D-Pinitol (BioDeep_00000000457)
Main id: BioDeep_00000017340
Secondary id: BioDeep_00000618914
human metabolite PANOMIX_OTCML-2023 blood metabolite natural product
代谢物信息卡片
化学式: C7H14O6 (194.079)
中文名称: D-松醇, 松醇
谱图信息:
最多检出来源 Homo sapiens(blood) 62.54%
分子结构信息
SMILES: COC1C(C(C(C(C1O)O)O)O)O
InChI: InChI=1S/C7H14O6/c1-13-7-5(11)3(9)2(8)4(10)6(7)12/h2-12H,1H3/t2-,3-,4-,5-,6+,7+/m0/s1
描述信息
Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea.
D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products.
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
同义名列表
17 个代谢物同义名
(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol; 1D-3-O-methyl-chiro-inositol; 5D-5-O-Methyl-chiro-inositol; 3-O-Methyl-D-chiro-inositol; 4-O-Methyl-D-chiro-inositol; chiro-Inositol,3-O-methyl-; Cathartomannitol; D-(+)-Pinitol; (+)-Pinitol; D-Pinitol; Matezitol; Sennitol; pinitol; Pinit; D-Pinitol; D-Pinitol; D-Pinitol
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:18266
- ChEBI: CHEBI:28548
- KEGG: C06352
- KEGG: C03844
- PubChem: 164619
- HMDB: HMDB0034219
- DrugBank: DB12969
- ChEMBL: CHEMBL4303180
- ChEMBL: CHEMBL493737
- Wikipedia: Pinitol
- KNApSAcK: C00001168
- foodb: FDB012524
- chemspider: 10369209
- CAS: 10284-63-6
- CAS: 6090-97-7
- CAS: 484-68-4
- PubChem: 6581
- NIKKAJI: J14.856C
- PubChem: 8588
- NIKKAJI: J12.912G
- medchemexpress: HY-N0655
- LOTUS: LTS0010732
- KNApSAcK: 28548
分类词条
相关代谢途径
Reactome(0)
代谢反应
247 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- pinitol biosynthesis II:
myo-inositol + SAM ⟶ H+ + SAH + sequoyitol
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
WikiPathways(0)
Plant Reactome(228)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ D-galactosylononitol + myo-inositol
INOH(0)
PlantCyc(16)
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-pinitol + galactinol ⟶ myo-inositol + galactopinitol A
- galactosylcyclitol biosynthesis:
D-ononitol + galactinol ⟶ myo-inositol + D-galactosylononitol
- galactosylcyclitol biosynthesis:
galactinol + galactopinitol A ⟶ myo-inositol + ciceritol
- pinitol biosynthesis II:
myo-inositol + SAM ⟶ H+ + SAH + sequoyitol
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis I:
myo-inositol + SAM ⟶ D-ononitol + H+ + SAH
- pinitol biosynthesis I:
D-ononitol + NAD+ ⟶ 4-O-methyl-D-myo-inosose + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
137 个相关的物种来源信息
- 425843 - Abies pindrow:
- 4022 - Acer: LTS0010732
- 57651 - Acer oblongum: 10.1016/0031-9422(88)83068-1
- 57651 - Acer oblongum: LTS0010732
- 366450 - Acrostichum speciosum: 10.1016/S0044-328X(84)80097-5
- 279216 - Adesmia bicolor: 10.1016/0305-1978(96)00004-X
- 2590832 - Adesmia incana: 10.1016/0305-1978(96)00004-X
- 124972 - Aegialitis annulata: 10.1016/S0044-328X(84)80097-5
- 155619 - Agaricomycetes: LTS0010732
- 111850 - Ammopiptanthus: LTS0010732
- 126911 - Ammopiptanthus mongolicus: 10.1135/CCCC19901257
- 126911 - Ammopiptanthus mongolicus: LTS0010732
- 53828 - Apuleia: LTS0010732
- 53829 - Apuleia leiocarpa: 10.1016/S0031-9422(00)89891-X
- 53829 - Apuleia leiocarpa: LTS0010732
- 3818 - Arachis hypogaea: 10.1248/YAKUSHI1947.103.9_997
- 158533 - Aristolochia arcuata: 10.1016/S0031-9422(02)00655-6
- 12948 - Aristolochia gigantea: 10.1016/S0031-9422(96)00835-7
- 20400 - Astragalus: LTS0010732
- 1632244 - Astragalus macropus: 10.1007/S10600-008-9127-7
- 1632244 - Astragalus macropus: LTS0010732
- 3084242 - Astragalus mucidus: LTS0010732
- 3084309 - Astragalus pterocephalus: LTS0010732
- 158325 - Astragalus sieversianus: 10.1007/S10600-008-9052-9
- 158325 - Astragalus sieversianus: LTS0010732
- 2014735 - Astragalus verrucosus: 10.1016/S0031-9422(98)00297-0
- 25673 - Balanophoraceae: LTS0010732
- 5204 - Basidiomycota: LTS0010732
- 53836 - Bituminaria bituminosa:
- 40420 - Bondarzewiaceae: LTS0010732
- 21571 - Boraginaceae: LTS0010732
- 124768 - Celosia Cristata L.: -
- 20340 - Ceratonia siliqua: 10.1021/JF00071A015
- 2815460 - Chamaecrista dentata: 10.1016/S0367-326X(00)00155-6
- 2816358 - Chesniella: LTS0010732
- 3827 - Cicer arietinum: 10.1016/S0031-9422(00)80263-0
- 79331 - Cordia: LTS0010732
- 573155 - Cordia boissieri: 10.1016/S0031-9422(00)84473-8
- 573155 - Cordia boissieri: LTS0010732
- 1561080 - Cordiaceae: LTS0010732
- 70072 - Cyclopia: LTS0010732
- 337839 - Cyclopia falcata: 10.1021/JF040097Z
- 337839 - Cyclopia falcata: LTS0010732
- 384038 - Cyclopia intermedia: 10.1021/JF980258X
- 155109 - Cyclopia subternata: 10.1021/JF040097Z
- 155109 - Cyclopia subternata: LTS0010732
- 162738 - Detarium: LTS0010732
- 327901 - Detarium microcarpum: 10.1016/S0008-6215(02)00025-3
- 327901 - Detarium microcarpum: LTS0010732
- 118895 - Dorycnium: LTS0010732
- 118898 - Dorycnium hirsutum: 10.1007/S10600-006-0099-1
- 754874 - Ebenus cretica: 10.1016/S0305-1978(98)90077-1
- 1561073 - Ehretiaceae: LTS0010732
- 53876 - Erythrophleum: LTS0010732
- 568080 - Erythrophleum fordii: 10.1016/J.BMC.2008.09.021
- 568080 - Erythrophleum fordii: LTS0010732
- 2759 - Eukaryota: LTS0010732
- 104319 - Eysenhardtia: LTS0010732
- 3086815 - Eysenhardtia subcoriacea: LTS0010732
- 3803 - Fabaceae: LTS0010732
- 66629 - Fagonia indica: 10.1021/NP50031A034
- 4751 - Fungi: LTS0010732
- 49818 - Genista: LTS0010732
- 319660 - Genista corsica: 10.1016/J.BSE.2004.10.015
- 319660 - Genista corsica: 10.1021/NP990282K
- 319660 - Genista corsica: LTS0010732
- 123905 - Genista ephedroides: 10.1021/NP980112S
- 123905 - Genista ephedroides: LTS0010732
- 167663 - Gliricidia sepium: 10.1055/S-2006-962717
- 3847 - Glycine max:
- 46347 - Glycyrrhiza: LTS0010732
- 49827 - Glycyrrhiza glabra: 10.1021/NP050034Q
- 49827 - Glycyrrhiza glabra: LTS0010732
- 13562 - Heterobasidion: LTS0010732
- 13563 - Heterobasidion annosum: 10.1111/J.1574-6941.2000.TB00732.X
- 13563 - Heterobasidion annosum: LTS0010732
- 9606 - Homo sapiens: -
- 3864 - Lens culinaris: 10.1016/S0031-9422(00)80263-0
- 3867 - Lotus: LTS0010732
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0010732
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: 10.2135/CROPSCI1980.0011183X002000010017X
- 47247 - Lotus corniculatus: LTS0010732
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0010732
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0010732
- 347994 - Lotus pedunculatus: 10.2135/CROPSCI1980.0011183X002000010017X
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0010732
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: 10.2135/CROPSCI1980.0011183X002000010017X
- 181288 - Lotus uliginosus: LTS0010732
- 3398 - Magnoliopsida: LTS0010732
- 3879 - Medicago sativa:
- 3881 - Onobrychis: LTS0010732
- 872937 - Onobrychis cyri: 10.1021/JF000388H
- 3882 - Onobrychis viciifolia: 10.1021/JF000388H
- 3882 - Onobrychis viciifolia: LTS0010732
- 58890 - Ononis spinosa: 10.1016/S0031-9422(00)81730-6
- 2743277 - Ouratea hexasperma: 10.1016/S0031-9422(99)00106-5
- 46142 - Petiveria alliacea: 10.1016/0031-9422(90)85294-P
- 3885 - Phaseolus vulgaris: 10.1016/S0031-9422(00)80263-0
- 71647 - Pinus pinaster: 10.1016/0031-9422(88)80742-8
- 55062 - Pinus ponderosa: 10.1021/JF00110A049
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)80263-0
- 33090 - Plants: -
- 23672 - Sapindaceae: LTS0010732
- 1003262 - Sarcophyte: LTS0010732
- 1618143 - Sarcophyte sanguinea: 10.1016/S0031-9422(00)97556-3
- 1618143 - Sarcophyte sanguinea: LTS0010732
- 1288009 - Senna macranthera var. micans: 10.1016/S0367-326X(00)00155-6
- 346403 - Senna multijuga: 10.1016/S0367-326X(00)00155-6
- 3998 - Simmondsia: LTS0010732
- 3999 - Simmondsia chinensis: 10.1016/0031-9422(84)83079-4
- 3999 - Simmondsia chinensis: 10.1021/JF010380N
- 3999 - Simmondsia chinensis: LTS0010732
- 3997 - Simmondsiaceae: LTS0010732
- 35493 - Streptophyta: LTS0010732
- 58860 - Tamarindus indica: 10.1007/S11418-007-0144-9
- 58023 - Tracheophyta: LTS0010732
- 66647 - Tribulus: LTS0010732
- 693388 - Tribulus cistoides: 10.1016/0031-9422(95)00622-2
- 693388 - Tribulus cistoides: 10.1016/S0031-9422(00)86890-9
- 693388 - Tribulus cistoides: LTS0010732
- 60916 - Trifolium incarnatum: 10.1016/S0031-9422(00)81730-6
- 3899 - Trifolium repens: 10.2135/CROPSCI1980.0011183X002000010017X
- 97047 - Trifolium vesiculosum: 10.2135/CROPSCI1980.0011183X002000010017X
- 3906 - Vicia faba: 10.1016/S0031-9422(00)80263-0
- 33090 - Viridiplantae: LTS0010732
- 3972 - Viscum album: 10.1111/J.1469-8137.1992.TB02943.X
- 569834 - Zanha: LTS0010732
- 569835 - Zanha africana:
- 569835 - Zanha africana: 10.1021/NP970221R
- 569835 - Zanha africana: LTS0010732
- 43873 - Zygophyllaceae: LTS0010732
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Francisco M Dillon, Charalampos Panagos, Gonçalo Gouveia, Fariba Tayyari, Hugo D Chludil, Arthur S Edison, Jorge A Zavala. Changes in primary metabolite content may affect thrips feeding preference in soybean crops.
Phytochemistry.
2024 Apr; 220(?):114014. doi:
10.1016/j.phytochem.2024.114014
. [PMID: 38354875] - Heba A Fahmy, Sherine El-Shamy, Mohamed A Farag. Comparative GC-MS based nutrients profiling of less explored legume seeds of Melilotus, Medicago, Trifolium, and Ononis analysed using chemometric tools.
Scientific reports.
2023 10; 13(1):18221. doi:
10.1038/s41598-023-45453-0
. [PMID: 37880311] - Anjar P Asmara, Anchalee Prasansuklab, Anchalee Chiabchalard, Hui Chen, Alison T Ung. Antihyperglycemic Properties of Extracts and Isolated Compounds from Australian Acacia saligna on 3T3-L1 Adipocytes.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28104054
. [PMID: 37241795] - Cheng-Hsun Li, Yun-Cheng Tu, Meng-Fang Wen, Hsing-Jung Tien, Hungchen Emilie Yen. Exogenous myo-inositol increases salt tolerance and accelerates CAM induction in the early juvenile stage of the facultative halophyte Mesembryanthemum crystallinum but not in the late juvenile stage.
Functional plant biology : FPB.
2023 Mar; ?(?):. doi:
10.1071/fp22285
. [PMID: 36949582] - Chisato Matsunaga, Naoki Kanazawa, Yuta Takatsuka, Takeshi Fujii, Shinji Ohta, Hisashi Ômura. Polyhydroxy Acids as Fabaceous Plant Components Induce Oviposition of the Common Grass Yellow Butterfly, Eurema Mandarina.
Journal of chemical ecology.
2023 Feb; 49(1-2):67-76. doi:
10.1007/s10886-022-01397-9
. [PMID: 36484901] - Anjar P Asmara, Anchalee Prasansuklab, Tewin Tencomnao, Alison T Ung. Identification of Phytochemicals in Bioactive Extracts of Acacia saligna Growing in Australia.
Molecules (Basel, Switzerland).
2023 Jan; 28(3):. doi:
10.3390/molecules28031028
. [PMID: 36770694] - Kersti Leppä, Yu Tang, Jérôme Ogée, Samuli Launiainen, Ansgar Kahmen, Pasi Kolari, Elina Sahlstedt, Matthias Saurer, Pauliina Schiestl-Aalto, Katja T Rinne-Garmston. Explicitly accounting for needle sugar pool size crucial for predicting intra-seasonal dynamics of needle carbohydrates δ18 O and δ13 C.
The New phytologist.
2022 12; 236(6):2044-2060. doi:
10.1111/nph.18227
. [PMID: 35575976] - Anandakumar Pandi, Kamaraj Sattu, Vanitha M Kalappan, Vanita Lal, Seshadri R Varikasuvu, Anirban Ganguly, Jitender Prasad. Pharmacological effects of D-Pinitol - A comprehensive review.
Journal of food biochemistry.
2022 10; 46(10):e14282. doi:
10.1111/jfbc.14282
. [PMID: 35735162] - Laura Siracusa, Cristina Occhiuto, Maria Sofia Molonia, Francesco Cimino, Marco Palumbo, Antonella Saija, Antonio Speciale, Concetta Rocco, Giuseppe Ruberto, Mariateresa Cristani. A pinitol-rich Glycyrrhiza glabra L. leaf extract as functional supplement with potential in the prevention of endothelial dysfunction through improving insulin signalling.
Archives of physiology and biochemistry.
2022 Oct; 128(5):1225-1234. doi:
10.1080/13813455.2020.1764046
. [PMID: 32476488] - Maria Sofia Molonia, Cristina Occhiuto, Claudia Muscarà, Antonio Speciale, Giuseppe Ruberto, Laura Siracusa, Mariateresa Cristani, Antonella Saija, Francesco Cimino. Effects of a pinitol-rich Glycyrrhiza glabra L. leaf extract on insulin and inflammatory signaling pathways in palmitate-induced hypertrophic adipocytes.
Natural product research.
2022 Sep; 36(18):4768-4775. doi:
10.1080/14786419.2021.2010073
. [PMID: 34844501] - Abdullatif Azab. D-Pinitol-Active Natural Product from Carob with Notable Insulin Regulation.
Nutrients.
2022 Mar; 14(7):. doi:
10.3390/nu14071453
. [PMID: 35406064] - Lu Tian, Leru Liu, Shaoming Xu, Rufang Deng, Pingzhi Wu, Huawu Jiang, Guojiang Wu, Yaping Chen. A d-pinitol transporter, LjPLT11, regulates plant growth and nodule development in Lotus japonicus.
Journal of experimental botany.
2022 01; 73(1):351-365. doi:
10.1093/jxb/erab402
. [PMID: 34460912] - Xiying You, Xiaopeng Sun, Junfei Kong, Jifeng Tian, Yanping Shi, Xia Li. D-Pinitol Attenuated Ovalbumin-induced Allergic Rhinitis in Experimental Mice via Balancing Th1/Th2 Response.
Iranian journal of allergy, asthma, and immunology.
2021 Dec; 20(6):672-683. doi:
10.18502/ijaai.v20i6.8017
. [PMID: 34920651] - Yinsi Lin, Yulin Wu, Jianhui Su, Mingqiang Wang, Xiaoli Wu, Ziren Su, Xiaoqing Yi, Long Wei, Jian Cai, Zhanghua Sun. Therapeutic role of d-pinitol on experimental colitis via activating Nrf2/ARE and PPAR-γ/NF-κB signaling pathways.
Food & function.
2021 Mar; 12(6):2554-2568. doi:
10.1039/d0fo03139a
. [PMID: 33625409] - Jieying Qiu, Xixi Yan, Yingyi Liao, Deguan Yu, Congcong Wen, Zheng Xiang. An UPLC-MS/MS method for quantification of D-pinitol in rat plasma and its application to a pharmacokinetic and bioavailability study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 Jan; 1163(?):122498. doi:
10.1016/j.jchromb.2020.122498
. [PMID: 33388525] - Luiz Leonardo Saldanha, Aislan Quintiliano Delgado, Laurence Marcourt, Nathalia Aparecida de Paula Camaforte, Priscilla Maria Ponce Vareda, Samad Nejad Ebrahimi, Wagner Vilegas, Anne Lígia Dokkedal, Emerson Ferreira Queiroz, Jean-Luc Wolfender, José Roberto Bosqueiro. Hypoglycemic active principles from the leaves of Bauhinia holophylla: Comprehensive phytochemical characterization and in vivo activity profile.
PloS one.
2021; 16(9):e0258016. doi:
10.1371/journal.pone.0258016
. [PMID: 34559860] - Yingying Fan, Jian Wang, Zhihui Feng, Ke Cao, Hao Xu, Jiankang Liu. Pinitol attenuates LPS-induced pneumonia in experimental animals: Possible role via inhibition of the TLR-4 and NF-κB/IκBα signaling cascade pathway.
Journal of biochemical and molecular toxicology.
2021 Jan; 35(1):e22622. doi:
10.1002/jbt.22622
. [PMID: 32926510] - Arianna Pani, Riccardo Giossi, Danilo Menichelli, Veronica Andrea Fittipaldo, Francesca Agnelli, Elvira Inglese, Alessandra Romandini, Rossana Roncato, Basilio Pintaudi, Francesco Del Sole, Francesco Scaglione. Inositol and Non-Alcoholic Fatty Liver Disease: A Systematic Review on Deficiencies and Supplementation.
Nutrients.
2020 Nov; 12(11):. doi:
10.3390/nu12113379
. [PMID: 33153126] - Md Shiblur Rahaman, Shojiro Yamasaki, Kaniz Fatima Binte Hossain, Toshiyuki Hosokawa, Takeshi Saito, Masaaki Kurasaki. Effects of curcumin, D-pinitol alone or in combination in cytotoxicity induced by arsenic in PC12 cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Oct; 144(?):111577. doi:
10.1016/j.fct.2020.111577
. [PMID: 32679288] - Luis Gustavo Farias Sousa, Lôrrainy Umbelina Alves de Souza Cortez, Janaína Serra Azul Monteiro Evangelista, Francisco Antônio Félix Xavier-Júnior, Douglas Biggam Heimark, Manassés Claudino Fonteles, Claudia Ferreira Santos, Nilberto Robson Falcão Nascimento. Renal protective effect of pinitol in experimental diabetes.
European journal of pharmacology.
2020 Aug; 880(?):173130. doi:
10.1016/j.ejphar.2020.173130
. [PMID: 32360975] - Juan A Navarro, Juan Decara, Dina Medina-Vera, Rubén Tovar, Juan Suarez, Javier Pavón, Antonia Serrano, Margarita Vida, Alfonso Gutierrez-Adan, Carlos Sanjuan, Elena Baixeras, Fernando Rodríguez de Fonseca. D-Pinitol from Ceratonia siliqua Is an Orally Active Natural Inositol That Reduces Pancreas Insulin Secretion and Increases Circulating Ghrelin Levels in Wistar Rats.
Nutrients.
2020 Jul; 12(7):. doi:
10.3390/nu12072030
. [PMID: 32650579] - Radhika Ravindran, Gayathri Chakrapani, Kartik Mitra, Mukesh Doble. Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein.
PloS one.
2020; 15(5):e0232482. doi:
10.1371/journal.pone.0232482
. [PMID: 32357366] - Joel A DA Silva JÚnior, Amanda C V F DA Silva, LetÍcia S Figueiredo, Thiago R Araujo, Israelle N Freitas, Everardo M Carneiro, Elane S Ribeiro, Rosane A Ribeiro. D-Pinitol Increases Insulin Secretion and Regulates Hepatic Lipid Metabolism in Msg-Obese Mice.
Anais da Academia Brasileira de Ciencias.
2020; 92(4):e20201382. doi:
10.1590/0001-3765202020201382
. [PMID: 33237150] - Tadanobu Nakayama, Keiichi Honda. An Oviposition Stimulant for a Magnoliaceae-Feeding Swallowtail Butterfly, Graphium doson, from its Primary Host Plant, Michelia compressa.
Journal of chemical ecology.
2019 Dec; 45(11-12):926-933. doi:
10.1007/s10886-019-01115-y
. [PMID: 31758292] - Tomasz Antonowski, Adam Osowski, Lesław Lahuta, Ryszard Górecki, Andrzej Rynkiewicz, Joanna Wojtkiewicz. Health-Promoting Properties of Selected Cyclitols for Metabolic Syndrome and Diabetes.
Nutrients.
2019 Sep; 11(10):. doi:
10.3390/nu11102314
. [PMID: 31574903] - Eunok Lee, Yeni Lim, Sung Won Kwon, Oran Kwon. Pinitol consumption improves liver health status by reducing oxidative stress and fatty acid accumulation in subjects with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial.
The Journal of nutritional biochemistry.
2019 06; 68(?):33-41. doi:
10.1016/j.jnutbio.2019.03.006
. [PMID: 31030165] - Chrysanthi Christou, Evdokia Poulli, Stelios Yiannopoulos, Agapios Agapiou. GC-MS analysis of D-pinitol in carob: Syrup and fruit (flesh and seed).
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 May; 1116(?):60-64. doi:
10.1016/j.jchromb.2019.04.008
. [PMID: 30986609] - Kathryn Dumschott, Julie Dechorgnat, Andrew Merchant. Water Deficit Elicits a Transcriptional Response of Genes Governing d-pinitol Biosynthesis in Soybean (Glycine max).
International journal of molecular sciences.
2019 May; 20(10):. doi:
10.3390/ijms20102411
. [PMID: 31096655] - Mayilone Sathialingam, Mayer Saidian, Stellar Zhang, Antonio Flores, Michael Alexander, Jonathan Rt Lakey. Evaluation of Cycloferin Supplement on Health Parameters in Experimentally Induced Diabetic Rats with and Without Exogenous Insulin.
Journal of dietary supplements.
2019; 16(4):454-462. doi:
10.1080/19390211.2018.1470130
. [PMID: 29958040] - Jing Ma, Shijun Feng, Dongfang Ai, Yuan Liu, Xiufang Yang. D-Pinitol Ameliorates Imiquimod-Induced PsoriasisLike Skin Inflammation in a Mouse Model via the NF-κB Pathway.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2019; 38(3):285-295. doi:
10.1615/jenvironpatholtoxicoloncol.2019030782
. [PMID: 31679314] - Ines van Dooren, Kenn Foubert, Sebastiaan Bijttebier, Annelies Breynaert, Mart Theunis, Vasiliki Exarchou, Magda Claeys, Nina Hermans, Sandra Apers, Luc Pieters. In vitro gastrointestinal biotransformation and characterization of a Desmodium adscendens decoction: the first step in unravelling its behaviour in the human body.
The Journal of pharmacy and pharmacology.
2018 Oct; 70(10):1414-1422. doi:
10.1111/jphp.12978
. [PMID: 30003542] - Chul-Hyun Ahn, Md Amir Hossain, Eunjeong Lee, Bashista Kumar Kanth, Phun Bum Park. Increased salt and drought tolerance by D-pinitol production in transgenic Arabidopsis thaliana.
Biochemical and biophysical research communications.
2018 09; 504(1):315-320. doi:
10.1016/j.bbrc.2018.08.183
. [PMID: 30180952] - Nita Vasaikar, Umesh Mahajan, Kalpesh R Patil, Kapil Suchal, Chandragouda R Patil, Shreesh Ojha, Sameer N Goyal. D-pinitol attenuates cisplatin-induced nephrotoxicity in rats: Impact on pro-inflammatory cytokines.
Chemico-biological interactions.
2018 Jun; 290(?):6-11. doi:
10.1016/j.cbi.2018.05.003
. [PMID: 29752894] - Eun Sil Koh, Soojeong Kim, Minyoung Kim, Yu Ah Hong, Seok Joon Shin, Cheol Whee Park, Yoon Sik Chang, Sungjin Chung, Ho-Shik Kim. D‑Pinitol alleviates cyclosporine A‑induced renal tubulointerstitial fibrosis via activating Sirt1 and Nrf2 antioxidant pathways.
International journal of molecular medicine.
2018 Apr; 41(4):1826-1834. doi:
10.3892/ijmm.2018.3408
. [PMID: 29393366] - Carmen Lambert, Judit Cubedo, Teresa Padró, Gemma Vilahur, Sergi López-Bernal, Milagros Rocha, Antonio Hernández-Mijares, Lina Badimon. Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism.
Nutrients.
2018 Feb; 10(3):. doi:
10.3390/nu10030271
. [PMID: 29495516] - K M Santos, I N F Gomes, R J Silva-Oliveira, F E Pinto, B G Oliveira, R C R Chagas, W Romão, R M V Reis, R I M A Ribeiro. Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro.
BioMed research international.
2018; 2018(?):4702481. doi:
10.1155/2018/4702481
. [PMID: 29770331] - Linda H Münger, Alessia Trimigno, Gianfranco Picone, Carola Freiburghaus, Grégory Pimentel, Kathryn J Burton, François P Pralong, Nathalie Vionnet, Francesco Capozzi, René Badertscher, Guy Vergères. Identification of Urinary Food Intake Biomarkers for Milk, Cheese, and Soy-Based Drink by Untargeted GC-MS and NMR in Healthy Humans.
Journal of proteome research.
2017 09; 16(9):3321-3335. doi:
10.1021/acs.jproteome.7b00319
. [PMID: 28753012] - Kewen Zheng, Zhixuan Zhao, Na Lin, Yiyan Wu, Ying Xu, Wanli Zhang. Protective Effect of Pinitol Against Inflammatory Mediators of Rheumatoid Arthritis via Inhibition of Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22).
Medical science monitor : international medical journal of experimental and clinical research.
2017 Apr; 23(?):1923-1932. doi:
10.12659/msm.903357
. [PMID: 28430763] - Juan Carlos Romero-Benavides, Ana Lucía Ruano, Ronal Silva-Rivas, Paola Castillo-Veintimilla, Sara Vivanco-Jaramillo, Natalia Bailon-Moscoso. Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies.
European journal of medicinal chemistry.
2017 Mar; 129(?):209-217. doi:
10.1016/j.ejmech.2017.02.005
. [PMID: 28231520] - Celia Bañuls, Susana Rovira-Llopis, Rosa Falcón, Silvia Veses, Nuria Monzó, Víctor M Víctor, Milagros Rocha, Antonio Hernández-Mijares. Chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: A randomized controlled trial.
Clinical nutrition (Edinburgh, Scotland).
2016 06; 35(3):600-7. doi:
10.1016/j.clnu.2015.05.005
. [PMID: 26051494] - Furkan Ahmad, Laxminarain Misra, Vivek Kumar Gupta, Mahendra Pandurang Darokar, Om Prakash, Feroz Khan, Rakesh Shukla. Synergistic effect of (+)-pinitol from Saraca asoca with β-lactam antibiotics and studies on the in silico possible mechanism.
Journal of Asian natural products research.
2016; 18(2):172-83. doi:
10.1080/10286020.2015.1075005
. [PMID: 26527419] - K T Rinne, M Saurer, A V Kirdyanov, M V Bryukhanova, A S Prokushkin, O V Churakova Sidorova, R T W Siegwolf. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ(13) C and concentration analyses.
Plant, cell & environment.
2015 Nov; 38(11):2340-52. doi:
10.1111/pce.12554
. [PMID: 25916312] - Yunfeng Gao, Mengna Zhang, Tianchen Wu, Mengying Xu, Haonan Cai, Zesheng Zhang. Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats.
Journal of agricultural and food chemistry.
2015 Jul; 63(26):6019-26. doi:
10.1021/acs.jafc.5b01238
. [PMID: 26063468] - Thamaraiselvan Rengarajan, Natarajan Nandakumar, Peramaiyan Rajendran, Mohanraj Karthik Ganesh, Maruthaiveeran Periyasamy Balasubramanian, Ikuo Nishigaki. D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB.
Journal of physiology and biochemistry.
2015 Jun; 71(2):191-204. doi:
10.1007/s13105-015-0397-9
. [PMID: 25827943] - Thamaraiselvan Rengarajan, Peramaiyan Rajendran, Natarajan Nandakumar, Boobathy Lokeshkumar, Maruthaiveeran Periyasamy Balasubramanian. D-Pinitol Protects Against Carbon Tetrachloride-Induced Hepatotoxicity in Rats.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2015; 34(4):287-98. doi:
10.1615/jenvironpatholtoxicoloncol.2015013837
. [PMID: 26756422] - Bao-Hong Lee, Chia-Chen Lee, She-Ching Wu. Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes.
Journal of the science of food and agriculture.
2014 Aug; 94(11):2266-73. doi:
10.1002/jsfa.6552
. [PMID: 24374864] - Thamaraiselvan Rengarajan, Natarajan Nandakumar, Peramaiyan Rajendran, Lingaiah Haribabu, Ikuo Nishigaki, Maruthaiveeran Periyasamy Balasubramanian. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB.
Asian Pacific journal of cancer prevention : APJCP.
2014; 15(4):1757-62. doi:
10.7314/apjcp.2014.15.4.1757
. [PMID: 24641404] - Antonio Hernández-Mijares, Celia Bañuls, Jose E Peris, Nuria Monzó, Ana Jover, Lorena Bellod, Victor M Victor, Milagros Rocha. A single acute dose of pinitol from a naturally-occurring food ingredient decreases hyperglycaemia and circulating insulin levels in healthy subjects.
Food chemistry.
2013 Nov; 141(2):1267-72. doi:
10.1016/j.foodchem.2013.04.042
. [PMID: 23790912] - D M González Mosquera, Y Hernandez Ortega, B By, L Vicet Muro, Y Saucedo Hernandez, R Grau Ábalos, W Dehaen, L Pieters, S Apers. Antihyperglycemic activity of extracts from Boldoa purpurascens leaves in alloxan-induced diabetic rats.
Phytotherapy research : PTR.
2013 May; 27(5):721-4. doi:
10.1002/ptr.4769
. [PMID: 22807273] - Joanna Magielse, Teresita Arcoraci, Annelies Breynaert, Ines van Dooren, Cimanga Kanyanga, Erik Fransen, Viviane Van Hoof, Arnold Vlietinck, Sandra Apers, Luc Pieters, Nina Hermans. Antihepatotoxic activity of a quantified Desmodium adscendens decoction and D-pinitol against chemically-induced liver damage in rats.
Journal of ethnopharmacology.
2013 Mar; 146(1):250-6. doi:
10.1016/j.jep.2012.12.039
. [PMID: 23291573] - A Llanes, G Bertazza, G Palacio, V Luna. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera.
Plant biology (Stuttgart, Germany).
2013 Jan; 15 Suppl 1(?):118-25. doi:
10.1111/j.1438-8677.2012.00626.x
. [PMID: 22747518] - Adrienne C Müller, Srinivas Patnala, Olena Kis, Reina Bendayan, Isadore Kanfer. Interactions between phytochemical components of Sutherlandia frutescens and the antiretroviral, atazanavir in vitro: implications for absorption and metabolism.
Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.
2012; 15(2):221-33. doi:
10.18433/j3ns3x
. [PMID: 22579002] - Hyun Jin Kim, Kang Seo Park, Seong Kyu Lee, Kyung Wan Min, Kyung Ah Han, Young Kun Kim, Bon Jeong Ku. Effects of pinitol on glycemic control, insulin resistance and adipocytokine levels in patients with type 2 diabetes mellitus.
Annals of nutrition & metabolism.
2012; 60(1):1-5. doi:
10.1159/000334834
. [PMID: 22179130] - Nedim Tetik, Irfan Turhan, Hatice R Oziyci, Mustafa Karhan. Determination of D-pinitol in carob syrup.
International journal of food sciences and nutrition.
2011 Sep; 62(6):572-6. doi:
10.3109/09637486.2011.560564
. [PMID: 21466274] - Yan-Ying Zhou, Shi-Hong Luo, Ting-Shuang Yi, Chun-Huan Li, Qian Luo, Juan Hua, Yan Liu, Sheng-Hong Li. Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura.
Journal of agricultural and food chemistry.
2011 Jun; 59(11):6004-10. doi:
10.1021/jf200821p
. [PMID: 21545185] - Lesław B Lahuta, Tomasz Dzik. D-chiro-inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum.
Journal of plant physiology.
2011 Mar; 168(4):352-8. doi:
10.1016/j.jplph.2010.07.027
. [PMID: 20947202] - Prashant Singh Chauhan, Kuldeep Kumar Gupta, Sarang Bani. The immunosuppressive effects of Agyrolobium roseum and pinitol in experimental animals.
International immunopharmacology.
2011 Feb; 11(2):286-91. doi:
10.1016/j.intimp.2010.11.028
. [PMID: 21156221] - Selvaraj Sivakumar, Periyasamy Palsamy, Sorimuthu Pillai Subramanian. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats.
Chemico-biological interactions.
2010 Oct; 188(1):237-45. doi:
10.1016/j.cbi.2010.07.014
. [PMID: 20643114] - Selvaraj Sivakumar, Periyasamy Palsamy, Sorimuthu Pillai Subramanian. Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats.
Free radical research.
2010 Jun; 44(6):668-78. doi:
10.3109/10715761003733901
. [PMID: 20370563] - Harrold A van den Burg, Ramachandra K Kini, Robert C Schuurink, Frank L W Takken. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense.
The Plant cell.
2010 Jun; 22(6):1998-2016. doi:
10.1105/tpc.109.070961
. [PMID: 20525853] - Nhung Thuy Dang, Rie Mukai, Ken-Ichi Yoshida, Hitoshi Ashida. D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice.
Bioscience, biotechnology, and biochemistry.
2010; 74(5):1062-7. doi:
10.1271/bbb.90963
. [PMID: 20460718] - Mi Sun Cheong, Hyeong Cheol Park, Mi Ju Hong, Jiyoung Lee, Wonkyun Choi, Jing Bo Jin, Hans J Bohnert, Sang Yeol Lee, Ray A Bressan, Dae-Jin Yun. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes.
Plant physiology.
2009 Dec; 151(4):1930-42. doi:
10.1104/pp.109.143719
. [PMID: 19837819] - Selvaraj Sivakumar, Sorimuthu Pillai Subramanian. Pancreatic tissue protective nature of D-Pinitol studied in streptozotocin-mediated oxidative stress in experimental diabetic rats.
European journal of pharmacology.
2009 Nov; 622(1-3):65-70. doi:
10.1016/j.ejphar.2009.09.021
. [PMID: 19765586] - Selvaraj Sivakumar, Sorimuthu P Subramanian. D-pinitol attenuates the impaired activities of hepatic key enzymes in carbohydrate metabolism of streptozotocin-induced diabetic rats.
General physiology and biophysics.
2009 Sep; 28(3):233-41. doi:
10.4149/gpb_2009_03_233
. [PMID: 20037188] - Myung-Sook Choi, Mi-Kyung Lee, Un Ju Jung, Hye-Jin Kim, Geoyng-Min Do, Yong Bok Park, Seon-Min Jeon. Metabolic response of soy pinitol on lipid-lowering, antioxidant and hepatoprotective action in hamsters fed-high fat and high cholesterol diet.
Molecular nutrition & food research.
2009 Jun; 53(6):751-9. doi:
10.1002/mnfr.200800241
. [PMID: 19205001] - A J Stull, K V Wood, J P Thyfault, W W Campbell. Effects of acute pinitol supplementation on plasma pinitol concentration, whole body glucose tolerance, and activation of the skeletal muscle insulin receptor in older humans.
Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.
2009 May; 41(5):381-6. doi:
10.1055/s-0028-1128140
. [PMID: 19221977] - Chuan-Chung Tsao, Yuh-Chiang Shen, Chung-Ren Su, Chia-Ying Li, Meei-Jen Liou, Nguyen-Xuan Dung, Tian-Shung Wu. New diterpenoids and the bioactivity of Erythrophleum fordii.
Bioorganic & medicinal chemistry.
2008 Nov; 16(22):9867-70. doi:
10.1016/j.bmc.2008.09.021
. [PMID: 18926710] - Sonali Sengupta, Barunava Patra, Sudipta Ray, Arun Lahiri Majumder. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress.
Plant, cell & environment.
2008 Oct; 31(10):1442-59. doi:
10.1111/j.1365-3040.2008.01850.x
. [PMID: 18643954] - P K M Anu Geethan, P Stanely Mainzen Prince. Antihyperlipidemic effect of D-pinitol on streptozotocin-induced diabetic Wistar rats.
Journal of biochemical and molecular toxicology.
2008 Jul; 22(4):220-4. doi:
10.1002/jbt.20218
. [PMID: 18752266] - Yusi Zhou, Chung-Mu Park, Chung-Won Cho, Young-Sun Song. Protective effect of pinitol against D-galactosamine-induced hepatotoxicity in rats fed on a high-fat diet.
Bioscience, biotechnology, and biochemistry.
2008 Jul; 72(7):1657-66. doi:
10.1271/bbb.70473
. [PMID: 18603811] - Emilie Duquesnoy, Vincent Castola, Joseph Casanova. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy.
Carbohydrate research.
2008 Apr; 343(5):893-902. doi:
10.1016/j.carres.2008.01.001
. [PMID: 18299126] - Myung-Sook Choi, Won-Ha Lee, Eun-Young Kwon, Mi Ae Kang, Mi-Kyung Lee, Yong Bok Park, Seon-Min Jeon. Effects of soy pinitol on the pro-inflammatory cytokines and scavenger receptors in oxidized low-density lipoprotein-treated THP-1 macrophages.
Journal of medicinal food.
2007 Dec; 10(4):594-601. doi:
10.1089/jmf.2006.220
. [PMID: 18158828] - Mi Jin Kim, Kwang Ha Yoo, Ji Hoon Kim, Young Tak Seo, Byung Wook Ha, Jang Hyun Kho, Young Goo Shin, Choon Hee Chung. Effect of pinitol on glucose metabolism and adipocytokines in uncontrolled type 2 diabetes.
Diabetes research and clinical practice.
2007 Sep; 77 Suppl 1(?):S247-51. doi:
10.1016/j.diabres.2007.01.066
. [PMID: 17467106] - V Lakshmi, P Gupta, P Tiwari, A K Srivastava. Antihyperglycemic activity of Rhizophora apiculata Bl. in rats.
Natural product research.
2006 Dec; 20(14):1295-9. doi:
10.1080/14786410601101878
. [PMID: 17393654] - Min-Jung Kang, Jung-In Kim, Sang-Yeon Yoon, Jae Cherl Kim, In-June Cha. Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus.
Journal of medicinal food.
2006; 9(2):182-6. doi:
10.1089/jmf.2006.9.182
. [PMID: 16822203] - Rohini Chaubal, Pushpa V Pawar, Geeta D Hebbalkar, Vijay B Tungikar, Vedavati G Puranik, Vishnu H Deshpande, Nirmala R Deshpande. Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol--a bioactive carbohydrate.
Chemistry & biodiversity.
2005 May; 2(5):684-8. doi:
10.1002/cbdv.200590044
. [PMID: 17192011] - J-I Kim, J C Kim, M-J Kang, M-S Lee, J-J Kim, I-J Cha. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study.
European journal of clinical nutrition.
2005 Mar; 59(3):456-8. doi:
10.1038/sj.ejcn.1602081
. [PMID: 15536472] - Wayne W Campbell, Mark D Haub, James D Fluckey, Richard E Ostlund, John P Thyfault, Hannah Morse-Carrithers, Matthew W Hulver, Zonda K Birge. Pinitol supplementation does not affect insulin-mediated glucose metabolism and muscle insulin receptor content and phosphorylation in older humans.
The Journal of nutrition.
2004 Nov; 134(11):2998-3003. doi:
10.1093/jn/134.11.2998
. [PMID: 15514265] - Trevor Stokes. AIDS herbal therapy.
Trends in plant science.
2002 Feb; 7(2):57. doi:
"
. [PMID: 11858160] - R K Singh, B L Pandey, M Tripathi, V B Pandey. Anti-inflammatory effect of (+)-pinitol.
Fitoterapia.
2001 Feb; 72(2):168-70. doi:
10.1016/s0367-326x(00)00267-7
. [PMID: 11223227] - A Falshaw, J B Hart, P C Tyler. New syntheses of 1D- and 1L-1,2-anhydro-myo-inositol and assessment of their glycosidase inhibitory activities.
Carbohydrate research.
2000 Nov; 329(2):301-8. doi:
10.1016/s0008-6215(00)00192-0
. [PMID: 11117313] - S H Bates, R B Jones, C J Bailey. Insulin-like effect of pinitol.
British journal of pharmacology.
2000 Aug; 130(8):1944-8. doi:
10.1038/sj.bjp.0703523
. [PMID: 10952686] - A Davis, M Christiansen, J F Horowitz, S Klein, M K Hellerstein, R E Ostlund. Effect of pinitol treatment on insulin action in subjects with insulin resistance.
Diabetes care.
2000 Jul; 23(7):1000-5. doi:
10.2337/diacare.23.7.1000
. [PMID: 10895854] - R X Tan, H Lu, J L Wolfender, T T Yu, W F Zheng, L Yang, S Gafner, K Hostettmann. Mono- and sesquiterpenes and antifungal constituents from Artemisia species.
Planta medica.
1999 Feb; 65(1):64-7. doi:
10.1055/s-1999-13965
. [PMID: 10083848] - R Vera-Estrella, B J Barkla, H J Bohnert, O Pantoja. Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant.
Planta.
1999 Jan; 207(3):426-35. doi:
10.1007/s004250050501
. [PMID: 9951736] - B J Barkla, R Vera-Estrella, O Pantoja. Towards the production of salt-tolerant crops.
Advances in experimental medicine and biology.
1999; 464(?):77-89. doi:
10.1007/978-1-4615-4729-7_7
. [PMID: 10335387] - J V Tarazona, F Sanz. Toxicity of fractions obtained from the legume species Astragalus lusitanicus Lam. lusitanicus.
Toxicon : official journal of the International Society on Toxinology.
1990; 28(2):235-7. doi:
10.1016/0041-0101(90)90418-7
. [PMID: 2339438] - R SCHOLDA, G BILLEK, O HOFFMANN-OSTENHOF. [INVESTIGATIONS CONCERNING THE BIOSYNTHESIS OF CYCLITOLS, I. FORMATION OF D-PINITOL, D-INOSITOL AND SEQUOYITOL FROM MESO -INOSITOL IN LEAVES OF TRIFOLIUM INCARNATUM].
Hoppe-Seyler's Zeitschrift fur physiologische Chemie.
1964; 335(?):180-6. doi:
10.1515/bchm2.1964.335.1.180
. [PMID: 14124981]