Inosine triphosphate (BioDeep_00000001622)
Secondary id: BioDeep_00000405212
natural product human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H15N4O14P3 (507.979764)
中文名称: 肌苷-5'-三磷酸
谱图信息:
最多检出来源 Homo sapiens(otcml) 37.66%
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c2nc[nH]c3=O)O1)O)O)OP(=O)(O)OP(=O)(O)OP(=O)(O)O
InChI: InChI=1S/C10H15N4O14P3/c15-6-4(1-25-30(21,22)28-31(23,24)27-29(18,19)20)26-10(7(6)16)14-3-13-5-8(14)11-2-12-9(5)17/h2-4,6-7,10,15-16H,1H2,(H,21,22)(H,23,24)(H,11,12,17)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
描述信息
Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID : 170291, 1204209, 17113761, 17924837) [HMDB]
Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID: 170291, 1204209, 17113761, 17924837).
同义名列表
24 个代谢物同义名
({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxy-9H-purin-9-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; ({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxypurin-9-yl)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxyphosphonic acid; [[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-oxo-3H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate; O(5)-(Tetrahydroxytriphosphoryl)inosine; Inosine 5-(tetrahydrogen triphosphate); Inosine-5-triphosphate trisodium salt; Inosine 5(tetrahydrogen triphosphate); Inosine tripolyphosphoric acid; 2-Inosine-5-triphosphoric acid; Inosine 5-triphosphoric acid; Inosine triphosphoric acid; 2-Inosine-5-triphosphate; Inosine tripolyphosphate; Inosine 5-triphosphate; Inosine 5-triphopshate; Triphosphate, inosine; Inosine triphosphate; SCHEMBL4356292; Inosine 5; 5-ITP; ITP; ITT; Inosine triphosphate(ITP); ITP
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:16039
- KEGG: C00081
- PubChem: 135402038
- PubChem: 135398643
- PubChem: 8583
- HMDB: HMDB0000189
- Metlin: METLIN3589
- ChEMBL: CHEMBL1233686
- Wikipedia: Inosine triphosphate
- MeSH: Inosine Triphosphate
- MetaCyc: ITP
- foodb: FDB021902
- CAS: 132-06-9
- MoNA: PS025909
- MoNA: PS025907
- MoNA: PS025902
- MoNA: PS025908
- MoNA: PS025901
- PMhub: MS000000871
- PubChem: 3381
- PDB-CCD: CZU
- PDB-CCD: ITT
- 3DMET: B01153
- NIKKAJI: J38.562J
- RefMet: ITP
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-357
- KNApSAcK: 16039
- LOTUS: LTS0228277
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
61 个相关的代谢反应过程信息。
Reactome(12)
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
BioCyc(0)
Plant Reactome(0)
INOH(2)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- ATP + IDP = ADP + ITP ( Purine nucleotides and Nucleosides metabolism ):
ADP + ITP ⟶ ATP + IDP
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
PharmGKB(0)
15 个相关的物种来源信息
- 2 - Bacteria: LTS0228277
- 7711 - Chordata: LTS0228277
- 543 - Enterobacteriaceae: LTS0228277
- 561 - Escherichia: LTS0228277
- 562 - Escherichia coli: LTS0228277
- 2759 - Eukaryota: LTS0228277
- 1236 - Gammaproteobacteria: LTS0228277
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 40674 - Mammalia: LTS0228277
- 33208 - Metazoa: LTS0228277
- 10066 - Muridae: LTS0228277
- 10088 - Mus: LTS0228277
- 10090 - Mus musculus: LTS0228277
- 10090 - Mus musculus: NA
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Henryk Straube, Jannis Straube, Jannis Rinne, Lisa Fischer, Markus Niehaus, Claus-Peter Witte, Marco Herde. An inosine triphosphate pyrophosphatase safeguards plant nucleic acids from aberrant purine nucleotides.
The New phytologist.
2023 03; 237(5):1759-1775. doi:
10.1111/nph.18656
. [PMID: 36464781] - Shu-Yan Liu, Dai Yuan, Rui-Jie Sun, Jing-Jing Zhu, Ning-Ning Shan. Significant reductions in apoptosis-related proteins (HSPA6, HSPA8, ITGB3, YWHAH, and PRDX6) are involved in immune thrombocytopenia.
Journal of thrombosis and thrombolysis.
2021 May; 51(4):905-914. doi:
10.1007/s11239-020-02310-5
. [PMID: 33047245] - Jun-Xiu Liu, Huan-Xin Zhang, De-Peng Li, Wei-Wei Xing, Hu-Jun Li, Wei Chen, Hai Cheng, Jiang Cao, Zhen-Yu Li, Zhi-Ling Yan, Kai-Lin Xu. [Curative Efficacy of Rituximab for ITP Patients with Different Sensitivity to Hormone].
Zhongguo shi yan xue ye xue za zhi.
2019 Oct; 27(5):1602-1606. doi:
10.19746/j.cnki.issn.1009-2137.2019.05.037
. [PMID: 31607319] - You-Ping Liao, Yu-Xia Liu, Qing-Zhao Li, Guo-Yu Hu. [Effect of Decitabine on Megakaryocyte Culture of Steroid-resistant ITP Patients].
Zhongguo shi yan xue ye xue za zhi.
2015 Aug; 23(4):1092-6. doi:
10.7534/j.issn.1009-2137.2015.04.036
. [PMID: 26314452] - Hoang Hai, Akihiro Tamori, Masaru Enomoto, Hiroyasu Morikawa, Sawako Uchida-Kobayashi, Hideki Fujii, Atsushi Hagihara, Etsushi Kawamura, Le Thi Thanh Thuy, Yasuhito Tanaka, Norifumi Kawada. Relationship between inosine triphosphate genotype and outcome of extended therapy in hepatitis C virus patients with a late viral response to pegylated-interferon and ribavirin.
Journal of gastroenterology and hepatology.
2014 Jan; 29(1):201-7. doi:
10.1111/jgh.12376
. [PMID: 23980585] - A F Makarchikov. [Purification and properties of a catalytically active fragment of soluble nucleoside triphosphatase from bovine kidney].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2013 May; 85(3):31-7. doi:
10.15407/ubj85.03.031
. [PMID: 23937046] - Valeriya Krylova, Igor M Andreev, Rozaliya Zartdinova, Stanislav F Izmailov. Biochemical characteristics of the Ca2+ pumping ATPase in the peribacteroid membrane from broad bean root nodules.
Protoplasma.
2013 Apr; 250(2):531-8. doi:
10.1007/s00709-012-0436-0
. [PMID: 22872095] - Yan Liu, Jian Yang, Hongmei Ren, Duofen He, Annabelle Pascua, M Ines Armando, Chengming Yang, Lin Zhou, Robin A Felder, Pedro A Jose, Chunyu Zeng. Inhibitory effect of ETB receptor on Na(+)-K(+) ATPase activity by extracellular Ca(2+) entry and Ca(2+) release from the endoplasmic reticulum in renal proximal tubule cells.
Hypertension research : official journal of the Japanese Society of Hypertension.
2009 Oct; 32(10):846-52. doi:
10.1038/hr.2009.112
. [PMID: 19662022] - V F Sivuk, I M Rusina, A F Makarchikov. Purification and characteristics of functional properties of soluble nucleoside triphosphatase (apyrase) from bovine brain.
Biochemistry. Biokhimiia.
2008 Sep; 73(9):1047-52. doi:
10.1134/s0006297908090137
. [PMID: 18976223] - V F Sivuk, I M Rusina, T A Luchko, A F Makarchikov. [Substrate specificity and kinetic properties of a soluble nucleoside triphosphatase from bovine kidneys].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2008 Jan; 80(1):13-8. doi:
. [PMID: 18710021]
- Hua Zhang, Ryuji Inoue, Juan Shi, Xiao-hang Jin, Yun-qing Li. Synergistic actions of diacylglycerol and inositol 1,4,5 trisphosphate for Ca2+-dependent inactivation of TRPC7 channel.
Acta pharmacologica Sinica.
2008 Jan; 29(1):90-7. doi:
10.1111/j.1745-7254.2008.00721.x
. [PMID: 18158870] - I M Rusina, A F Makarchikov, E A Makar, V L Kubyshin. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].
Biomeditsinskaia khimiia.
2006 Jul; 52(4):364-9. doi:
NULL
. [PMID: 17044594] - D Kumari, K Usdin. Sequencing errors in reactions using labeled terminators.
BioTechniques.
1999 Oct; 27(4):648-50. doi:
10.2144/99274bm02
. [PMID: 10524297] - N Callamaras, I Parker. Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging.
The Journal of general physiology.
1999 Feb; 113(2):199-213. doi:
10.1085/jgp.113.2.199
. [PMID: 9925819] - A F Makarchikov, I P Chernikevich. Thiamine triphosphatase activity in bovine kidney.
Biochemistry and molecular biology international.
1998 Sep; 46(1):115-23. doi:
10.1080/15216549800203622
. [PMID: 9784846] - E Kaznacheyeva, V D Lupu, I Bezprozvanny. Single-channel properties of inositol (1,4,5)-trisphosphate receptor heterologously expressed in HEK-293 cells.
The Journal of general physiology.
1998 Jun; 111(6):847-56. doi:
10.1085/jgp.111.6.847
. [PMID: 9607940] - K Nakahara, T Hataya, I Uyeda. Inosine 5'-triphosphate can dramatically increase the yield of NASBA products targeting GC-rich and intramolecular base-paired viroid RNA.
Nucleic acids research.
1998 Apr; 26(7):1854-6. doi:
10.1093/nar/26.7.1854
. [PMID: 9512564] - U R Mauerer, E L Boulpaep, A S Segal. Properties of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule.
The Journal of general physiology.
1998 Jan; 111(1):139-60. doi:
10.1085/jgp.111.1.139
. [PMID: 9417141] - I Emerit, P Filipe, P Meunier, C Auclair, J Freitas, A Deroussent, A Gouyette, A Fernandes. Clastogenic activity in the plasma of scleroderma patients: a biomarker of oxidative stress.
Dermatology (Basel, Switzerland).
1997; 194(2):140-6. doi:
10.1159/000246083
. [PMID: 9094462] - I Emerit, F Garban, J Vassy, A Levy, P Filipe, J Freitas. Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase.
Proceedings of the National Academy of Sciences of the United States of America.
1996 Nov; 93(23):12799-804. doi:
10.1073/pnas.93.23.12799
. [PMID: 8917499] - S Ishikawa, I Kusaka, M Higashiyama, S Nagasaka, T Saito, K Honda, T Saito. Cellular signaling and proliferative action of AVP in mesangium of SHR: effect of low density lipoprotein.
Kidney international.
1996 Nov; 50(5):1506-14. doi:
10.1038/ki.1996.465
. [PMID: 8914016] - A J de Brum-Fernandes, S Morisset, G Bkaily, C Patry. Characterization of the PGE2 receptor subtype in bovine chondrocytes in culture.
British journal of pharmacology.
1996 Aug; 118(7):1597-604. doi:
10.1111/j.1476-5381.1996.tb15580.x
. [PMID: 8842420] - X Xu, J Diaz, H Zhao, S Muallem. Characterization, localization and axial distribution of Ca2+ signalling receptors in the rat submandibular salivary gland ducts.
The Journal of physiology.
1996 Mar; 491 ( Pt 3)(?):647-62. doi:
10.1113/jphysiol.1996.sp021246
. [PMID: 8815200] - S J DeArmond, Y Qiu, K Wong, R Nixon, W Hyun, S B Prusiner, W C Mobley. Abnormal plasma membrane properties and functions in prion-infected cell lines.
Cold Spring Harbor symposia on quantitative biology.
1996; 61(?):531-40. doi:
NULL
. [PMID: 9246479] - V Stefanović, P Vlahović. Divalent cation-activated ecto-ATPase activity of rat glomerular mesangial cells.
Archives of physiology and biochemistry.
1995 Apr; 103(1):15-20. doi:
10.3109/13813459509007557
. [PMID: 8574770] - S Keppens, A Vandekerckhove, H De Wulf. Characterization of the effects of adenosine 5'-[beta-thio]-diphosphate in rat liver.
British journal of pharmacology.
1993 Mar; 108(3):663-8. doi:
10.1111/j.1476-5381.1993.tb12858.x
. [PMID: 8385533] - H Pavenstädt, M Späth, G Schlunck, M Nauck, R Fischer, C Wanner, P Schollmeyer. Effect of nucleotides on the cytosolic free calcium activity and inositol phosphate formation in human glomerular epithelial cells.
British journal of pharmacology.
1992 Sep; 107(1):189-95. doi:
10.1111/j.1476-5381.1992.tb14485.x
. [PMID: 1422572] - K Poelstra, J F Baller, M J Hardonk, W W Bakker. Demonstration of antithrombotic activity of glomerular adenosine diphosphatase.
Blood.
1991 Jul; 78(1):141-8. doi:
. [PMID: 2070048]
- J Mas-Oliva, R Pérez-Montfort, M Cárdenas-García, M Rivas-Duro. Altered coupling states between calcium transport and (Ca2+, Mg2+)-ATPase in the AS-30D ascites hepatocarcinoma plasma membrane.
Molecular and cellular biochemistry.
1991 Jan; 100(1):39-50. doi:
10.1007/bf00230808
. [PMID: 1828860] - P L Greenhaff, R C Harris, D H Snow, D A Sewell, M Dunnett. The influence of metabolic alkalosis upon exercise metabolism in the thoroughbred horse.
European journal of applied physiology and occupational physiology.
1991; 63(2):129-34. doi:
10.1007/bf00235182
. [PMID: 1748103] - B Desbuquois, M Janicot, A Dupuis. Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification.
European journal of biochemistry.
1990 Oct; 193(2):501-12. doi:
10.1111/j.1432-1033.1990.tb19365.x
. [PMID: 2146119] - C Nanoff, M Freissmuth, E Tuisl, W Schütz. P2-, but not P1-purinoceptors mediate formation of 1, 4, 5-inositol trisphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex.
British journal of pharmacology.
1990 May; 100(1):63-8. doi:
10.1111/j.1476-5381.1990.tb12052.x
. [PMID: 2115389] - C Auclair, A Gouyette, A Levy, I Emerit. Clastogenic inosine nucleotide as components of the chromosome breakage factor in scleroderma patients.
Archives of biochemistry and biophysics.
1990 Apr; 278(1):238-44. doi:
10.1016/0003-9861(90)90253-u
. [PMID: 2321962] - R Larivière, J Baribeau, J St-Louis, E L Schiffrin. Vasopressin receptors and inositol trisphosphate production in blood vessels of spontaneously hypertensive rats.
Canadian journal of physiology and pharmacology.
1989 Mar; 67(3):232-9. doi:
10.1139/y89-039
. [PMID: 2525949] - A C Andorn, B R Bacon, A T Nguyen-Hunh, S J Parlato, J A Stitts. Guanyl nucleotide interactions with dopaminergic binding sites labeled by [3H]spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites.
Molecular pharmacology.
1988 Feb; 33(2):155-62. doi:
"
. [PMID: 3340080] - J Sollenberg, F C Phipps, B Stringer, L K Lowry. Determination of methylhippuric acid in human urine by high-performance liquid chromatography and by isotachophoresis.
Journal of chromatography.
1985 Oct; 343(2):419-23. doi:
10.1016/s0378-4347(00)84612-5
. [PMID: 4066882] - J Sollenberg, A W Smallwood, L K Lowry. Determination of mandelic and phenylglyoxylic acids in rat urine by high-performance liquid chromatography and by isotachophoresis.
Journal of chromatography.
1985 Sep; 343(1):175-8. doi:
10.1016/s0378-4347(00)84582-x
. [PMID: 4066851] - E Bayerdörffer, L Eckhardt, W Haase, I Schulz. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells.
The Journal of membrane biology.
1985; 84(1):45-60. doi:
10.1007/bf01871647
. [PMID: 3999124] - Y Friedman, M Lang, G Burke. Role of guanine nucleotides in the stimulation of thyroid adenylate cyclase by prostaglandin E1 and cholera toxin.
Biochimica et biophysica acta.
1981 Feb; 673(1):114-23. doi:
10.1016/0304-4165(81)90316-0
. [PMID: 7470506]