Gene Association: ADSS2

UniProt Search: ADSS2 (PROTEIN_CODING)
Function Description: adenylosuccinate synthase 2

found 8 associated metabolites with current gene based on the text mining result from the pubmed database.

Inosine triphosphate

({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxy-9H-purin-9-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H15N4O14P3 (507.9798)


Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID : 170291, 1204209, 17113761, 17924837) [HMDB] Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID: 170291, 1204209, 17113761, 17924837).

   

Gibberellin A4

NCGC00380182-01_C19H24O5_(1R,2R,5R,8R,9S,10R,12S)-12-Hydroxy-11-methyl-6-methylene-16-oxo-15-oxapentacyclo[9.3.2.1~5,8~.0~1,10~.0~2,8~]heptadecane-9-carboxylic acid

C19H24O5 (332.1624)


A C19-gibberellin, initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the substitution of the OH at C-7 (gibbane numbering) by H. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 16

   

3-Epigibberellin A1

(1R,2R,5S,8S,9S,10R,11S,12R)-5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1^{5,8}.0^{1,10}.0^{2,8}]heptadecane-9-carboxylic acid

C19H24O6 (348.1573)


3-Epigibberellin A1 (3-epi-GA1), belongs to the class of organic compounds known as C19-gibberellin 6-carboxylic acids. These are C19-gibberellins with a carboxyl group at the 6-position. 3-Epigibberellin A1 is found in green vegetables. 3-Epigibberellin A1 is a constituent of Lactuca sativa (lettuce). Constituent of Lactuca sativa (lettuce). 3-Epigibberellin A1 is found in green vegetables.

   

SAICAR

(2S)-2-({5-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1H-imidazol-4-yl}formamido)butanedioic acid

C13H19N4O12P (454.0737)


SAICAR, also known as succinylaminoimidazolecarboxamide ribotide or phosphoribosylaminoimidazolesuccinocarboxamide, is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. SAICAR is converted from 5-aminoimidazole-4-carboxyribonucleotide (CAIR) via phosphoribosylaminoimidazolesuccinocarboxamide synthetase (EC: 6.3.2.6) or SAICAR synthase. This enzyme catalyzes the eighth step in the biosynthesis of purine nucleotides. SAICAR (a ribotide) can lose its phosphate group leading to the appearance of a riboside known as succinylaminoimidazolecarboxamide riboside (SAICAriboside) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma. This particular riboside (called SAICAr) is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). On the other hand, the ribotide (SAICAR) is generally harmless and is an essential intermediate in purine metabolism. When present in sufficiently high levels, SAICAR can act as an oncometabolite. An oncometabolite is a compound that promotes tumour growth and survival. As an oncometabolite, high levels of SAICAR stimulate pyruvate kinase isoform M2 and promote cancer cell survival in glucose-limited conditions such as aerobic glycolysis (PMID: 23086999). SAICAR (or (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate) is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate is converted from 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate via phosphoribosylaminoimidazole-succinocarboxamide synthase [EC: 6.3.2.6] or SAICAR synthase. This enzyme catalyses the seventh step out of ten in the biosynthesis of purine nucleotides. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, urine, and to a lesser extent in plasma is characteristic of a heritable deficiency Adenylosuccinate lyase deficiency. [HMDB]. SAICAR is found in many foods, some of which are sweet potato, black chokeberry, common wheat, and globe artichoke. SAICAR. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3031-95-6 (retrieved 2024-08-20) (CAS RN: 3031-95-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Gibberellin A1

4a?,4b?-Gibbane-1?,10?-dicarboxylic acid, 2?,4a,7-trihydroxy-1-methyl-8-methylene-, 1,4a-lactone (8CI); 4a,1-(Epoxymethano)-7,9a-methanobenz[a]azulene, gibbane-1,10-dicarboxylic acid deriv.; (+)-Gibberillin A1; GA1; Giberellin A1

C19H24O6 (348.1573)


Gibberellin A1 is a C19-gibberellin, initially identified in Gibberella fujikuroi. It has a role as a plant metabolite. It is a lactone, a gibberellin monocarboxylic acid and a C19-gibberellin. It is a conjugate acid of a gibberellin A1(1-). Gibberellin A1 is a natural product found in Thlaspi arvense, Populus candicans, and other organisms with data available. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins A C19-gibberellin, initially identified in Gibberella fujikuroi. Gibberellin a1, also known as ga1, is a member of the class of compounds known as c19-gibberellin 6-carboxylic acids. C19-gibberellin 6-carboxylic acids are c19-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin a1 is considered to be an isoprenoid lipid molecule. Gibberellin a1 is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a1 can be found in a number of food items such as elderberry, enokitake, black salsify, and new zealand spinach, which makes gibberellin a1 a potential biomarker for the consumption of these food products.

   

Inosine triphosphate

Inosine triphosphate

C10H15N4O14P3 (507.9798)


The inosine phosphate that has a triphosphate group at the 5-position. It is an intermediate in the metabolism of purine.

   

Pseudogibberellin a1

5,12-dihydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1^{5,8}.0^{1,10}.0^{2,8}]heptadecane-9-carboxylic acid

C19H24O6 (348.1573)


   

SAICAR

SAICAR

C13H19N4O12P (454.0737)


A 1-(phosphoribosyl)imidazolecarboxamide resulting from the formal condesation of the darboxy group of 5-amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxylic acid with the amino group of L-aspartic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS