Oxoglutaric acid (BioDeep_00000001289)
Secondary id: BioDeep_00000405217, BioDeep_00000865860, BioDeep_00001867823
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H6O5 (146.0215)
中文名称: α-酮戊二酸钠盐, 2-酮戊二酸, alpha-酮戊二酸, α-酮戊二酸, 2-氧戊二酸
谱图信息:
最多检出来源 Homo sapiens(blood) 23.54%
Last reviewed on 2024-07-16.
Cite this Page
Oxoglutaric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/oxoglutaric_acid (retrieved
2025-01-05) (BioDeep RN: BioDeep_00000001289). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)(CCC(=O)O)C(=O)O
InChI: InChI=1S/C5H6O5/c6-3(5(9)10)1-2-4(7)8/h1-2H2,(H,7,8)(H,9,10)
描述信息
Oxoglutaric acid, also known as alpha-ketoglutarate, alpha-ketoglutaric acid, AKG, or 2-oxoglutaric acid, is classified as a gamma-keto acid or a gamma-keto acid derivative. gamma-Keto acids are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom. alpha-Ketoglutarate is considered to be soluble (in water) and acidic. alpha-Ketoglutarate is a key molecule in the TCA cycle, playing a fundamental role in determining the overall rate of this important metabolic process (PMID: 26759695). In the TCA cycle, AKG is decarboxylated to succinyl-CoA and carbon dioxide by AKG dehydrogenase, which functions as a key control point of the TCA cycle. Additionally, AKG can be generated from isocitrate by oxidative decarboxylation catalyzed by the enzyme known as isocitrate dehydrogenase (IDH). In addition to these routes of production, AKG can be produced from glutamate by oxidative deamination via glutamate dehydrogenase, and as a product of pyridoxal phosphate-dependent transamination reactions (mediated by branched-chain amino acid transaminases) in which glutamate is a common amino donor. AKG is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. In particular, AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in skeletal muscles (PMID: 26759695). Interestingly, enteric feeding of AKG supplements can significantly increase circulating plasma levels of hormones such as insulin, growth hormone, and insulin-like growth factor-1 (PMID: 26759695). It has recently been shown that AKG can extend the lifespan of adult C. elegans by inhibiting ATP synthase and TOR (PMID: 24828042). In combination with molecular oxygen, alpha-ketoglutarate is required for the hydroxylation of proline to hydroxyproline in the production of type I collagen. A recent study has shown that alpha-ketoglutarate promotes TH1 differentiation along with the depletion of glutamine thereby favouring Treg (regulatory T-cell) differentiation (PMID: 26420908). alpha-Ketoglutarate has been found to be associated with fumarase deficiency, 2-ketoglutarate dehydrogenase complex deficiency, and D-2-hydroxyglutaric aciduria, which are all inborn errors of metabolism (PMID: 8338207). Oxoglutaric acid has been found to be a metabolite produced by Corynebacterium and yeast (PMID: 27872963) (YMDB).
[Spectral] 2-Oxoglutarate (exact mass = 146.02152) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] 2-Oxoglutarate (exact mass = 146.02152) and (S)-Malate (exact mass = 134.02152) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Flavouring ingredient
同义名列表
37 个代谢物同义名
alpha-Ketoglutaric acid disodium salt; 2-oxo-1,5-Pentanedioic acid; alpha-Oxopentanedioic acid; alpha-Keto-glutaric acid; 2-Ketoglutaric Acid-13C1; alpha-Ketoglutaric acid; 2-oxo-1,5-Pentanedioate; alpha Ketoglutaric acid; Α-oxopentanedioic acid; alpha-Oxoglutaric acid; 2-Oxopentanedioic acid; Α-keto-glutaric acid; 2-ketoglutaric acid; Α-ketoglutaric acid; alpha-Ketoglutarate; alpha Ketoglutarate; 2 Ketoglutaric acid; a-Ketoglutaric acid; Α-oxoglutaric acid; 2-Oxoglutaric acid; alpha-Oxoglutarate; 2-Oxopentanedioate; 2 Oxoglutaric acid; alpha Oxoglutarate; Ketoglutaric acid; Oxoglutaric acid; 2-Ketoglutarate; a-Ketoglutarate; 2 Ketoglutarate; Α-ketoglutarate; 2-Oxoglutarate; 2 Oxoglutarate; Oxogluric acid; Oxoglutarate; α-Ketoglutaric acid; 2-Oxoglutaric acid; 2-Oxoglutarate
数据库引用编号
38 个数据库交叉引用编号
- ChEBI: CHEBI:30915
- KEGG: C00026
- KEGGdrug: D70548
- PubChem: 51
- HMDB: HMDB0000208
- Metlin: METLIN119
- DrugBank: DB02926
- DrugBank: DB08845
- DrugBank: DB03806
- ChEMBL: CHEMBL1686
- Wikipedia: Alpha-Ketoglutaric_acid
- MeSH: Ketoglutaric Acids
- MetaCyc: 2-KETOGLUTARATE
- KNApSAcK: C00000769
- foodb: FDB003361
- chemspider: 50
- CAS: 328-50-7
- MoNA: KO001531
- MoNA: KNA00700
- MoNA: KO001529
- MoNA: KNA00701
- MoNA: KNA00533
- MoNA: KNA00702
- MoNA: KNA00531
- MoNA: PS037807
- MoNA: KNA00530
- MoNA: KO001530
- MoNA: KO001528
- PMhub: MS000000269
- ChEBI: CHEBI:16810
- PDB-CCD: AKG
- 3DMET: B00008
- NIKKAJI: J11.847H
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-477
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-747
- PubChem: 3328
- KNApSAcK: 16810
- LOTUS: LTS0057775
分类词条
相关代谢途径
Reactome(4)
BioCyc(20)
- lysine degradation VI
- lysine biosynthesis
- beta-alanine degradation
- lysine degradation
- TCA cycle, aerobic respiration
- pantothenate and coenzyme A biosynthesis
- cysteine degradation
- superpathway of histidine, purine and pyrimidine biosynthesis
- glutamate degradation to ammonia
- glutamine degradation
- tyrosol biosynthesis
- 2-keto glutarate dehydrogenase complex
- alanine degradation
- GABA degradation
- phenylalanine biosynthesis
- arginine degradation (arginase pathway)
- pyridoxal 5'-phosphate biosynthesis
- 4-hydroxyproline degradation II
- (5R)-carbapenem biosynthesis
- TCA cycle variation IV
PlantCyc(0)
代谢反应
2212 个相关的代谢反应过程信息。
Reactome(146)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
ATP + L-His + b-Ala ⟶ ADP + CARN + Pi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ G5EGD2 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ 2xHP-HIF1A + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Chromatin organization:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A + Oxygen ⟶ H0ZRX1 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + Homologues of Me2sR4-HIST1H4 + Oxygen ⟶ CH2O + Homologues of MeR4-HIST1H4 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Lysine catabolism:
2OG + H+ + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Lysine catabolism:
2OG + H+ + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- GABA synthesis, release, reuptake and degradation:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- Degradation of GABA:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
BioCyc(49)
- alanine degradation:
α-ketoglutarate + L-alanine ⟶ L-glutamate + pyruvate
- alanine biosynthesis:
α-ketoglutarate + L-alanine ⟶ L-glutamate + pyruvate
- pyridoxal 5'-phosphate biosynthesis:
2-oxo-3-hydroxy-4-phosphobutanoate + L-glutamate ⟶ 2-oxoglutarate + 4-(phosphonooxy)-threonine
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
2-oxo-3-hydroxy-4-phosphobutanoate + L-glutamate ⟶ 2-oxoglutarate + 4-(phosphonooxy)-threonine
- lysine biosynthesis:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- aspartate superpathway:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- superpathway of lysine, threonine and methionine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + L-glutamate
- (5R)-carbapenem biosynthesis:
(3S,5S)-carbapenam + 2-oxoglutarate + O2 ⟶ (5R)-carbapenem + CO2 + H2O + succinate
- deacetylcephalosporin C biosynthesis:
2-oxoglutarate + O2 + deacetoxycephalosporin C ⟶ CO2 + deacetylcephalosporin-C + succinate
- aspartate degradation:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- asparagine degradation:
H2O + L-asparagine ⟶ L-aspartate + ammonia
- asparagine biosynthesis:
ATP + H2O + L-aspartate + L-glutamine ⟶ AMP + L-asparagine + L-glutamate + pyrophosphate
- aspartate biosynthesis:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- glutamine degradation:
L-aspartate ⟶ ammonia + fumarate
- tryptophan degradation:
α-ketoglutarate + L-tryptophan ⟶ L-glutamate + indolepyruvate
- nylon-6 oligomer degradation:
2-oxoglutarate + 6-aminohexanoate ⟶ 6-oxohexanoate + L-glutamate
- glutamate degradation to succinate:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- GABA degradation:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- phenylalanine biosynthesis I:
L-glutamate + phenylpyruvate ⟶ 2-oxoglutarate + L-phenylalanine
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- phenylalanine degradation:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- phenylalanine biosynthesis:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ L-glutamate + N2-succinyl-L-glutamate 5-semialdehyde
- tyrosine degradation I:
4-hydroxyphenylpyruvate + O2 ⟶ CO2 + homogentisate
- tyrosine biosynthesis I:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- 4-hydroxyphenylpyruvate biosynthesis:
2-oxoglutarate + L-tyrosine ⟶ 4-hydroxyphenylpyruvate + L-glutamate
- tyrosine biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- tyrosol biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- pantothenate and coenzyme A biosynthesis:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- valine biosynthesis:
2,3-dihydroxy-3-methylbutanoate ⟶ 2-keto-isovalerate + H2O
- valine degradation:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- glutamate degradation to ammonia:
H2O + L-glutamate + NAD+ ⟶ α-ketoglutarate + NADH + ammonia
- glutamate biosynthesis from glutamine:
L-glutamate + NAD+ ⟶ α-ketoglutarate + L-glutamine + NADH
- glutamate biosynthesis I:
L-glutamate + NADP+ ⟶ 2-oxoglutarate + H+ + L-glutamine + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 4-hydroxyproline degradation II:
2,5-dioxopentanoate + H2O + NADP+ ⟶ 2-oxoglutarate + H+ + NADPH
- glutamine degradation II:
L-glutamate + NADP+ ⟶ 2-oxoglutarate + H+ + L-glutamine + NADPH
- TCA cycle variation II:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- TCA cycle variation IV:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glutamate biosynthesis:
L-glutamate + NADP+ ⟶ 2-oxoglutarate + H+ + L-glutamine + NADPH
- nitrate reduction V (assimilatory):
H2O + L-glutamate + NADP+ ⟶ 2-oxoglutarate + H+ + NADPH + ammonia
- lysine degradation:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- glutamate biosynthesis from ammonia:
H2O + L-glutamate + NADP+ ⟶ α-ketoglutarate + NADPH + ammonia
- citrulline biosynthesis:
α-ketoglutarate + L-ornithine ⟶ L-glutamate + L-glutamate γ-semialdehyde
- arginine degradation (arginase pathway):
α-ketoglutarate + L-ornithine ⟶ L-glutamate + L-glutamate γ-semialdehyde
WikiPathways(6)
- Cerebral organic acidurias, including diseases:
L-2-Aminoadipic acid ⟶ 2-Oxoadipic acid
- Metabolism overview:
NH3 ⟶ Glutamic acid
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- TCA cycle:
D-threo-Isocitrate ⟶ 2-oxoglutarate
- TCA cycle (aka Krebs or citric acid cycle):
cis-aconitate ⟶ citrate
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
Plant Reactome(1474)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- gibberellin biosynthesis I (late C-3 hydroxylation):
2OG + Oxygen + gibberellin A12 ⟶ SUCCA + carbon dioxide + gibberellin A15
- Gibberellin biosynthesis II (early C-3 hydroxylation):
2OG + Oxygen + gibberellin A14 ⟶ SUCCA + carbon dioxide + gibberellin A37
- Gibberellin biosynthesis III (early C-13 hydroxylation):
2OG + Oxygen + gibberellin A53 ⟶ SUCCA + carbon dioxide + gibberellin A44
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
L-Glu + OA ⟶ 2OG + L-Asp
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
L-Glu + OA ⟶ 2OG + L-Asp
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Asparagine biosynthesis I:
L-Glu + OA ⟶ 2OG + L-Asp
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Asparagine biosynthesis I:
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
2OG + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Lysine degradation II:
H2O + NAD + allysine ⟶ NADH + alpha-aminoadipate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Histidine biosynthesis I:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Ornithine biosynthesis:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis IV:
2OG + H+ + L-Gln + NADH ⟶ L-Glu + NAD
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
- Glutamate biosynthesis I:
2OG + H+ + L-Gln + TPNH ⟶ L-Glu + TPN
INOH(34)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- L-Alanine + 2-Oxo-glutaric acid = Pyruvic acid + L-Glutamic acid ( Glycolysis and Gluconeogenesis ):
L-Glutamic acid + Pyruvic acid ⟶ 2-Oxo-glutaric acid + L-Alanine
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- 2-Oxo-glutaric acid + L-Cysteic acid = L-Glutamic acid + 3-Sulfo-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteic acid ⟶ 3-Sulfo-pyruvic acid + L-Glutamic acid
- Vitamin B6 metabolism ( Vitamin B6 metabolism ):
H2O + O2 + Pyridoxal ⟶ 4-Pyridoxic acid + H2O2
- Lysine degradation ( Lysine degradation ):
2-Oxo-glutaric acid + L-Lysine + NADH ⟶ H2O + L-Saccharopine + NAD+
- N6-Acetyl-L-lysine + 2-Oxo-glutaric acid = 6-Acetamido-2-oxo-hexanoic acid + L-Glutamic acid ( Lysine degradation ):
6-Acetamido-2-oxo-hexanoic acid + L-Glutamic acid ⟶ 2-Oxo-glutaric acid + N6-Acetyl-L-lysine
- 2-Oxo-glutaric acid + N2-Succinyl-L-ornithine = L-Glutamic acid + N2-Succinyl-L-glutamate 5-semialdehyde ( Arginine and Proline metabolism ):
2-Oxo-glutaric acid + N2-Succinyl-L-ornithine ⟶ L-Glutamic acid + N2-Succinyl-L-glutamate 5-semialdehyde
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- 2-oxoglutarate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine = [dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine + CO2 ( Citrate cycle ):
2-Oxo-glutaric acid + TPP ⟶ 3-Carboxy-1-hydroxypropyl-ThPP + CO2
- 2-Oxo-glutaric acid + L-Cysteine-sulfinic acid = L-Glutamic acid + 3-Sulfinyl-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteine-sulfinic acid ⟶ 3-Sulfinyl-pyruvic acid + L-Glutamic acid
- 2-Oxo-glutaric acid + L-Aspartic acid = L-Glutamic acid + Oxaloacetic acid ( Alanine,Aspartic acid and Asparagine metabolism ):
L-Glutamic acid + Oxaloacetic acid ⟶ 2-Oxo-glutaric acid + L-Aspartic acid
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- 2-Oxo-glutaric acid + L-Isoleucine = L-Glutamic acid + (R)-2-Oxo-3-methyl-pentanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Isoleucine ⟶ (R)-2-Oxo-3-methyl-pentanoic acid + L-Glutamic acid
- Phenylalanine degradation ( Phenylalanine degradation ):
H2O + O2 + Phenyl-ethylamine ⟶ H2O2 + NH3 + Phenyl-acetaldehyde
- 2-Oxo-glutaric acid + L-Phenylalanine = L-Glutamic acid + Phenyl-pyruvic acid ( Phenylalanine degradation ):
2-Oxo-glutaric acid + L-Phenylalanine ⟶ L-Glutamic acid + Phenyl-pyruvic acid
- 2-Oxo-glutaric acid + L-Phenylalanine = L-Glutamic acid + Phenyl-pyruvic acid ( Phenylalanine degradation ):
L-Glutamic acid + Phenyl-pyruvic acid ⟶ 2-Oxo-glutaric acid + L-Phenylalanine
- 2-Oxo-glutaric acid + L-Leucine = L-Glutamic acid + 4-Methyl-2-oxo-pentanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Leucine ⟶ 4-Methyl-2-oxo-pentanoic acid + L-Glutamic acid
- 2-Oxo-glutaric acid + 4-Amino-butanoic acid = L-Glutamic acid + Succinate semialdehyde ( Glutamic acid and Glutamine metabolism ):
2-Oxo-glutaric acid + 4-Amino-butanoic acid ⟶ L-Glutamic acid + Succinate semialdehyde
- 2-Oxo acid + L-Ornithine = L-Amino acid + L-Glutamate 5-semialdehyde ( Arginine and Proline metabolism ):
2-Oxo-glutaric acid + L-Ornithine ⟶ L-Glutamate 5-semialdehyde + L-Glutamic acid
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- 2-Oxo-glutaric acid + L-O-Phospho-serine = L-Glutamic acid + 3-Phospho-hydroxy-pyruvic acid ( Glycine and Serine metabolism ):
3-Phospho-hydroxy-pyruvic acid + L-Glutamic acid ⟶ 2-Oxo-glutaric acid + L-O-Phospho-serine
- 2-Oxo-glutaric acid + beta-Alanine = L-Glutamic acid + Malonate semialdehyde ( Pyrimidine Nucleotides and Nucleosides metabolism ):
L-Glutamic acid + Malonate semialdehyde ⟶ 2-Oxo-glutaric acid + beta-Alanine
- 2-Oxo-glutaric acid + L-erythro-4-Hydroxy-glutamic acid = L-Glutamic acid + D-4-Hydroxy-2-oxo-glutaric acid ( Arginine and Proline metabolism ):
2-Oxo-glutaric acid + L-erythro-4-Hydroxy-glutamic acid ⟶ 4-Hydroxy-2-oxo-glutaric acid + L-Glutamic acid
- NAD+ + L-Glutamic acid + H2O = NADH + 2-Oxo-glutaric acid + NH3 ( Glutamic acid and Glutamine metabolism ):
2-Oxo-glutaric acid + NADH + NH3 ⟶ H2O + L-Glutamic acid + NAD+
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Glycine and Serine metabolism ):
3-Mercapto-pyruvic acid + L-Glutamic acid ⟶ 2-Oxo-glutaric acid + L-Cysteine
- L-2-Amino-adipic acid + 2-Oxo-glutaric acid = 2-Oxo-adipic acid + L-Glutamic acid ( Lysine degradation ):
2-Oxo-glutaric acid + L-2-Amino-adipic acid ⟶ 2-Oxo-adipic acid + L-Glutamic acid
- 2-Oxo-glutaric acid + L-Cysteine = L-Glutamic acid + 3-Mercapto-pyruvic acid ( Methionine and Cysteine metabolism ):
2-Oxo-glutaric acid + L-Cysteine ⟶ 3-Mercapto-pyruvic acid + L-Glutamic acid
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
- 2-Oxo-glutaric acid + L-Tyrosine = L-Glutamic acid + 4-Hydroxy-phenyl-pyruvic acid ( Tyrosine metabolism ):
2-Oxo-glutaric acid + L-Tyrosine ⟶ 4-Hydroxy-phenyl-pyruvic acid + L-Glutamic acid
- 2-Oxo-glutaric acid + L-Valine = L-Glutamic acid + 3-Methyl-2-oxo-butanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Valine ⟶ 3-Methyl-2-oxo-butanoic acid + L-Glutamic acid
- NAD+ + Isocitric acid = NADH + 2-Oxo-glutaric acid + CO2 ( Citrate cycle ):
Isocitric acid + NAD+ ⟶ 2-Oxo-glutaric acid + CO2 + NADH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(503)
- Gibberellin Biosynthesis II (Early C-13 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Gibberellin A53 + Succinic acid
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- L-Alanine Metabolism:
L-Glutamic acid + Pyruvic acid ⟶ L-Alanine + Oxoglutaric acid
- Alanine Metabolism:
L-Tryptophan + Pyruvic acid ⟶ L-Alanine + indole-3-pyruvate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- The Oncogenic Action of Succinate:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of Fumarate:
Citric acid ⟶ Water + cis-Aconitic acid
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Vitamin B6:
2-Oxo-3-hydroxy-4-phosphobutanoic acid + L-Glutamic acid ⟶ O-Phospho-4-hydroxy-L-threonine + Oxoglutaric acid
- Vitamin B6 Metabolism:
Oxygen + Pyridoxamine 5'-phosphate + Water ⟶ Ammonia + Hydrogen peroxide + Pyridoxal 5'-phosphate
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Taurine Metabolism:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Oxoglutaric acid + Oxygen + Taurine ⟶ Aminoacetaldehyde + Carbon dioxide + Succinic acid + Sulfite
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Taurine Metabolism:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Taurine Metabolism I:
Adenosine triphosphate + Taurine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + Taurine
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Leucopelargonidin and Leucocyanidin Biosynthesis:
Eriodictyol + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + Succinic acid + taxifolin
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Phytanic Acid Peroxisomal Oxidation:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Refsum Disease:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Flavone and Flavonol Biosynthesis:
Phosphoadenosine phosphosulfate + Quercetin ⟶ Adenosine 3',5'-diphosphate + Hydrogen Ion + Quercetin 3'-sulfate
- Gibberellin Biosynthesis I (Early C-3 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Succinic acid + gibberellin A14
- Gibberellin Biosynthesis III (Non C-3, Non C-13 Hydroxylation):
Oxoglutaric acid + Oxygen + gibberellin A12 ⟶ Carbon dioxide + Succinic acid + gibberellin A15
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Phytanic Acid Peroxisomal Oxidation:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Refsum Disease:
Oxoglutaric acid + Oxygen + Phytanoyl-CoA ⟶ 2-Hydroxyphytanoyl-CoA + Carbon dioxide + Succinic acid
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Phytanic Acid Peroxisomal Oxidation:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Refsum Disease:
Adenosine triphosphate + Coenzyme A + Phytanic acid ⟶ Adenosine diphosphate + Phytanoyl-CoA + Pyrophosphate
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Metabolism:
Adenosine triphosphate + Aminoadipic acid + holo-[LYS2 peptidyl-carrier-protein] ⟶ Adenosine monophosphate + L-2-aminoadipyl-[LYS2 peptidyl-carrier-protein] + Pyrophosphate
- Lysine Metabolism:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Aspartate Metabolism:
Adenosine triphosphate + Ammonia + L-Aspartic acid ⟶ Adenosine monophosphate + L-Asparagine + Pyrophosphate
- L-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Asparagine Biosynthesis:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Asparagine Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Asparagine Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Threonine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Malate-Aspartate Shuttle:
L-Aspartic acid + Oxoglutaric acid ⟶ L-Glutamic acid + Oxalacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Aspartate Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- L-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Asparagine Biosynthesis:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-Ketobutyric acid + Hydrogen Ion + Pyruvic acid ⟶ (S)-2-Aceto-2-hydroxybutanoic acid + Carbon dioxide
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Citrate Cycle:
Isocitric acid ⟶ Water + cis-Aconitic acid
- Isoleucine Degradation:
L-Isoleucine + Oxoglutaric acid ⟶ (S)-3-methyl-2-oxopentanoate + L-Glutamic acid
- Isoleucine Degradation:
L-Isoleucine + Oxoglutaric acid ⟶ (S)-3-methyl-2-oxopentanoate + L-Glutamic acid
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine Biosynthesis:
L-Glutamic acid + Phenylpyruvic acid ⟶ L-Phenylalanine + Oxoglutaric acid
- Phenylalanine Metabolism:
Ammonia + Cytochrome c-552 + Phenylpyruvic acid ⟶ Cytochrome c-552 + D-phenylalanine + Water
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Alanine ⟶ L-Phenylalanine + Pyruvic acid
- Tropane, Piperidine, and Pyridine Alkaloid Biosynthesis:
Hydrogen Ion + N-Methylputrescine + Oxygen ⟶ 1-Methylpyrrolinium + Ammonia + Hydrogen peroxide
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine Biosynthesis:
L-Glutamic acid + Phenylpyruvic acid ⟶ L-Phenylalanine + Oxoglutaric acid
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutamate Metabolism:
Ornithine + Oxoglutaric acid ⟶ L-Glutamic -semialdehyde + L-Glutamic acid
- Glutamic Acid Metabolism:
-Aminobutyric acid + Pyruvic acid ⟶ L-Alanine + Succinic acid semialdehyde
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoribosyl pyrophosphate
- Histidine Metabolism:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
L-Glutamine + Phosphoribulosylformimino-AICAR-P ⟶ 5-Aminoimidazole-4-carboxamide + D-Erythro-imidazole-glycerol-phosphate + Hydrogen Ion + L-Glutamic acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Degradation:
L-Leucine + Oxoglutaric acid ⟶ Ketoleucine + L-Glutamic acid
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Degradation:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Serine Biosynthesis and Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Serine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Serine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- 4-Aminobutanoate Degradation:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Nitrogen Metabolism:
Ammonia + Hydrogen + NADPH + Oxoglutaric acid ⟶ L-Glutamic acid + NADP + Water
- Tyrosine Biosynthesis:
4-Hydroxyphenylpyruvic acid + L-Glutamic acid ⟶ L-Tyrosine + Oxoglutaric acid
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 2:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 3:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-D-Fucosamine
- Polymyxin Resistance:
L-Glutamic acid + UDP- -L-threo-pentapyranos-4-ulose ⟶ Oxoglutaric acid + UDP-4-amino-4-deoxy- -L-arabinopyranose
- Hydrogen Sulfide Biosynthesis I:
L-Cysteine + Oxoglutaric acid ⟶ 3-Mercaptopyruvic acid + L-Glutamic acid
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Nitrogen Metabolism:
Adenosine triphosphate + Ammonia + L-Glutamic acid ⟶ Adenosine diphosphate + L-Glutamine + Phosphate
- Glutamine Metabolism:
Adenosine triphosphate + Phosphate + Pyruvic acid ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoenolpyruvic acid + Pyrophosphate
- Plastoquinol-9 Biosynthesis:
L-Tyrosine + Oxoglutaric acid ⟶ 4-Hydroxyphenylpyruvic acid + L-Glutamic acid
- Isoquinoline Alkaloid Biosynthesis:
Dopamine + Oxygen + Water ⟶ 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxide
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Nitrogen Metabolism:
Carbamic acid + Hydrogen Ion ⟶ Ammonia + Carbon dioxide
- Amino Sugar and Nucleotide Sugar Metabolism III:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Polymyxin Resistance:
L-Glutamic acid + UDP- -L-threo-pentapyranos-4-ulose ⟶ Oxoglutaric acid + UDP-4-amino-4-deoxy- -L-arabinopyranose
- Hydrogen Sulfide Biosynthesis I:
Adenosine triphosphate + L-Cysteine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Cysteine + Phosphate
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-2):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-3):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-4):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-5):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-6):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-7):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-8):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-9):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-10):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-0):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA Cycle:
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-2):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-3):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-4):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-5):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-6):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-7):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-8):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-9):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-10):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-0):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
PharmGKB(0)
76 个相关的物种来源信息
- 8292 - Amphibia: LTS0057775
- 3701 - Arabidopsis: LTS0057775
- 3702 - Arabidopsis thaliana: 10.1074/JBC.RA118.003351
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0057775
- 2 - Bacteria: LTS0057775
- 3700 - Brassicaceae: LTS0057775
- 3051 - Chlamydomonadaceae: LTS0057775
- 3052 - Chlamydomonas: LTS0057775
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0057775
- 3166 - Chlorophyceae: LTS0057775
- 3041 - Chlorophyta: LTS0057775
- 7711 - Chordata: LTS0057775
- 1890464 - Chroococcaceae: LTS0057775
- 3028117 - Cyanophyceae: LTS0057775
- 33682 - Euglenozoa: LTS0057775
- 2759 - Eukaryota: LTS0057775
- 3803 - Fabaceae: LTS0057775
- 6191 - Fasciola: LTS0057775
- 6192 - Fasciola hepatica: 10.3891/ACTA.CHEM.SCAND.17-2129
- 6192 - Fasciola hepatica: LTS0057775
- 27843 - Fasciolidae: LTS0057775
- 4751 - Fungi: LTS0057775
- 1236 - Gammaproteobacteria: LTS0057775
- 9606 - Homo sapiens: -
- 8418 - Hylidae: LTS0057775
- 5653 - Kinetoplastea: LTS0057775
- 8370 - Litoria: LTS0057775
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0057775
- 3398 - Magnoliopsida: LTS0057775
- 3877 - Medicago: LTS0057775
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 3879 - Medicago sativa: LTS0057775
- 1890428 - Merismopediaceae: LTS0057775
- 33208 - Metazoa: LTS0057775
- 2212703 - Mucoromycetes: LTS0057775
- 1913637 - Mucoromycota: LTS0057775
- 4836 - Phycomyces: LTS0057775
- 4837 - Phycomyces blakesleeanus: LTS0057775
- 1344966 - Phycomycetaceae: LTS0057775
- 6157 - Platyhelminthes: LTS0057775
- 3689 - Populus: LTS0057775
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0057775
- 1214 - Prochloron: LTS0057775
- 135621 - Pseudomonadaceae: LTS0057775
- 286 - Pseudomonas: LTS0057775
- 303 - Pseudomonas putida: LTS0057775
- 278655 - Pycnandra: LTS0057775
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 280718 - Pycnandra acuminata: LTS0057775
- 3688 - Salicaceae: LTS0057775
- 3737 - Sapotaceae: LTS0057775
- 4070 - Solanaceae: LTS0057775
- 4107 - Solanum: LTS0057775
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0057775
- 1883 - Streptomyces: LTS0057775
- 1888 - Streptomyces albus: LTS0057775
- 2062 - Streptomycetaceae: LTS0057775
- 35493 - Streptophyta: LTS0057775
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0057775
- 58023 - Tracheophyta: LTS0057775
- 6178 - Trematoda: LTS0057775
- 5690 - Trypanosoma: LTS0057775
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0057775
- 5654 - Trypanosomatidae: LTS0057775
- 33090 - Viridiplantae: LTS0057775
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tingting Lv, Xiude Fan, Chang He, Suwei Zhu, Xiaofeng Xiong, Wei Yan, Mei Liu, Hongwei Xu, Ruihua Shi, Qin He. SLC7A11-ROS/αKG-AMPK axis regulates liver inflammation through mitophagy and impairs liver fibrosis and NASH progression.
Redox biology.
2024 Jun; 72(?):103159. doi:
10.1016/j.redox.2024.103159
. [PMID: 38642501] - Kristina Žuna, Tatyana Tyschuk, Taraneh Beikbaghban, Felix Sternberg, Jürgen Kreiter, Elena E Pohl. The 2-oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4-dinitrophenol-activated proton transport.
Acta physiologica (Oxford, England).
2024 Jun; 240(6):e14143. doi:
10.1111/apha.14143
. [PMID: 38577966] - Qiming Tang, Yuhui Huang, Xiaoxiang Ni, Ming-Ju Amy Lyu, Genyun Chen, Rowan Sage, Xin-Guang Zhu. Increased α-ketoglutarate links the C3-C4 intermediate state to C4 photosynthesis in the genus Flaveria.
Plant physiology.
2024 Apr; 195(1):291-305. doi:
10.1093/plphys/kiae077
. [PMID: 38377473] - Zhao Cui, Caifeng Li, Wei Liu, Mo Sun, Shiwen Deng, Junxian Cao, Hongjun Yang, Peng Chen. Scutellarin activates IDH1 to exert antitumor effects in hepatocellular carcinoma progression.
Cell death & disease.
2024 Apr; 15(4):267. doi:
10.1038/s41419-024-06625-6
. [PMID: 38622131] - Ying Zhang, Chun-Yan Sang, Xing-Rong Wang, Cheng-Bo Wang, Xian-Hua Meng, Wei-Feng Wang, Jun-Li Yang. Rapid evaluation of PHD2 inhibitory activity of natural products based on capillary electrophoresis online stacking strategy.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2024 Apr; 1236(?):124064. doi:
10.1016/j.jchromb.2024.124064
. [PMID: 38430605] - Qing-Hua Qian, Ya-Ping Song, Yu Zhang, Hao Xue, Wei-Wei Zhang, Yapeng Han, Yán Wāng, De-Xiang Xu. Gestational α-ketoglutarate supplementation ameliorates arsenic-induced hepatic lipid deposition via epigenetic reprogramming of β-oxidation process in female offspring.
Environment international.
2024 Mar; 185(?):108488. doi:
10.1016/j.envint.2024.108488
. [PMID: 38359550] - Hao Yu, Daojing Gan, Zhen Luo, Qilin Yang, Dongqi An, Hao Zhang, Yingchun Hu, Zhuang Ma, Qingchun Zeng, Dingli Xu, Hao Ren. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice.
Molecular medicine (Cambridge, Mass.).
2024 Jan; 30(1):15. doi:
10.1186/s10020-024-00783-1
. [PMID: 38254035] - San Kim, Se Hyeon Jang, Min Jeong Kim, Jeong Jae Lee, Kyung-Min Kim, Young Hoon Kim, Ju-Hoon Lee, Sung Keun Jung. Hybrid nutraceutical of 2-ketoglutaric acid in improving inflammatory bowel disease: Role of prebiotics and TAK1 inhibitor.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 171(?):116126. doi:
10.1016/j.biopha.2024.116126
. [PMID: 38219386] - Zhen-Ye Luo, Yin-Xia Hu, Chuan-Wei Qiu, Wei-Cong Chen, Li Li, Fei-Long Chen, Chang-Shun Liu. Coptidis Rhizoma processed with Evodia Rutaecarpa improves the effect on ulcerative colitis by increasing intestinal energy metabolites alpha-ketoglutarate and Lactobacillus reuteri.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Dec; 121(?):155115. doi:
10.1016/j.phymed.2023.155115
. [PMID: 37801896] - Theo Lange, Nadiem Atiq, Maria João Pimenta Lange. GAS2 encodes a 2-oxoglutarate dependent dioxygenase involved in ABA catabolism.
Nature communications.
2023 Nov; 14(1):7602. doi:
10.1038/s41467-023-43187-1
. [PMID: 37990018] - Oleh Demianchuk, Myroslava Vatashchuk, Dmytro Gospodaryov, Viktoria Hurza, Marian Ivanochko, Vitalii Derkachov, Vladyslav Berezovkyi, Oleh Lushchak, Kenneth B Storey, Maria Bayliak, Volodymyr I Lushchak. High-fat high-fructose diet and alpha-ketoglutarate affect mouse behavior that is accompanied by changes in oxidative stress response and energy metabolism in the cerebral cortex.
Biochimica et biophysica acta. General subjects.
2023 Nov; ?(?):130521. doi:
10.1016/j.bbagen.2023.130521
. [PMID: 37967727] - Stephen M G Duff, Meiying Zhang, Fred Zinnel, Timothy Rydel, Christina M Taylor, Danqi Chen, Gregory Tilton, Patricia Mamanella, David Duda, Yanfei Wang, Bosong Xiang, Balasulojini Karunanandaa, Rita Varagona, Jaishree Chittoor, Qungang Qi, Erin Hall, Graeme Garvey, Jiamin Zeng, Jun Zhang, Xin Li, Tommi White, Agoston Jerga, Jeff Haas. Structural and functional characterization of triketone dioxygenase from Oryza Sativa.
Biochimica et biophysica acta. General subjects.
2023 Nov; ?(?):130504. doi:
10.1016/j.bbagen.2023.130504
. [PMID: 37967728] - Melanie N Hurst, Connor J Beebout, Alexis Hollingsworth, Kirsten R Guckes, Alexandria Purcell, Tomas A Bermudez, Diamond Williams, Seth A Reasoner, M Stephen Trent, Maria Hadjifrangiskou. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS.
mSphere.
2023 10; 8(5):e0005923. doi:
10.1128/msphere.00059-23
. [PMID: 37676915] - Zuliang Zhou, Jianhua Zhao, Clement R de Cruz, Hong Xu, Liansheng Wang, Qiyou Xu. Alpha-ketoglutaric acid mitigates the detrimental effects of soy antigenic protein on the intestinal health and growth performance of Mirror carp Cyprinus carpio.
Fish physiology and biochemistry.
2023 Oct; 49(5):951-965. doi:
10.1007/s10695-023-01234-0
. [PMID: 37665506] - Samiksha Saxena, Gaurav Pal, Ashutosh Pandey. Functional characterization of 2-oxoglutarate-dependent dioxygenase gene family in chickpea.
Plant science : an international journal of experimental plant biology.
2023 Aug; ?(?):111836. doi:
10.1016/j.plantsci.2023.111836
. [PMID: 37619866] - Gang Li, Ziwen Gong, Nawaraj Dulal, Margarita Marroquin-Guzman, Raquel O Rocha, Michael Richter, Richard A Wilson. A protein kinase coordinates cycles of autophagy and glutaminolysis in invasive hyphae of the fungus Magnaporthe oryzae within rice cells.
Nature communications.
2023 07; 14(1):4146. doi:
10.1038/s41467-023-39880-w
. [PMID: 37438395] - Akiyoshi Yoda, Xiaonan Xie, Kaori Yoneyama, Kenji Miura, Christopher S P McErlean, Takahito Nomura. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum.
Plant & cell physiology.
2023 Jun; ?(?):. doi:
10.1093/pcp/pcad060
. [PMID: 37307421] - Zhijia Gai, Maoming Zhang, Pengfei Zhang, Jingtao Zhang, Jingqi Liu, Lijun Cai, Xu Yang, Na Zhang, Zhengnan Yan, Lei Liu, Guozhong Feng. 2-Oxoglutarate contributes to the effect of foliar nitrogen on enhancing drought tolerance during flowering and grain yield of soybean.
Scientific reports.
2023 May; 13(1):7274. doi:
10.1038/s41598-023-34403-5
. [PMID: 37142711] - Ruojing Liu, Yi Gao, Li Huang, Bing Shi, Xing Yin, Shujuan Zou. Alpha-ketoglutarate up-regulates autophagic activity in peri-implant environment and enhances dental implant osseointegration in osteoporotic mice.
Journal of clinical periodontology.
2023 05; 50(5):671-683. doi:
10.1111/jcpe.13784
. [PMID: 36734077] - Angelika Janaszkiewicz, Ágota Tóth, Quentin Faucher, Hélène Arnion, Nicolas Védrenne, Chantal Barin-Le Guellec, Pierre Marquet, Florent Di Meo. Substrate binding and lipid-mediated allostery in the human organic anion transporter 1 at the atomic-scale.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Feb; 160(?):114342. doi:
10.1016/j.biopha.2023.114342
. [PMID: 36739760] - Athena Papadopoulou, Fabian Meyer, Rebecca M Buller. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases.
Biochemistry.
2023 01; 62(2):229-240. doi:
10.1021/acs.biochem.2c00115
. [PMID: 35446547] - Hanny Chauhan, Aiana, Kashmir Singh. Genome-wide identification of 2-oxoglutarate and Fe (II)-dependent dioxygenase family genes and their expression profiling under drought and salt stress in potato.
PeerJ.
2023; 11(?):e16449. doi:
10.7717/peerj.16449
. [PMID: 38025721] - Maria M Bayliak, Myroslava V Vatashchuk, Dmytro V Gospodaryov, Viktoria V Hurza, Oleh I Demianchuk, Marian V Ivanochko, Nadia I Burdyliuk, Kenneth B Storey, Oleh Lushchak, Volodymyr I Lushchak. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects.
Biochimica et biophysica acta. General subjects.
2022 12; 1866(12):130226. doi:
10.1016/j.bbagen.2022.130226
. [PMID: 35987369] - Haotian Liu, Yong Xie, Xia Wang, Martine I Abboud, Chao Ma, Wei Ge, Christopher J Schofield. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease.
Alzheimer's & dementia : the journal of the Alzheimer's Association.
2022 12; 18(12):2637-2668. doi:
10.1002/alz.12733
. [PMID: 35852137] - Qing-Qi Chang, Long Chen, Ya-Fang Liao, Chun-Lu Yuan, Dan-Dan Zhang. [Mechanism of timosaponin AⅢ in regulation of metabolism against glioblastoma growth].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Dec; 47(24):6679-6686. doi:
10.19540/j.cnki.cjcmm.20220728.401
. [PMID: 36604918] - Shao-Liang Yang, Hai-Xia Tan, Zhen-Zhen Lai, Hai-Yan Peng, Hui-Li Yang, Qiang Fu, Hai-Yan Wang, Da-Jin Li, Ming-Qing Li. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1+GDF15+NK cell differentiation.
Cellular and molecular life sciences : CMLS.
2022 Nov; 79(12):611. doi:
10.1007/s00018-022-04639-x
. [PMID: 36449080] - Shuhan Lei, Bingru Huang. Metabolic regulation of α-Ketoglutarate associated with heat tolerance in perennial ryegrass.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):164-173. doi:
10.1016/j.plaphy.2022.09.005
. [PMID: 36116225] - Zhi-Rong Lin, Zhen-Zhen Li, Yan-Jun Cao, Wen-Jing Yu, Jian-Tao Ye, Pei-Qing Liu. GDH promotes isoprenaline-induced cardiac hypertrophy by activating mTOR signaling via elevation of α-ketoglutarate level.
Naunyn-Schmiedeberg's archives of pharmacology.
2022 11; 395(11):1373-1385. doi:
10.1007/s00210-022-02252-0
. [PMID: 35904584] - Xuewen Zhu, Yaolei Mi, Xiangxiao Meng, Yiming Zhang, Weiqiang Chen, Xue Cao, Huihua Wan, Wei Yang, Jun Li, Sifan Wang, Zhichao Xu, Atia Tul Wahab, Shilin Chen, Wei Sun. Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L.
Microbial cell factories.
2022 Oct; 21(1):215. doi:
10.1186/s12934-022-01933-y
. [PMID: 36243861] - Daniel Gonzalez Izundegui, Patricia E Miller, Ravi V Shah, Clary B Clish, Maura E Walker, Gary F Mitchell, Robert E Gerszten, Martin G Larson, Ramachandran S Vasan, Matthew Nayor. Response of circulating metabolites to an oral glucose challenge and risk of cardiovascular disease and mortality in the community.
Cardiovascular diabetology.
2022 10; 21(1):213. doi:
10.1186/s12933-022-01647-w
. [PMID: 36243866] - Yong Cai, Zhiyi Dong, Jiying Wang. Circ_0000808 promotes the development of non-small cell lung cancer by regulating glutamine metabolism via the miR-1827/SLC1A5 axis.
World journal of surgical oncology.
2022 Oct; 20(1):329. doi:
10.1186/s12957-022-02777-x
. [PMID: 36192755] - Michael H Kramer, Qiang Zhang, Robert Sprung, Ryan B Day, Petra Erdmann-Gilmore, Yang Li, Ziheng Xu, Nichole M Helton, Daniel R George, Yiling Mi, Peter Westervelt, Jacqueline E Payton, Sai M Ramakrishnan, Christopher A Miller, Daniel C Link, John F DiPersio, Matthew J Walter, R Reid Townsend, Timothy J Ley. Proteomic and phosphoproteomic landscapes of acute myeloid leukemia.
Blood.
2022 09; 140(13):1533-1548. doi:
10.1182/blood.2022016033
. [PMID: 35895896] - Sawako Suzuki, Divya Venkatesh, Hiroaki Kanda, Akitoshi Nakayama, Hiroyuki Hosokawa, Eunyoung Lee, Takashi Miki, Brent R Stockwell, Koutaro Yokote, Tomoaki Tanaka, Carol Prives. GLS2 Is a Tumor Suppressor and a Regulator of Ferroptosis in Hepatocellular Carcinoma.
Cancer research.
2022 Sep; 82(18):3209-3222. doi:
10.1158/0008-5472.can-21-3914
. [PMID: 35895807] - Zalina I Iskhakova, Darya E Zhuravleva, Christopher Heim, Marcus D Hartmann, Aleksandr V Laykov, Karl Forchhammer, Airat R Kayumov. PotN represents a novel energy-state sensing PII subfamily, occurring in firmicutes.
The FEBS journal.
2022 09; 289(17):5305-5321. doi:
10.1111/febs.16431
. [PMID: 35285159] - Zhijia Gai, Jingqi Liu, Lijun Cai, Jingtao Zhang, Lei Liu. Foliar application of alpha-ketoglutarate plus nitrogen improves drought resistance in soybean (Glycine max L. Merr.).
Scientific reports.
2022 08; 12(1):14421. doi:
10.1038/s41598-022-18660-4
. [PMID: 36002532] - Prashant D Sonawane, Adam Jozwiak, Ranjit Barbole, Sayantan Panda, Bekele Abebie, Yana Kazachkova, Sachin A Gharat, Ofir Ramot, Tamar Unger, Guy Wizler, Sagit Meir, Ilana Rogachev, Adi Doron-Faigenboim, Marina Petreikov, Arthur Schaffer, Ashok P Giri, Tali Scherf, Asaph Aharoni. 2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum.
The New phytologist.
2022 05; 234(4):1394-1410. doi:
10.1111/nph.18064
. [PMID: 35238413] - James T Tambong, Renlin Xu, Diane Cuppels, Julie Chapados, Suzanne Gerdis, Jackson Eyres, Adam Koziol, Jeremy Dettman. Analysis of Draft Genome Resources of Thirty-Three Canadian Strains of Pseudomonas syringae pv. tomato Isolated Between 1992 and 2008 Reveals Achromobactin Virulence Cluster that Is Absent in the Reference Strain DC3000.
Phytopathology.
2022 04; 112(4):968-972. doi:
10.1094/phyto-08-21-0353-a
. [PMID: 34543057] - Lian Wu, Zhanfeng Wang, Yixin Cen, Binju Wang, Jiahai Zhou. Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1.
Angewandte Chemie (International ed. in English).
2022 03; 61(12):e202112063. doi:
10.1002/anie.202112063
. [PMID: 34796596] - Stefan Pierzynowski, Kateryna Pierzynowska. Alpha-ketoglutarate, a key molecule involved in nitrogen circulation in both animals and plants, in the context of human gut microbiota and protein metabolism.
Advances in medical sciences.
2022 Mar; 67(1):142-147. doi:
10.1016/j.advms.2022.02.004
. [PMID: 35245838] - Adewale S Adebayo, Marius Roman, Mustafa Zakkar, Syabira Yusoff, Melanie Gulston, Lathishia Joel-David, Bony Anthony, Florence Y Lai, Antonio Murgia, Bryony Eagle-Hemming, Sophia Sheikh, Tracy Kumar, Hardeep Aujla, Will Dott, Julian L Griffin, Gavin J Murphy, Marcin J Woźniak. Gene and metabolite expression dependence on body mass index in human myocardium.
Scientific reports.
2022 01; 12(1):1425. doi:
10.1038/s41598-022-05562-8
. [PMID: 35082386] - Divya Subburaj, Bernard Ng, Amina Kariminia, Sayeh Abdossamadi, Madeline Lauener, Eneida R Nemecek, Jacob Rozmus, Sandhya Kharbanda, Carrie L Kitko, Victor A Lewis, Tal Schechter-Finklestein, David A Jacobsohn, Andrew C Harris, Michael A Pulsipher, Henrique Bittencourt, Sung Won Choi, Emi H Caywood, Kimberly A Kasow, Monica Bhatia, Benjamin R Oshrine, Donald Coulter, Joseph H Chewning, Michael Joyce, Anna B Pawlowska, Gail C Megason, Anita Lawitschka, Elena Ostroumov, Ramon Klein Geltink, Geoffrey D E Cuvelier, Kirk R Schultz. Metabolomic identification of α-ketoglutaric acid elevation in pediatric chronic graft-versus-host disease.
Blood.
2022 01; 139(2):287-299. doi:
10.1182/blood.2021013244
. [PMID: 34534280] - Elena Sendino Garví, Rosalinde Masereeuw, Manoe J Janssen. Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype.
Cells.
2022 01; 11(1):. doi:
10.3390/cells11010177
. [PMID: 35011739] - Jenifer Masip, Norma Rallón, Elena Yeregui, Montserrat Olona, Salvador Resino, José M Benito, Consuelo Viladés, Graciano García-Pardo, José Alcamí, Ezequiel Ruiz-Mateos, Frederic Gómez-Bertomeu, Montserrat Vargas, Marta Navarro, José A Oteo, Juan A Pineda, Anna Martí, Verónica Alba, Francesc Vidal, Joaquin Peraire, Anna Rull. Elevated α-Ketoglutaric Acid Concentrations and a Lipid-Balanced Signature Are the Key Factors in Long-Term HIV Control.
Frontiers in immunology.
2022; 13(?):822272. doi:
10.3389/fimmu.2022.822272
. [PMID: 35514981] - Ahmet Hatipoglu, Deepak Menon, Talia Levy, Maria A Frias, David A Foster. Inhibiting glutamine utilization creates a synthetic lethality for suppression of ATP citrate lyase in KRas-driven cancer cells.
PloS one.
2022; 17(10):e0276579. doi:
10.1371/journal.pone.0276579
. [PMID: 36269753] - Monica Hoang, Emelien Jentz, Sarah M Janssen, Daniela Nasteska, Federica Cuozzo, David J Hodson, A Russell Tupling, Guo-Hua Fong, Jamie W Joseph. Isoform-specific Roles of Prolyl Hydroxylases in the Regulation of Pancreatic β-Cell Function.
Endocrinology.
2022 01; 163(1):. doi:
10.1210/endocr/bqab226
. [PMID: 34718519] - Chiranjiv Pradhan, Uzma Soharwardi, Namitha Dileep, Nikhila Peter, Rachel Fernandez, Sweta Das, Amitha Kurian, Preetham Elumalai. Suitable ratio of dietary L-carnitine and α-ketoglutarate improves growth and health performance in Nile tilapia, Oreochromis niloticus.
Fish physiology and biochemistry.
2021 Dec; 47(6):1933-1950. doi:
10.1007/s10695-021-01020-w
. [PMID: 34628555] - Maria I Matias, Carmen S Yong, Amir Foroushani, Chloe Goldsmith, Cédric Mongellaz, Erdinc Sezgin, Kandice R Levental, Ali Talebi, Julie Perrault, Anais Rivière, Jonas Dehairs, Océane Delos, Justine Bertand-Michel, Jean-Charles Portais, Madeline Wong, Julien C Marie, Ameeta Kelekar, Sandrina Kinet, Valérie S Zimmermann, Ilya Levental, Laurent Yvan-Charvet, Johannes V Swinnen, Stefan A Muljo, Hector Hernandez-Vargas, Saverio Tardito, Naomi Taylor, Valérie Dardalhon. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis.
Cell reports.
2021 11; 37(5):109911. doi:
10.1016/j.celrep.2021.109911
. [PMID: 34731632] - Nishith M Shrimali, Sakshi Agarwal, Simrandeep Kaur, Sulagna Bhattacharya, Sankar Bhattacharyya, Josef T Prchal, Prasenjit Guchhait. α-Ketoglutarate Inhibits Thrombosis and Inflammation by Prolyl Hydroxylase-2 Mediated Inactivation of Phospho-Akt.
EBioMedicine.
2021 Nov; 73(?):103672. doi:
10.1016/j.ebiom.2021.103672
. [PMID: 34740102] - Jialiang Shao, Tiezhu Shi, Hua Yu, Yufeng Ding, Liping Li, Xiang Wang, Xiongjun Wang. Cytosolic GDH1 degradation restricts protein synthesis to sustain tumor cell survival following amino acid deprivation.
The EMBO journal.
2021 10; 40(20):e107480. doi:
10.15252/embj.2020107480
. [PMID: 34269483] - Wenjun Li, Bin Yang, Jiangyu Xu, Liling Peng, Shan Sun, Zhibo Huang, Xiuhua Jiang, Yongqi He, Zhoufei Wang. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice.
The Plant journal : for cell and molecular biology.
2021 10; 108(2):478-491. doi:
10.1111/tpj.15455
. [PMID: 34376020] - Lalita Mehra, Aditi Bhattacharya, Harish Rawat, Amit Kumar, Abhinav Jaimini, Gaurav Mittal. In-vitro and in-vivo functional observation studies to establish therapeutic potential of alpha-ketoglutarate against methotrexate induced liver injury.
Biomedical journal.
2021 10; 44(5):611-619. doi:
10.1016/j.bj.2020.05.012
. [PMID: 34736875] - Yue Chen, Nelamangala V Nagaraja, Bin Fan, Luke Utley, Rene M Lemieux, Janeta Popovici-Muller, Lenny Dang, Hyeryun Kim, Liping Yan, Shin-San M Su, Scott A Biller, Hua Yang. Preclinical Drug Metabolism, Pharmacokinetic, and Pharmacodynamic Profiles of Ivosidenib, an Inhibitor of Mutant Isocitrate Dehydrogenase 1 for Treatment of Isocitrate Dehydrogenase 1-Mutant Malignancies.
Drug metabolism and disposition: the biological fate of chemicals.
2021 10; 49(10):870-881. doi:
10.1124/dmd.120.000234
. [PMID: 34321251] - Naijie Feng, Minglong Yu, Yao Li, Dan Jin, Dianfeng Zheng. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense.
Ecotoxicology and environmental safety.
2021 Sep; 220(?):112369. doi:
10.1016/j.ecoenv.2021.112369
. [PMID: 34090109] - Jia-Yuan Zhang, Bo Zhou, Ru-Yue Sun, Yuan-Li Ai, Kang Cheng, Fu-Nan Li, Bao-Rui Wang, Fan-Jian Liu, Zhi-Hong Jiang, Wei-Jia Wang, Dawang Zhou, Hang-Zi Chen, Qiao Wu. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8.
Cell research.
2021 09; 31(9):980-997. doi:
10.1038/s41422-021-00506-9
. [PMID: 34012073] - Saud Alamri, Qasi D Alsubaie, Abdullah A Al-Amri, Bandar Al-Munqedi, Hayssam M Ali, Bishwajit K Kushwaha, Vijay P Singh, Manzer H Siddiqui. Priming of tomato seedlings with 2-oxoglutarate induces arsenic toxicity alleviatory responses by involving endogenous nitric oxide.
Physiologia plantarum.
2021 Sep; 173(1):45-57. doi:
10.1111/ppl.13168
. [PMID: 32656764] - Jie Zheng, Hao Xiao, Yehui Duan, Bo Song, Changbing Zheng, Qiuping Guo, Fengna Li, Tiejun Li. Roles of amino acid derivatives in the regulation of obesity.
Food & function.
2021 Jul; 12(14):6214-6225. doi:
10.1039/d1fo00780g
. [PMID: 34105579] - Fengzhu Ling, Xin Tang, Hao Zhang, Yong Q Chen, Jianxin Zhao, Haiqin Chen, Wei Chen. Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina.
Biotechnology letters.
2021 Jul; 43(7):1455-1466. doi:
10.1007/s10529-021-03133-x
. [PMID: 33907945] - Wan-Qiu Peng, Gang Xiao, Bai-Yu Li, Ying-Ying Guo, Liang Guo, Qi-Qun Tang. l-Theanine Activates the Browning of White Adipose Tissue Through the AMPK/α-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-Induced Obesity in Mice.
Diabetes.
2021 07; 70(7):1458-1472. doi:
10.2337/db20-1210
. [PMID: 33863801] - Ryota Akiyama, Bunta Watanabe, Masaru Nakayasu, Hyoung Jae Lee, Junpei Kato, Naoyuki Umemoto, Toshiya Muranaka, Kazuki Saito, Yukihiro Sugimoto, Masaharu Mizutani. The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase.
Nature communications.
2021 02; 12(1):1300. doi:
10.1038/s41467-021-21546-0
. [PMID: 33637735] - Shuo Wei, Wen Zhang, Rao Fu, Yang Zhang. Genome-wide characterization of 2-oxoglutarate and Fe(II)-dependent dioxygenase family genes in tomato during growth cycle and their roles in metabolism.
BMC genomics.
2021 Feb; 22(1):126. doi:
10.1186/s12864-021-07434-3
. [PMID: 33602133] - Daichi Watanabe, Ikuo Takahashi, Naiyanate Jaroensanti-Tanaka, Sho Miyazaki, Kai Jiang, Masaru Nakayasu, Masato Wada, Tadao Asami, Masaharu Mizutani, Kazuma Okada, Masatoshi Nakajima. The apple gene responsible for columnar tree shape reduces the abundance of biologically active gibberellin.
The Plant journal : for cell and molecular biology.
2021 02; 105(4):1026-1034. doi:
10.1111/tpj.15084
. [PMID: 33211343] - Shirin Zamani-Nour, Hsiang-Chun Lin, Berkley J Walker, Tabea Mettler-Altmann, Roxana Khoshravesh, Shanta Karki, Efren Bagunu, Tammy L Sage, W Paul Quick, Andreas P M Weber. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice.
Journal of experimental botany.
2021 01; 72(1):137-152. doi:
10.1093/jxb/eraa343
. [PMID: 32710115] - Chunxia Ge, Changxiao Tang, Yu-Xiu Zhu, Guan-Feng Wang. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum.
Gene.
2021 Jan; 764(?):145078. doi:
10.1016/j.gene.2020.145078
. [PMID: 32858175] - Xingjun Meng, Bo Zhu, Yan Liu, Lei Fang, Binbin Yin, Yanni Sun, Mengni Ma, Yuli Huang, Yuning Zhu, Yunlong Zhang. Unique Biomarker Characteristics in Gestational Diabetes Mellitus Identified by LC-MS-Based Metabolic Profiling.
Journal of diabetes research.
2021; 2021(?):6689414. doi:
10.1155/2021/6689414
. [PMID: 34212051] - Elisabet Rodríguez-Tomàs, Meritxell Arenas, Junior Gómez, Johana Acosta, Jordi Trilla, Yolanda López, Miguel Árquez, Laura Torres, Pablo Araguas, Anna Hernández-Aguilera, Gerard Baiges-Gaya, Helena Castañé, Jordi Camps, Jorge Joven. Identification of potential metabolic biomarkers of rectal cancer and of the effect of neoadjuvant radiochemotherapy.
PloS one.
2021; 16(4):e0250453. doi:
10.1371/journal.pone.0250453
. [PMID: 33886674] - Samantha J Wong, Alison E Ringel, William Yuan, Joao A Paulo, Haejin Yoon, Mark A Currie, Marcia C Haigis. Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins.
The Journal of biological chemistry.
2021 Jan; 296(?):100397. doi:
10.1016/j.jbc.2021.100397
. [PMID: 33571527] - Leonie Drews, Marcel Zimmermann, Philipp Westhoff, Dominik Brilhaus, Rebecca E Poss, Laura Bergmann, Constanze Wiek, Peter Brenneisen, Roland P Piekorz, Tabea Mettler-Altmann, Andreas P M Weber, Andreas S Reichert. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner.
Disease models & mechanisms.
2020 11; 13(10):. doi:
10.1242/dmm.047134
. [PMID: 32917661] - Martin Kery, Ioanna Papandreou. Emerging strategies to target cancer metabolism and improve radiation therapy outcomes.
The British journal of radiology.
2020 Nov; 93(1115):20200067. doi:
10.1259/bjr.20200067
. [PMID: 32462882] - Priscilla Biswas, Cinzia Dellanoce, Alessandra Vezzoli, Simona Mrakic-Sposta, Mauro Malnati, Alberto Beretta, Roberto Accinni. Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Glutathione and Resveratrol Precursors.
Nutrients.
2020 Oct; 12(11):. doi:
10.3390/nu12113224
. [PMID: 33105552] - Zhijia Gai, Lei Liu, Jingtao Zhang, Jingqi Liu, Lijun Cai. Effects of exogenous α-oxoglutarate on proline accumulation, ammonium assimilation and photosynthesis of soybean seedling (Glycine max(L.) Merr.) exposed to cold stress.
Scientific reports.
2020 10; 10(1):17017. doi:
10.1038/s41598-020-74094-w
. [PMID: 33046814] - Dongxiao Li, Jinqing Song, Xiyuan Li, Yi Liu, Hui Dong, Lulu Kang, Yupeng Liu, Yao Zhang, Ying Jin, Hanzhou Guan, Chongchen Zhou, Yanling Yang. Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome.
European journal of medical genetics.
2020 Oct; 63(10):104003. doi:
10.1016/j.ejmg.2020.104003
. [PMID: 32679198] - Stuart R Green, Kenneth B Storey. Regulation of the α-ketoglutarate dehydrogenasecomplex during hibernation in a small mammal, the Richardson's ground squirrel (Urocitellus richardsonii).
Biochimica et biophysica acta. Proteins and proteomics.
2020 09; 1868(9):140448. doi:
10.1016/j.bbapap.2020.140448
. [PMID: 32445798] - Lalita Mehra, Harish Rawat, Abhinav Jaimini, Amit Tyagi, Gaurav Mittal. Alpha-ketoglutarate mediated hepatoprotection against alcohol induced toxicity: in vivo functional observation studies in Sprague Dawley rats using gamma scintigraphy.
Drug and chemical toxicology.
2020 Sep; 43(5):546-551. doi:
10.1080/01480545.2018.1559183
. [PMID: 31094237] - Khaled A Selim, Elena Ermilova, Karl Forchhammer. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom.
The New phytologist.
2020 08; 227(3):722-731. doi:
10.1111/nph.16492
. [PMID: 32077495] - Priya Rani, Gunjan Gautam, Tamanna Anwar, Samudrala Gourinath, Asis Datta. Crystal structure of Gig2 protein from Candida albicans provides a structural insight into DUF1479 family oxygenases.
International journal of biological macromolecules.
2020 May; 150(?):1272-1280. doi:
10.1016/j.ijbiomac.2019.10.138
. [PMID: 31743702] - Colin Y Kim, Andrew J Mitchell, Christopher M Glinkerman, Fu-Shuang Li, Tomáš Pluskal, Jing-Ke Weng. The chloroalkaloid (-)-acutumine is biosynthesized via a Fe(II)- and 2-oxoglutarate-dependent halogenase in Menispermaceae plants.
Nature communications.
2020 04; 11(1):1867. doi:
10.1038/s41467-020-15777-w
. [PMID: 32313070] - Yexian Yuan, Pingwen Xu, Qingyan Jiang, Xingcai Cai, Tao Wang, Wentong Peng, Jiajie Sun, Canjun Zhu, Cha Zhang, Dong Yue, Zhihui He, Jinping Yang, Yuxian Zeng, Man Du, Fenglin Zhang, Lucas Ibrahimi, Sarah Schaul, Yuwei Jiang, Jiqiu Wang, Jia Sun, Qiaoping Wang, Liming Liu, Songbo Wang, Lina Wang, Xiaotong Zhu, Ping Gao, Qianyun Xi, Cong Yin, Fan Li, Guli Xu, Yongliang Zhang, Gang Shu. Exercise-induced α-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1-dependent adrenal activation.
The EMBO journal.
2020 04; 39(7):e103304. doi:
10.15252/embj.2019103304
. [PMID: 32104923] - Adriano Alves Stefanello, Marco Aurélio Schuler de Oliveira, Emanuel Maltempi Souza, Fábio Oliveira Pedrosa, Leda Satie Chubatsu, Luciano Fernandes Huergo, Ray Dixon, Rose Adele Monteiro. Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites.
Biochimica et biophysica acta. Proteins and proteomics.
2020 03; 1868(3):140348. doi:
10.1016/j.bbapap.2019.140348
. [PMID: 31866507] - Qian Jiang, Tolulope Oluwadamilare Adebowale, Junquan Tian, Yulong Yin, Kang Yao. Effects of dietary alpha-ketoglutarate on bacteria profiles in the faeces of lactating sows and their suckling piglets.
Archives of animal nutrition.
2020 Feb; 74(1):39-56. doi:
10.1080/1745039x.2019.1639443
. [PMID: 31552757] - Norihiro Isogai, Yuta Shiono, Tetsuya Kuramoto, Kenji Yoshioka, Hiroko Ishihama, Haruki Funao, Masaya Nakamura, Morio Matsumoto, Ken Ishii. Potential osteomyelitis biomarkers identified by plasma metabolome analysis in mice.
Scientific reports.
2020 01; 10(1):839. doi:
10.1038/s41598-020-57619-1
. [PMID: 31964942] - Qiyu Tian, Junxing Zhao, Qiyuan Yang, Bo Wang, Jeanene M Deavila, Mei-Jun Zhu, Min Du. Dietary alpha-ketoglutarate promotes beige adipogenesis and prevents obesity in middle-aged mice.
Aging cell.
2020 01; 19(1):e13059. doi:
10.1111/acel.13059
. [PMID: 31691468] - Asaad M Mahmood, Jim M Dunwell. 2-oxoglutarate-dependent dioxygenases: A renaissance in attention for ascorbic acid in plants.
PloS one.
2020; 15(12):e0242833. doi:
10.1371/journal.pone.0242833
. [PMID: 33290424] - Lei Zhao, Haolu Guo, Hui Sun. Effects of low-protein diet supplementation with alpha-ketoglutarate on growth performance, nitrogen metabolism and mTOR signalling pathway of skeletal muscle in piglets.
Journal of animal physiology and animal nutrition.
2020 Jan; 104(1):300-309. doi:
10.1111/jpn.13230
. [PMID: 31674084] - Qian Jiang, Tolulope Oluwadamilare Adebowale, Junquan Tian, Yulong Yin, Kang Yao. Effects of maternal alpha-ketoglutarate supplementation during lactation on the performance of lactating sows and suckling piglets.
Archives of animal nutrition.
2019 Dec; 73(6):457-471. doi:
10.1080/1745039x.2019.1640023
. [PMID: 31454268] - Pablo D Cárdenas, Prashant D Sonawane, Uwe Heinig, Adam Jozwiak, Sayantan Panda, Bekele Abebie, Yana Kazachkova, Margarita Pliner, Tamar Unger, Dalia Wolf, Itai Ofner, Ester Vilaprinyo, Sagit Meir, Olga Davydov, Amit Gal-On, Saul Burdman, Ashok Giri, Dani Zamir, Tali Scherf, Jedrzej Szymanski, Ilana Rogachev, Asaph Aharoni. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases.
Nature communications.
2019 11; 10(1):5169. doi:
10.1038/s41467-019-13211-4
. [PMID: 31727889] - Milan Holeček, Melita Vodeničarovová. Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats.
Amino acids.
2019 Nov; 51(10-12):1667-1680. doi:
10.1007/s00726-019-02803-5
. [PMID: 31712921] - Yifeng Zhang, Ping Su, Xiaoyi Wu, Jiawei Zhou, Yujun Zhao, Tianyuan Hu, Yuru Tong, Luqi Huang, Wei Gao. The gibberellin 13-oxidase that specifically converts gibberellin A9 to A20 in Tripterygium wilfordii is a 2-oxoglutarate-dependent dioxygenase.
Planta.
2019 Nov; 250(5):1613-1620. doi:
10.1007/s00425-019-03240-0
. [PMID: 31388830] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Marta Sena-Vélez, Sean D Holland, Manu Aggarwal, Nick G Cogan, Mukesh Jain, Dean W Gabriel, Kathryn M Jones. Growth Dynamics and Survival of Liberibacter crescens BT-1, an Important Model Organism for the Citrus Huanglongbing Pathogen 'Candidatus Liberibacter asiaticus'.
Applied and environmental microbiology.
2019 11; 85(21):. doi:
10.1128/aem.01656-19
. [PMID: 31420343] - Jelle Vriend, Charlotte A Hoogstraten, Kevin R Venrooij, Bartholomeus T van den Berge, Larissa P Govers, Arno van Rooij, Marleen C D G Huigen, Tom J J Schirris, Frans G M Russel, Rosalinde Masereeuw, Martijn J Wilmer. Organic anion transporters 1 and 3 influence cellular energy metabolism in renal proximal tubule cells.
Biological chemistry.
2019 09; 400(10):1347-1358. doi:
10.1515/hsz-2018-0446
. [PMID: 30653465] - Sangkyu Park, Da-Hye Kim, Bo-Ra Park, Jong-Yeol Lee, Sun-Hyung Lim. Molecular and Functional Characterization of Oryza sativa Flavonol Synthase (OsFLS), a Bifunctional Dioxygenase.
Journal of agricultural and food chemistry.
2019 Jul; 67(26):7399-7409. doi:
10.1021/acs.jafc.9b02142
. [PMID: 31244203] - Elisa Elena Baracco, Francesca Castoldi, Sylvère Durand, David P Enot, Jelena Tadic, Katharina Kainz, Frank Madeo, Alexis Chery, Valentina Izzo, Maria Chiara Maiuri, Federico Pietrocola, Guido Kroemer. α-Ketoglutarate inhibits autophagy.
Aging.
2019 06; 11(11):3418-3431. doi:
10.18632/aging.102001
. [PMID: 31173576] - R M Satpute, Y D Bhutia, V Lomash, R Bhattacharya. Efficacy assessment of co-treated alpha-ketoglutarate and N-acetyl cysteine against the subchronic toxicity of cyanide in rats.
Toxicology and industrial health.
2019 Jun; 35(6):410-423. doi:
10.1177/0748233719851902
. [PMID: 31244408] - Ruikai Wang, Li Liu, Jiejie Kong, Zhiyong Xu, Javaid Akhter Bhat, Tuanjie Zhao. QTL architecture of vine growth habit and gibberellin oxidase gene diversity in wild soybean (Glycine soja).
Scientific reports.
2019 05; 9(1):7393. doi:
10.1038/s41598-019-43887-z
. [PMID: 31089185] - Veronica Carbonell, Eerika Vuorio, Eva-Mari Aro, Pauli Kallio. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942.
World journal of microbiology & biotechnology.
2019 May; 35(5):77. doi:
10.1007/s11274-019-2652-7
. [PMID: 31069553] - María de la Luz Cádiz-Gurrea, Vicente Micol, Jorge Joven, Antonio Segura-Carretero, Salvador Fernández-Arroyo. Different behavior of polyphenols in energy metabolism of lipopolysaccharide-stimulated cells.
Food research international (Ottawa, Ont.).
2019 04; 118(?):96-100. doi:
10.1016/j.foodres.2018.02.027
. [PMID: 30898358] - Zhengliang Peng, Qiong Zhan, Xiangkun Xie, Hanlin Li, Yan Tu, Yujia Bai, Xingfu Huang, Wenyan Lai, Boxin Zhao, Qingchun Zeng, Dingli Xu. Association between admission plasma 2-oxoglutarate levels and short-term outcomes in patients with acute heart failure: a prospective cohort study.
Molecular medicine (Cambridge, Mass.).
2019 03; 25(1):8. doi:
10.1186/s10020-019-0078-1
. [PMID: 30922225] - Wenkai Ren, Yaoyao Xia, Siyuan Chen, Guoyao Wu, Fuller W Bazer, Beiyan Zhou, Bie Tan, Guoqiang Zhu, Jinping Deng, Yulong Yin. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes.
Advances in nutrition (Bethesda, Md.).
2019 03; 10(2):321-330. doi:
10.1093/advances/nmy084
. [PMID: 30753258] - Ming-Xiang Cheng, Ding Cao, Yong Chen, Jin-Zheng Li, Bing Tu, Jian-Ping Gong. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2019 Mar; 111(?):1141-1146. doi:
10.1016/j.biopha.2018.12.149
. [PMID: 30841427]