamine dihydrogen phosphate ester. The monophosphate ester of thiamine. Synonyms: monophosphothiamine; vitamin B1 monophosphate. -- Pubchem [HMDB]
Acquisition and generation of the data is financially supported in part by CREST/JST.
D018977 - Micronutrients > D014815 - Vitamins
KEIO_ID T057; [MS3] KO009298
KEIO_ID T057; [MS2] KO009297
KEIO_ID T057
同义名列表
29 个代谢物同义名
2-[3-[(4-Azanyl-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethyl dihydrogen phosphoric acid; 2-[3-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethyl dihydrogen phosphoric acid; 2-[3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-3-ium-5-yl]ethyl dihydrogen phosphoric acid; 2-[3-[(4-Azanyl-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethyl dihydrogen phosphate; 2-[3-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethyl dihydrogen phosphate; 2-[3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-3-ium-5-yl]ethyl dihydrogen phosphate; 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-5-[2-(phosphonooxy)ethyl]-1,3-thiazol-3-ium; 3-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-4-methyl-5-[2-(phosphonooxy)ethyl]thiazolium; Thiamine monophosphate chloride dihydrate; Vitamin b1 monophosphoric acid; Thiamine monophosphoric acid; Thiamin monophosphoric acid; Vitamin b1 phosphoric acid; Thiamine phosphoric acid; Vitamin b1 monophosphate; monoPhosphate, thiamine; Thiamin phosphoric acid; Phosphoester, thiamine; Thiamine monophosphate; Thiamine phosphoester; Thiamin monophosphate; Vitamin b1 phosphate; Thiamine phosphate; thiamin phosphate; Thiamine-pi; Thiamin-p; THP; TMP; Thiamine monophosphate
数据库引用编号
43 个数据库交叉引用编号
- ChEBI: CHEBI:9533
- KEGG: C01081
- PubChem: 1131
- HMDB: HMDB0002666
- ChEMBL: CHEMBL1236378
- Wikipedia: Thiamine_monophosphate
- MeSH: Thiamine Monophosphate
- MetaCyc: THIAMINE-P
- KNApSAcK: C00019628
- foodb: FDB023043
- chemspider: 1099
- CAS: 10023-48-0
- CAS: 495-23-8
- CAS: 532-40-1
- MoNA: PS035105
- MoNA: PR100204
- MoNA: PS035102
- MoNA: PS035103
- MoNA: KO004195
- MoNA: KO001939
- MoNA: KO001942
- MoNA: PS035101
- MoNA: KO009298
- MoNA: KO001938
- MoNA: KO009300
- MoNA: KO004194
- MoNA: KO009299
- MoNA: KO001940
- MoNA: KO004192
- MoNA: KO009297
- MoNA: PS035106
- MoNA: KO001941
- MoNA: KO004193
- MoNA: PS035104
- MoNA: PR100609
- MoNA: KO004191
- PubChem: 4319
- PDB-CCD: TPS
- 3DMET: B00237
- NIKKAJI: J221.489J
- RefMet: Thiamine monophosphate
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-267
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-304
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
223 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(222)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphonooxyethyl)thiazole + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
3 个相关的物种来源信息
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yi-Hsin Chung, Ting-Chieh Chen, Wen-Ju Yang, Soon-Ziet Chen, Jia-Ming Chang, Wei-Yu Hsieh, Ming-Hsiun Hsieh. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16563
. [PMID: 37996996] - Daniela Hampel, Setareh Shahab-Ferdows, Linda S Adair, Margaret E Bentley, Valerie L Flax, Denise J Jamieson, Sascha R Ellington, Gerald Tegha, Charles S Chasela, Debbie Kamwendo, Lindsay H Allen. Thiamin and Riboflavin in Human Milk: Effects of Lipid-Based Nutrient Supplementation and Stage of Lactation on Vitamer Secretion and Contributions to Total Vitamin Content.
PloS one.
2016; 11(2):e0149479. doi:
10.1371/journal.pone.0149479
. [PMID: 26886782] - Wolfgang Stuetz, Verena Ilona Carrara, Rose McGready, Sue Jean Lee, Juergen Georg Erhardt, Joern Breuer, Hans Konrad Biesalski, François Henry Nosten. Micronutrient status in lactating mothers before and after introduction of fortified flour: cross-sectional surveys in Maela refugee camp.
European journal of nutrition.
2012 Jun; 51(4):425-34. doi:
10.1007/s00394-011-0226-z
. [PMID: 21786020] - Océane Frelin, Gennaro Agrimi, Valentina L Laera, Alessandra Castegna, Lynn G L Richardson, Robert T Mullen, Claudia Lerma-Ortiz, Ferdinando Palmieri, Andrew D Hanson. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize.
Functional & integrative genomics.
2012 Jun; 12(2):317-26. doi:
10.1007/s10142-012-0273-4
. [PMID: 22426856] - Maria Rapala-Kozik, Natalia Wolak, Marta Kujda, Agnieszka K Banas. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response.
BMC plant biology.
2012 Jan; 12(?):2. doi:
10.1186/1471-2229-12-2
. [PMID: 22214485] - Ilka Haferkamp, Stephan Schmitz-Esser. The plant mitochondrial carrier family: functional and evolutionary aspects.
Frontiers in plant science.
2012; 3(?):2. doi:
10.3389/fpls.2012.00002
. [PMID: 22639632] - Michael Kube, Jelena Mitrovic, Bojan Duduk, Ralf Rabus, Erich Seemüller. Current view on phytoplasma genomes and encoded metabolism.
TheScientificWorldJournal.
2012; 2012(?):185942. doi:
10.1100/2012/185942
. [PMID: 22550465] - Daniel L Lucetti, Elaine Cp Lucetti, Mary Anne M Bandeira, Helenicy Nh Veras, Aline H Silva, Luzia Kalyne Am Leal, Amanda A Lopes, Victor Cc Alves, Gabriela S Silva, Gerly Anne Brito, Glauce B Viana. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel.
Journal of inflammation (London, England).
2010 Dec; 7(?):60. doi:
10.1186/1476-9255-7-60
. [PMID: 21167055] - Chou Srey, Simon A Haughey, Lisa Connolly, Maria Dolores del Castillo, Jennifer M Ames, Christopher T Elliott. Immunochemical and mass spectrometric analysis of Nε-(carboxymethyl)lysine content of AGE-BSA systems prepared with and without selected antiglycation agents.
Journal of agricultural and food chemistry.
2010 Nov; 58(22):11955-61. doi:
10.1021/jf102543g
. [PMID: 20979353] - Natalie M Zahr, Richard Luong, Edith V Sullivan, Adolf Pfefferbaum. Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol.
Alcoholism, clinical and experimental research.
2010 Nov; 34(11):1858-70. doi:
10.1111/j.1530-0277.2010.01274.x
. [PMID: 20662804] - Michel Frédérich, David Delvaux, Tiziana Gigliobianco, Marjorie Gangolf, Georges Dive, Gabriel Mazzucchelli, Benjamin Elias, Edwin De Pauw, Luc Angenot, Pierre Wins, Lucien Bettendorff. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence.
The FEBS journal.
2009 Jun; 276(12):3256-68. doi:
10.1111/j.1742-4658.2009.07040.x
. [PMID: 19438713] - Maria Rapala-Kozik, Anna Gołda, Marta Kujda. Enzymes that control the thiamine diphosphate pool in plant tissues. Properties of thiamine pyrophosphokinase and thiamine-(di)phosphate phosphatase purified from Zea mays seedlings.
Plant physiology and biochemistry : PPB.
2009 Apr; 47(4):237-42. doi:
10.1016/j.plaphy.2008.12.015
. [PMID: 19167902] - Marie-Laure Volvert, Sandrine Seyen, Marie Piette, Brigitte Evrard, Marjorie Gangolf, Jean-Christophe Plumier, Lucien Bettendorff. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.
BMC pharmacology.
2008 Jun; 8(?):10. doi:
10.1186/1471-2210-8-10
. [PMID: 18549472] - Maria Rapala-Kozik, Ewa Kowalska, Katarzyna Ostrowska. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress.
Journal of experimental botany.
2008; 59(15):4133-43. doi:
10.1093/jxb/ern253
. [PMID: 18940932] - S Bäckermann, C Poel, W Ternes. Thiamin phosphates in egg yolk granules and plasma of regular and embryonated eggs of hens and in five- and seven-day-old embryos.
Poultry science.
2008 Jan; 87(1):108-15. doi:
10.3382/ps.2007-00158
. [PMID: 18079459] - P J Thornalley, R Babaei-Jadidi, H Al Ali, N Rabbani, A Antonysunil, J Larkin, A Ahmed, G Rayman, C W Bodmer. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease.
Diabetologia.
2007 Oct; 50(10):2164-70. doi:
10.1007/s00125-007-0771-4
. [PMID: 17676306] - F Batifoulier, M-A Verny, C Besson, C Demigné, C Rémésy. Determination of thiamine and its phosphate esters in rat tissues analyzed as thiochromes on a RP-amide C16 column.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2005 Feb; 816(1-2):67-72. doi:
10.1016/j.jchromb.2004.11.004
. [PMID: 15664335] - Hiroshi Ihara, Takayuki Matsumoto, Yoshio Shino, Naotaka Hashizume. Assay values for thiamine or thiamine phosphate esters in whole blood do not depend on the anticoagulant used.
Journal of clinical laboratory analysis.
2005; 19(5):205-8. doi:
10.1002/jcla.20079
. [PMID: 16170809] - C Patrini, A Griziotti, L Ricciardi. Obese individuals as thiamin storers.
International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity.
2004 Jul; 28(7):920-4. doi:
10.1038/sj.ijo.0802638
. [PMID: 15098017] - M Glasø, G Nordbø, L Diep, T Bøhmer. Reduced concentrations of several vitamins in normal weight patients with late-onset dementia of the Alzheimer type without vascular disease.
The journal of nutrition, health & aging.
2004; 8(5):407-13. doi:
NULL
. [PMID: 15359361] - G Rindi, C Patrini, A Nauti, R Bellazzi, P Magni. Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: an in vivo kinetic study using rats.
Metabolic brain disease.
2003 Dec; 18(4):245-63. doi:
10.1023/b:mebr.0000020187.98238.58
. [PMID: 15128183] - Roya Babaei-Jadidi, Nikolaos Karachalias, Naila Ahmed, Sinan Battah, Paul J Thornalley. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine.
Diabetes.
2003 Aug; 52(8):2110-20. doi:
10.2337/diabetes.52.8.2110
. [PMID: 12882930] - J A Molina, F J Jiménez-Jiménez, A Hernánz, E Fernández-Vivancos, S Medina, F de Bustos, C Gómez-Escalonilla, Y Sayed. Cerebrospinal fluid levels of thiamine in patients with Alzheimer's disease.
Journal of neural transmission (Vienna, Austria : 1996).
2002 Jul; 109(7-8):1035-44. doi:
10.1007/s007020200087
. [PMID: 12111441] - Rongbao Zhao, Feng Gao, I David Goldman. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells.
American journal of physiology. Cell physiology.
2002 Jun; 282(6):C1512-7. doi:
10.1152/ajpcell.00547.2001
. [PMID: 11997266] - Qilin Song, Charles K Singleton. Mitochondria from cultured cells derived from normal and thiamine-responsive megaloblastic anemia individuals efficiently import thiamine diphosphate.
BMC biochemistry.
2002 Apr; 3(?):8. doi:
10.1186/1471-2091-3-8
. [PMID: 12014993] - L Härdig, C Daae, M Dellborg, F Kontny, T Bohmer. Reduced thiamine phosphate, but not thiamine diphosphate, in erythrocytes in elderly patients with congestive heart failure treated with furosemide.
Journal of internal medicine.
2000 May; 247(5):597-600. doi:
10.1046/j.1365-2796.2000.00649.x
. [PMID: 10809999] - T Frank, R Bitsch, J Maiwald, G Stein. Alteration of thiamine pharmacokinetics by end-stage renal disease (ESRD).
International journal of clinical pharmacology and therapeutics.
1999 Sep; 37(9):449-55. doi:
. [PMID: 10507244]
- G Valerio, A Franzese, V Poggi, C Patrini, U Laforenza, A Tenore. Lipophilic thiamine treatment in long-standing insulin-dependent diabetes mellitus.
Acta diabetologica.
1999 Jun; 36(1-2):73-6. doi:
10.1007/s005920050148
. [PMID: 10436256] - A Nauti, C Patrini, C Reggiani, A Merighi, R Bellazzi, G Rindi. In vivo study of the kinetics of thiamine and its phosphoesters in the deafferented rat cerebellum.
Metabolic brain disease.
1997 Jun; 12(2):145-60. doi:
. [PMID: 9203159]
- C M Tallaksen, T Bøhmer, J Karlsen, H Bell. Determination of thiamin and its phosphate esters in human blood, plasma, and urine.
Methods in enzymology.
1997; 279(?):67-74. doi:
10.1016/s0076-6879(97)79010-4
. [PMID: 9211258] - C Patrini, E Perucca, C Reggiani, G Rindi. Effects of phenytoin on the in vivo kinetics of thiamine and its phosphoesters in rat nervous tissues.
Brain research.
1993 Nov; 628(1-2):179-86. doi:
10.1016/0006-8993(93)90953-k
. [PMID: 8313145] - C M Tallaksen, H Bell, T Bøhmer. Thiamin and thiamin phosphate ester deficiency assessed by high performance liquid chromatography in four clinical cases of Wernicke encephalopathy.
Alcoholism, clinical and experimental research.
1993 Jun; 17(3):712-6. doi:
10.1111/j.1530-0277.1993.tb00825.x
. [PMID: 8333605] - C M Tallaksen, A Sande, T Bøhmer, H Bell, J Karlsen. Kinetics of thiamin and thiamin phosphate esters in human blood, plasma and urine after 50 mg intravenously or orally.
European journal of clinical pharmacology.
1993; 44(1):73-8. doi:
10.1007/bf00315284
. [PMID: 8436160] - C M Tallaksen, H Bell, T Bøhmer. The concentration of thiamin and thiamin phosphate esters in patients with alcoholic liver cirrhosis.
Alcohol and alcoholism (Oxford, Oxfordshire).
1992 Sep; 27(5):523-30. doi:
. [PMID: 1476555]
- G Rindi, C Reggiani, C Patrini, G Gastaldi, U Laforenza. Effect of ethanol on the in vivo kinetics of thiamine phosphorylation and dephosphorylation in different organs of rat--II. Acute effects.
Alcohol and alcoholism (Oxford, Oxfordshire).
1992 Sep; 27(5):505-22. doi:
NULL
. [PMID: 1335723] - C M Tallaksen, T Bøhmer, H Bell. Blood and serum thiamin and thiamin phosphate esters concentrations in patients with alcohol dependence syndrome before and after thiamin treatment.
Alcoholism, clinical and experimental research.
1992 Apr; 16(2):320-5. doi:
10.1111/j.1530-0277.1992.tb01384.x
. [PMID: 1317136] - M Poloni, P Mazzarello, U Laforenza, C Caramella, C Patrini. Thiamin contents of cerebrospinal fluid, plasma and erythrocytes in cerebellar ataxias.
European neurology.
1992; 32(3):154-8. doi:
10.1159/000116814
. [PMID: 1592072] - B L Lee, H Y Ong, C N Ong. Determination of thiamine and its phosphate esters by gradient-elution high-performance liquid chromatography.
Journal of chromatography.
1991 Jun; 567(1):71-80. doi:
10.1016/0378-4347(91)80311-y
. [PMID: 1918262] - C M Tallaksen, T Bøhmer, H Bell, J Karlsen. Concomitant determination of thiamin and its phosphate esters in human blood and serum by high-performance liquid chromatography.
Journal of chromatography.
1991 Mar; 564(1):127-36. doi:
10.1016/0378-4347(91)80075-n
. [PMID: 1860908] - G Rindi, C Reggiani, C Patrini, U Laforenza. Effect of ethanol administration on the in vivo kinetics of thiamine phosphorylation and dephosphorylation in different organs. I. Chronic effects.
Alcohol and alcoholism (Oxford, Oxfordshire).
1991; 26(3):285-301. doi:
10.1093/oxfordjournals.alcalc.a045114
. [PMID: 1930361] - C Patrini, C Reggiani, U Laforenza, G Rindi. Blood-brain transport of thiamine monophosphate in the rat: a kinetic study in vivo.
Journal of neurochemistry.
1988 Jan; 50(1):90-3. doi:
10.1111/j.1471-4159.1988.tb13234.x
. [PMID: 3335853] - L Bettendorff, C Grandfils, C De Rycker, E Schoffeniels. Determination of thiamine and its phosphate esters in human blood serum at femtomole levels.
Journal of chromatography.
1986 Oct; 382(?):297-302. doi:
10.1016/s0378-4347(00)83533-1
. [PMID: 3782398] - L M Karpov, A Ia Rozanov, T O Filippova. [Characteristic features of 35S-benzoylthiamine monophosphate in albino mice].
Voprosy meditsinskoi khimii.
1986 Jul; 32(4):136-9. doi:
NULL
. [PMID: 3765492] - J Y Thom, R E Davis, G C Icke. Protein binding of thiamin in human plasma.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1986; 56(2):189. doi:
NULL
. [PMID: 3733341] - G Tettamanti. [Latest data on chemical properties and the physiological role of thiamine and its phosphoric esters].
Minerva dietologica e gastroenterologica.
1985 Apr; 31(2):75-94. doi:
NULL
. [PMID: 3897910] - C Reggiani, C Patrini, G Rindi. Nervous tissue thiamine metabolism in vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat.
Brain research.
1984 Feb; 293(2):319-27. doi:
10.1016/0006-8993(84)91239-3
. [PMID: 6697223] - M Poloni, C Patrini, B Rocchelli, G Rindi. Thiamin monophosphate in the CSF of patients with amyotrophic lateral sclerosis.
Archives of neurology.
1982 Aug; 39(8):507-9. doi:
10.1001/archneur.1982.00510200049009
. [PMID: 7103799] - R Bitsch, J Hansen, D Hötzel. Thiamin Metabolism in the rat during long-term alcohol administration. 1. Communication: ethanol induced changes at optimal thiamin supply.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1982; 52(2):126-33. doi:
. [PMID: 6890048]
- K Inomata, K Ogawa. [Oblongata in the spinal trigeminal nucleus of the adult rat (author's transl)].
No to shinkei = Brain and nerve.
1981 Oct; 33(10):1037-43. doi:
NULL
. [PMID: 6274371] - L Eder, Y Dunant. Thiamine and cholinergic transmission in the electric organ of Torpedo. I. Cellular localization and functional changes of thiamine and thiamine phosphate esters.
Journal of neurochemistry.
1980 Dec; 35(6):1278-86. doi:
10.1111/j.1471-4159.1980.tb08999.x
. [PMID: 6255096] - C Patrini, G Rindi. An improved method for the electrophoretic separation and fluorometric determination of thiamine and its phosphates in animal tissues.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1980; 50(1):10-8. doi:
NULL
. [PMID: 7390709] - I L Pshetakovskiĭ. [Justification for using thiamine and its coenzyme form in osteoarthrosis deformans in the process of peloid therapy].
Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury.
1979 Mar; ?(2):43-7. doi:
NULL
. [PMID: 433179] - K Ishii, K Sarai, H Sanemori, T Kawasaki. Concentrations of thiamine and its phosphate esters in rat tissues determined by high-performance liquid chromatography.
Journal of nutritional science and vitaminology.
1979; 25(6):517-23. doi:
10.3177/jnsv.25.517
. [PMID: 541755] - M Marchi, G Rossi. Metabolism and biological activity of a thiamine new salt. I. Urinary excretion and tissue content of vitamin B1 in rats treated with thiamine chloride ester monophosphate of Bis-glucosamine.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1978; 48(2):136-9. doi:
NULL
. [PMID: 689808] - A MAMMARELLA. [Urinary elimination of thiamine and thiamine monophosphate (TMP) in rats].
Archivio italiano di scienze farmacologiche.
1955 Apr; 5(2):159-62. doi:
NULL
. [PMID: 13239397]