2-Isopropylmalic acid (BioDeep_00000001213)

 

Secondary id: BioDeep_00000400440, BioDeep_00000629382, BioDeep_00000875065, BioDeep_00001868881

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(2S)-2-Hydroxy-2-(1-methylethyl)butanedioic acid

化学式: C7H12O5 (176.0685)
中文名称: 2-异丙基苹果酸, 异丙基苹果酸
谱图信息: 最多检出来源 Homo sapiens(feces) 21.87%

Reviewed

Last reviewed on 2024-08-26.

Cite this Page

2-Isopropylmalic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/2-isopropylmalic_acid (retrieved 2024-12-23) (BioDeep RN: BioDeep_00000001213). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(C)C(CC(=O)O)(C(=O)O)O
InChI: InChI=1S/C7H12O5/c1-4(2)7(12,6(10)11)3-5(8)9/h4,12H,3H2,1-2H3,(H,8,9)(H,10,11)

描述信息

2-Isopropylmalic acid (CAS: 3237-44-3), also known as 3-carboxy-3-hydroxyisocaproic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. 2-Isopropylmalic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-Isopropylmalic acid is an alpha-hydroxy organic acid regularly occurring in the urine of healthy individuals (PMID: 2338430, 544608), and in hemofiltrates (PMID: 7251751). 2-Isopropylmalic acid is elevated during fasting and diabetic ketoacidosis (PMID: 1591279). It is also a metabolite found in Acetobacter (PMID: 6035258).
α-Isopropylmalate (α-IPM) is the leucine biosynthetic precursor in Yeast[1].

α-Isopropylmalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3237-44-3 (retrieved 2024-08-26) (CAS RN: 3237-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

37 个代谢物同义名

(2S)-2-Hydroxy-2-(1-methylethyl)butanedioic acid; (3S)-3-Carboxy-3-hydroxy-4-methylpentanoic acid; (2S)-2-Hydroxy-2-(propan-2-yl)butanedioic acid; (2S)-2-isopropyl-2-hydroxy-butanedioic acid; 2-Hydroxy-2-(1-methylethyl)butanedioic acid; (3S)-3-Carboxy-3-hydroxy-4-methylpentanoate; 3-Carboxy-3-hydroxy-4-methylpentanoic acid; (S)-2-Hydroxy-2-(isopropyl)succinic acid; (3S)-3-Carboxy-3-hydroxyisocaproic acid; (2S)-2-Hydroxy-2-isopropylsuccinic acid; 3-Carboxy-3-hydroxy-4-methylpentanoate; 3-Hydroxy-4-methyl-3-carboxypentanoate; 2-Isopropyl-2-hydroxybutanedioic acid; (S)-2-Hydroxy-2-(isopropyl)succinate; (2S)-2-Hydroxy-2-isopropylsuccinate; (3S)-3-Carboxy-3-hydroxyisocaproate; 3-Carboxy-3-hydroxyisocaproic acid; 2-HYDROXY-2-ISOPROPYLSUCCINIC ACID; 2-Isopropyl-2-hydroxybutanedioate; 2-Hydroxy-2-isopropylsuccinate; 3-Carboxy-3-hydroxyisocaproate; (S)-(+)-2-Isopropylmalic acid; α-Isopropylmalic acid; (2S)-2-Isopropylmalic acid; alpha-Isopropylmalic acid; (S)-2-Isopropylmalic acid; α-Isopropylmalate; (2S)-2-Isopropylmalate; 2-isopropyl-malic acid; Α-isopropylmalic acid; alpha-Isopropylmalate; 2-Isopropylmalic acid; a-Isopropylmalic acid; a-Isopropylmalate; Α-isopropylmalate; 2-Isopropylmalate; α-IPM



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

9 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(9)

PharmGKB(0)

46 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CRTC1, FH, HAP1, IDI1, IFT88, MAPK8, MYLK, PKM, TUBB2B
Endoplasmic reticulum membrane 1 B3GAT1
Cytoplasmic vesicle, autophagosome 1 HAP1
Nucleus 7 CRTC1, CYC1, FH, HAP1, MAPK8, PKM, TUBB2B
autophagosome 1 HAP1
cytosol 11 ACO2, CRTC1, FH, GPT, HAP1, IDI1, IFT88, MAPK8, MYLK, PKM, RPE
dendrite 1 HAP1
nuclear body 1 CRTC1
centrosome 2 HAP1, IFT88
nucleoplasm 3 CRTC1, HAP1, MAPK8
Cell membrane 1 TNF
Cleavage furrow 1 MYLK
lamellipodium 1 MYLK
Cell projection, axon 1 HAP1
Cell projection, growth cone 1 HAP1
Multi-pass membrane protein 3 ABCC2, SLC25A34, SLC25A35
Synapse 2 MAPK8, MYLK
cell surface 2 ABCC2, TNF
Golgi membrane 1 B3GAT1
growth cone 1 HAP1
lysosomal membrane 1 GAA
mitochondrial inner membrane 3 CYC1, SLC25A34, SLC25A35
neuronal cell body 1 TNF
synaptic vesicle 1 HAP1
Lysosome 2 GAA, HAP1
Presynapse 1 HAP1
plasma membrane 5 ABCC2, CRTC1, GAA, MYLK, TNF
Membrane 4 ABCC2, B3GAT1, CYC1, GAA
apical plasma membrane 1 ABCC2
axon 1 MAPK8
extracellular exosome 5 FH, GAA, GPT, PKM, RPE
Lysosome membrane 1 GAA
endoplasmic reticulum 1 HAP1
extracellular space 1 TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 HAP1
Schaffer collateral - CA1 synapse 1 TUBB2B
intercellular canaliculus 1 ABCC2
mitochondrion 6 ACO2, CYC1, FH, HAP1, PKM, SLC25A35
intracellular membrane-bounded organelle 2 B3GAT1, GAA
Secreted 2 B3GAT1, GAA
extracellular region 4 B3GAT1, GAA, PKM, TNF
Single-pass membrane protein 1 CYC1
mitochondrial matrix 2 ACO2, FH
Cell projection, cilium 1 IFT88
motile cilium 1 IFT88
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 IFT88
external side of plasma membrane 1 TNF
Extracellular vesicle 1 PKM
actin cytoskeleton 2 HAP1, MYLK
dendritic spine 1 HAP1
cytoplasmic vesicle 1 HAP1
microtubule cytoskeleton 1 TUBB2B
nucleolus 1 HAP1
axon cytoplasm 1 HAP1
Early endosome 1 HAP1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 B3GAT1, TNF
vesicle 1 PKM
Apical cell membrane 1 ABCC2
Cell projection, lamellipodium 1 MYLK
Mitochondrion inner membrane 3 CYC1, SLC25A34, SLC25A35
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 3 HAP1, IFT88, TUBB2B
microtubule 1 TUBB2B
Peroxisome 1 IDI1
Cell projection, dendritic spine 1 HAP1
collagen-containing extracellular matrix 1 PKM
ciliary tip 1 IFT88
nuclear speck 1 HAP1
Cell projection, neuron projection 1 HAP1
ciliary basal body 1 IFT88
ciliary base 1 IFT88
cilium 2 IFT88, PKM
intraciliary transport particle B 1 IFT88
phagocytic cup 1 TNF
mitotic spindle 1 TUBB2B
Chromosome 1 FH
cytoskeleton 1 HAP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome, centriole 1 IFT88
Cytoplasm, cytoskeleton, cilium basal body 1 IFT88
centriole 2 HAP1, IFT88
chromosome, telomeric region 1 HAP1
Cell projection, cilium, flagellum 1 IFT88
non-motile cilium 1 IFT88
site of double-strand break 1 FH
intercellular bridge 1 TUBB2B
sperm flagellum 1 IFT88
Cell projection, dendrite 1 HAP1
tertiary granule membrane 1 GAA
stress fiber 1 MYLK
ficolin-1-rich granule lumen 1 PKM
secretory granule lumen 1 PKM
[Isoform 1]: Golgi apparatus membrane 1 B3GAT1
azurophil granule membrane 1 GAA
respiratory chain complex III 1 CYC1
Cytoplasm, cytoskeleton, stress fiber 1 MYLK
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
Rough endoplasmic reticulum 1 PKM
manchette 1 IFT88
ribosome 1 HAP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
inclusion body 1 HAP1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 HAP1
[Isoform Mitochondrial]: Mitochondrion 1 FH
[Isoform Cytoplasmic]: Cytoplasm, cytosol 1 FH
autolysosome lumen 1 GAA
sperm head-tail coupling apparatus 1 IFT88
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
[Isoform 2]: Golgi apparatus membrane 1 B3GAT1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Wen-Ming Chen, Jurgen Prell, Euan K James, Der-Shyan Sheu, Shih-Yi Sheu. Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica. Microbiology (Reading, England). 2012 Jul; 158(Pt 7):1758-1766. doi: 10.1099/mic.0.058370-0. [PMID: 22556357]
  • Hao Wu, Zhang Zhang, Songnian Hu, Jun Yu. On the molecular mechanism of GC content variation among eubacterial genomes. Biology direct. 2012 Jan; 7(?):2. doi: 10.1186/1745-6150-7-2. [PMID: 22230424]
  • Yan He, Ashley Galant, Qiuying Pang, Johanna M Strul, Sherifat F Balogun, Joseph M Jez, Sixue Chen. Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana. The Journal of biological chemistry. 2011 Aug; 286(33):28794-28801. doi: 10.1074/jbc.m111.262519. [PMID: 21697089]
  • Rui-Sheng Wang, Sona Pandey, Song Li, Timothy E Gookin, Zhixin Zhao, Réka Albert, Sarah M Assmann. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC genomics. 2011 May; 12(?):216. doi: 10.1186/1471-2164-12-216. [PMID: 21554708]
  • Rubén Rellán-Álvarez, Hamdi El-Jendoubi, Gert Wohlgemuth, Anunciación Abadía, Oliver Fiehn, Javier Abadía, Ana Alvarez-Fernández. Metabolite profile changes in xylem sap and leaf extracts of strategy I plants in response to iron deficiency and resupply. Frontiers in plant science. 2011; 2(?):66. doi: 10.3389/fpls.2011.00066. [PMID: 22645546]
  • Eric T McDowell, Jeremy Kapteyn, Adam Schmidt, Chao Li, Jin-Ho Kang, Anne Descour, Feng Shi, Matthew Larson, Anthony Schilmiller, Lingling An, A Daniel Jones, Eran Pichersky, Carol A Soderlund, David R Gang. Comparative functional genomic analysis of Solanum glandular trichome types. Plant physiology. 2011 Jan; 155(1):524-39. doi: 10.1104/pp.110.167114. [PMID: 21098679]
  • Jan-Willem de Kraker, Jonathan Gershenzon. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis. The Plant cell. 2011 Jan; 23(1):38-53. doi: 10.1105/tpc.110.079269. [PMID: 21205930]
  • Yan He, Bing Chen, Qiuying Pang, Johanna M Strul, Sixue Chen. Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant & cell physiology. 2010 Sep; 51(9):1480-7. doi: 10.1093/pcp/pcq113. [PMID: 20663849]
  • Gregory S Maloney, Andrej Kochevenko, Denise M Tieman, Takayuki Tohge, Uri Krieger, Dani Zamir, Mark G Taylor, Alisdair R Fernie, Harry J Klee. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant physiology. 2010 Jul; 153(3):925-36. doi: 10.1104/pp.110.154922. [PMID: 20435740]
  • Anthony Schilmiller, Feng Shi, Jeongwoon Kim, Amanda L Charbonneau, Daniel Holmes, A Daniel Jones, Robert L Last. Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. The Plant journal : for cell and molecular biology. 2010 May; 62(3):391-403. doi: 10.1111/j.1365-313x.2010.04154.x. [PMID: 20113441]
  • Yasuo Kagawa. ATP synthase: from single molecule to human bioenergetics. Proceedings of the Japan Academy. Series B, Physical and biological sciences. 2010; 86(7):667-93. doi: 10.2183/pjab.86.667. [PMID: 20689227]
  • Tanja Knill, Michael Reichelt, Christian Paetz, Jonathan Gershenzon, Stefan Binder. Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant molecular biology. 2009 Oct; 71(3):227-39. doi: 10.1007/s11103-009-9519-5. [PMID: 19597944]
  • Tamara Gigolashvili, Ruslan Yatusevich, Inga Rollwitz, Melanie Humphry, Jonathan Gershenzon, Ulf-Ingo Flügge. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. The Plant cell. 2009 Jun; 21(6):1813-29. doi: 10.1105/tpc.109.066399. [PMID: 19542295]
  • Sridevi Sureshkumar, Marco Todesco, Korbinian Schneeberger, Ramya Harilal, Sureshkumar Balasubramanian, Detlef Weigel. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science (New York, N.Y.). 2009 Feb; 323(5917):1060-3. doi: 10.1126/science.1164014. [PMID: 19150812]
  • Hidetoshi Morita, Hidehiro Toh, Shinji Fukuda, Hiroshi Horikawa, Kenshiro Oshima, Takehito Suzuki, Masaru Murakami, Shin Hisamatsu, Yukio Kato, Tatsuya Takizawa, Hideo Fukuoka, Tetsuhiko Yoshimura, Kikuji Itoh, Daniel J O'Sullivan, Larry L McKay, Hiroshi Ohno, Jun Kikuchi, Toshio Masaoka, Masahira Hattori. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA research : an international journal for rapid publication of reports on genes and genomes. 2008 Jun; 15(3):151-61. doi: 10.1093/dnares/dsn009. [PMID: 18487258]
  • Jules Beekwilder, Wessel van Leeuwen, Nicole M van Dam, Monica Bertossi, Valentina Grandi, Luca Mizzi, Mikhail Soloviev, Laszlo Szabados, Jos W Molthoff, Bert Schipper, Hans Verbocht, Ric C H de Vos, Piero Morandini, Mark G M Aarts, Arnaud Bovy. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PloS one. 2008 Apr; 3(4):e2068. doi: 10.1371/journal.pone.0002068. [PMID: 18446225]
  • Kerry A Lucas, Jessica R Filley, Jeremy M Erb, Eric R Graybill, John W Hawes. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. The Journal of biological chemistry. 2007 Aug; 282(34):24980-9. doi: 10.1074/jbc.m701028200. [PMID: 17580301]
  • Yuichi Deguchi, Mari Banba, Yoshikazu Shimoda, Svetlana A Chechetka, Ryota Suzuri, Yasuhiro Okusako, Yasuhiro Ooki, Koichi Toyokura, Akihiro Suzuki, Toshiki Uchiumi, Shiro Higashi, Mikiko Abe, Hiroshi Kouchi, Katsura Izui, Shingo Hata. Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA research : an international journal for rapid publication of reports on genes and genomes. 2007 Jun; 14(3):117-33. doi: 10.1093/dnares/dsm014. [PMID: 17634281]
  • Hong Lin, Harshavardhan Doddapaneni, Yuri Takahashi, M Andrew Walker. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. BMC plant biology. 2007 Feb; 7(?):8. doi: 10.1186/1471-2229-7-8. [PMID: 17316447]
  • Jan-Willem de Kraker, Katrin Luck, Susanne Textor, James G Tokuhisa, Jonathan Gershenzon. Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. Plant physiology. 2007 Feb; 143(2):970-86. doi: 10.1104/pp.106.085555. [PMID: 17189332]
  • Axel A Elling, Makedonka Mitreva, Justin Recknor, Xiaowu Gai, John Martin, Thomas R Maier, Jeffrey P McDermott, Tarek Hewezi, David McK Bird, Eric L Davis, Richard S Hussey, Dan Nettleton, James P McCarter, Thomas J Baum. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines. Genome biology. 2007; 8(10):R211. doi: 10.1186/gb-2007-8-10-r211. [PMID: 17919324]
  • Akira Nozawa, Junpei Takano, Kyoko Miwa, Yuko Nakagawa, Toru Fujiwara. Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts. Bioscience, biotechnology, and biochemistry. 2005 Apr; 69(4):806-10. doi: 10.1271/bbb.69.806. [PMID: 15849421]
  • Aiko Barsch, Thomas Patschkowski, Karsten Niehaus. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Functional & integrative genomics. 2004 Oct; 4(4):219-30. doi: 10.1007/s10142-004-0117-y. [PMID: 15372312]
  • Ben Field, Guillermo Cardon, Maria Traka, Johan Botterman, Guy Vancanneyt, Richard Mithen. Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant physiology. 2004 Jun; 135(2):828-39. doi: 10.1104/pp.104.039347. [PMID: 15155874]
  • Julio M Sanjuán-Pinilla, Socorro Muñoz, Joaquina Nogales, José Olivares, Juan Sanjuán. Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin. Archives of microbiology. 2002 Jul; 178(1):36-44. doi: 10.1007/s00203-002-0421-7. [PMID: 12070767]
  • C Bernofsky. Physiology aspects of pyridine nucleotide regulation in mammals. Molecular and cellular biochemistry. 1980 Dec; 33(3):135-43. doi: 10.1007/bf00225285. [PMID: 6450878]
  • R T Coutts, G W Dawson, C W Kazakoff, J Y Wong. In vivo phenolic metabolites of N-alkylamphetamines in the rat. Evidence in favor of catechol formation. Drug metabolism and disposition: the biological fate of chemicals. 1976 May; 4(3):256-61. doi: NULL. [PMID: 6230]
  • R A Rauner, J J Schmidt, V A Najjar. Proline endopeptidase and exopeptidase activity in polymorphonuclear granulocytes. Molecular and cellular biochemistry. 1976 Feb; 10(2):77-80. doi: 10.1007/bf01742201. [PMID: 3727]
  • . . . . doi: . [PMID: 17369439]