Gene Association: ISYNA1

UniProt Search: ISYNA1 (PROTEIN_CODING)
Function Description: inositol-3-phosphate synthase 1

found 34 associated metabolites with current gene based on the text mining result from the pubmed database.

D-Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.079)


Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Gabapentin

2-[1-(aminomethyl)cyclohexyl]acetic acid

C9H17NO2 (171.1259)


Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201) [HMDB] Gabapentin was originally developed as a chemical analogue of gamma-aminobutyric acid (GABA) to reduce the spinal reflex for the treatment of spasticity and was found to have anticonvulsant activity in various seizure models. In addition, it also displays antinociceptive activity in various animal pain models. Clinically, gabapentin is indicated as an add-on medication for the treatment of partial seizures, and neuropathic pain. It was also claimed to be beneficial in several other clinical disorders such as anxiety, bipolar disorder, and hot flashes. The possible mechanisms or targets involved in the multiple therapeutic actions of gabapentin have been actively studied. Since gabapentin was developed, several hypotheses had been proposed for its action mechanisms. They include selectively activating the heterodimeric GABA(B) receptors consisting of GABA(B1a) and GABA(B2) subunits, selectively enhancing the NMDA current at GABAergic interneurons, or blocking AMPA-receptor-mediated transmission in the spinal cord, binding to the L-alpha-amino acid transporter, activating ATP-sensitive K(+) channels, activating hyperpolarization-activated cation channels, and modulating Ca(2+) current by selectively binding to the specific binding site of [(3)H]gabapentin, the alpha(2)delta subunit of voltage-dependent Ca(2+) channels. Different mechanisms might be involved in different therapeutic actions of gabapentin. In this review, we summarized the recent progress in the findings proposed for the antinociceptive action mechanisms of gabapentin and suggest that the alpha(2)delta subunit of spinal N-type Ca(2+) channels is very likely the analgesic action target of gabapentin. (PMID: 16474201). D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Glucaric acid

(2S,3S,4S,5R)-2,3,4,5-tetrahydroxyhexanedioic acid

C6H10O8 (210.0376)


Glucaric acid, also known as glucarate or D-saccharic acid, belongs to the class of organic compounds known as glucuronic acid derivatives. Glucuronic acid derivatives are compounds containing a glucuronic acid moiety (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid. Glucaric acid is a sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. D-glucaric acid is found in fruits, vegetables, and mammals. The highest concentrations of glucaric acid are found in grapefruits, apples, oranges, and cruciferous vegetables (PMID: 18772850). Glucaric acid is produced through the oxidation of glucose. Cytochrome P450 is thought to be responsible for the production of D-glucaric acid in vivo (PMID: 3779687). In mammals, D-glucaric acid and D-glucaro-l,4-lactone are also known end-products of the D-glucuronic acid pathway (PMID: 18772850). Glucaric is available as a dietary supplement in the form of calcium D-glucarate and has been studied for therapeutic purposes including cholesterol reduction and cancer chemotherapy (PMID: 9101079). D-Glucaric acid has a potential use as a building block for a number of polymers, including new nylons and hyperbranched polyesters. D-glucaric acid produced from D-glucose has been successfully utilized to produce a hydroxylated nylon. A sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. [HMDB] KEIO_ID S025

   

Cyclizine

(N-Benzhydryl)(n-methyl)diethylenediamine

C18H22N2 (266.1783)


Cyclizine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist given by mouth or parenterally for the control of postoperative and drug-induced vomiting and in motion sickness. (From Martindale, The Extra Pharmacopoeia, 30th ed, p935)Vomiting (emesis) is essentially a protective mechanism for removing irritant or otherwise harmful substances from the upper GI tract. Emesis or vomiting is controlled by the vomiting centre in the medulla region of the brain, an important part of which is the chemotrigger zone (CTZ). The vomiting centre possesses neurons which are rich in muscarinic cholinergic and histamine containing synapses. These types of neurons are especially involved in transmission from the vestibular apparatus to the vomiting centre. Motion sickness principally involves overstimulation of these pathways due to various sensory stimuli. Hence the action of cyclizine which acts to block the histamine receptors in the vomiting centre and thus reduce activity along these pathways. Furthermore since cyclizine possesses anti-cholinergic properties as well, the muscarinic receptors are similarly blocked. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives CONFIDENCE standard compound; INTERNAL_ID 1; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents

   

Streptomycin

1-[(1R,2R,3S,4R,5R,6S)-3-carbamimidamido-4-{[(2R,3R,4R,5S)-3-{[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-(methylamino)oxan-2-yl]oxy}-4-formyl-4-hydroxy-5-methyloxolan-2-yl]oxy}-2,5,6-trihydroxycyclohexyl]guanidine

C21H39N7O12 (581.2657)


Streptomycin is an aminoglycoside antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by binding to the 30S ribosomal subunit of susceptible organisms and disrupting the initiation and elongation steps in protein synthesis. It is bactericidal due to effects that are not fully understood. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials > J01GA - Streptomycins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S031

   

gibberellin A20

gibberellin A20

C19H24O5 (332.1624)


A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and development. Initially identified in Gibberella fujikuroi, it differs from gibberellin A1 in lacking an OH group at C-2 (gibbane numbering).

   

Rhamnose

L-(+)-Rhamnose hydrate = 6-deoxy-L-mannose monohydrate

C6H12O5 (164.0685)


Rhamnose (Rham) is a naturally occurring deoxy sugar. It can be classified as either a methyl-pentose or a 6-deoxy-hexose. Rhamnose occurs in nature in its L-form as L-rhamnose (6-deoxy-L-mannose). This is unusual, since most of the naturally occurring sugars are in D-form. Rhamnose is commonly bound to other sugars in nature. It is a common glycone component of glycosides from many plants. Rhamnose is also a component of the outer cell membrane of certain bacteria. L-rhamnose is metabolized to L-Lactaldehyde, which is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. It exists in two anomeric forms, alpha-L-rhamnose and beta-L-rhamnose. Rhamnose has been found in Klebsiella, Pseudomonas (https://link.springer.com/article/10.1007/BF00369505) (https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.200300816). Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Galactinol

Galactinol (1-α-d-galactosyl-myo-inositol)

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

2-Furancarboxaldehyde

2-Furylaldehyde xypropane

C5H4O2 (96.0211)


2-furancarboxaldehyde, also known as furaldehyde or 2-formylfuran, is a member of the class of compounds known as aryl-aldehydes. Aryl-aldehydes are compounds containing an aldehyde group directly attached to an aromatic ring. 2-furancarboxaldehyde is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 2-furancarboxaldehyde is a sweet, almond, and baked tasting compound and can be found in a number of food items such as coriander, cocoa bean, red raspberry, and rice, which makes 2-furancarboxaldehyde a potential biomarker for the consumption of these food products. 2-furancarboxaldehyde can be found primarily in feces and urine. 2-furancarboxaldehyde exists in all eukaryotes, ranging from yeast to humans. 2-Furancarboxaldehyde, also known as 2-furaldehyde or a-furole, belongs to the class of organic compounds known as aryl-aldehydes. Aryl-aldehydes are compounds containing an aldehyde group directly attached to an aromatic ring. 2-Furancarboxaldehyde is found in allspice and it is also a flavour ingredient. 2-Furancarboxaldehyde is present in coffee, calamus, matsutake mushroom (Tricholoma matsutake), pumpkin, malt, peated malt, Bourbon vanilla, Lambs lettuce, pimento leaf and various fruits, e.g. apple, apricot, sweet cherry, morello cherry, orange, grapefruit, Chinese quince and a common constituent of essential oils. Furfural is an organic compound derived from a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust.

   

2-Inosose

2,3,4,5,6-Pentahydroxycyclohexanone

C6H10O6 (178.0477)


   

1-Hexadecanol

Normal primary hexadecyl alcohol

C16H34O (242.261)


Cetyl alcohol, also known as 1-hexadecanol and palmityl alcohol, is a solid organic compound and a member of the alcohol class of compounds. Its chemical formula is CH3(CH2)15OH. At room temperature, cetyl alcohol takes the form of a waxy white solid or flakes. It belongs to the group of fatty alcohols. With the demise of commercial whaling, cetyl alcohol is no longer primarily produced from whale oil, but instead either as an end-product of the petroleum industry, or produced from vegetable oils such as palm oil and coconut oil. Production of cetyl alcohol from palm oil gives rise to one of its alternative names, palmityl alcohol. Flavouring ingredient. Cetyl alcohol is found in many foods, some of which are rocket salad (sspecies), soft-necked garlic, bitter gourd, and kohlrabi. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

myo-Inositol 1-phosphate

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphonic acid

C6H13O9P (260.0297)


myo-Inositol 1-phosphate, also known as I1P or ins(1)p, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. myo-Inositol 1-phosphate is a metabolite of inositol phosphate metabolism and the phosphatidylinositol signalling system. Inositol phosphatases (EC:3.1.3.25) play a crucial role in the phosphatidylinositol signalling pathway. Expression is substantially higher in the subcortical regions of the brain, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder (OMIM: 605922). Myo-inositol 1-phosphate is a metabolite of the Inositol phosphate metabolism and the Phosphatidylinositol signaling system. Inositol phosphatases [EC:3.1.3.25] play a crucial role in the phosphatidylinositol signaling pathway; in brain, the expression is substantially higher in the subcortical regions, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder. (OMIM 605922) [HMDB]

   

Coenzyme B

3-phosphonooxy-2-(7-sulfanylheptanoylamino)butanoic acid

C11H22NO7PS (343.0855)


   

Tetraprenol

2,6,10,14-Hexadecatetraen-1-ol, 3,7,11,15-tetramethyl-, (2E,6E,10E)- (9CI)

C20H34O (290.261)


Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   

L-Rhamnose

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.0685)


Any rhamnose having L-configuration. L-rhamnose occurs naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides. Acquisition and generation of the data is financially supported by the Max-Planck-Society CONFIDENCE standard compound; INTERNAL_ID 234 Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Galactinol

(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

C12H22O11 (342.1162)


Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82). Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage

   

Gibberellin A20

5-Hydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.15,8.01,10.02,8]heptadecane-9-carboxylic acid

C19H24O5 (332.1624)


Gibberellin a20 is a member of the class of compounds known as c19-gibberellin 6-carboxylic acids. C19-gibberellin 6-carboxylic acids are c19-gibberellins with a carboxyl group at the 6-position. Gibberellin a20 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a20 can be found in a number of food items such as soursop, nopal, breadnut tree seed, and red huckleberry, which makes gibberellin a20 a potential biomarker for the consumption of these food products.

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2561

   

Schleimsaure

Saccharic acid

C6H10O8 (210.0376)


   

Rhamnose

alpha-L-Rhamnose

C6H12O5 (164.0685)


Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

gabapentin

gabapentin

C9H17NO2 (171.1259)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BF - Gabapentinoids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1678 CONFIDENCE standard compound; INTERNAL_ID 4114 CONFIDENCE Reference Standard (Level 1)

   

Glucaric acid

2S,3S,4S,5R-tetrahydroxy-hexanedioic acid

C6H10O8 (210.0376)


   

CYCLIZINE

1-(Diphenylmethyl)-4-methylpiperazine

C18H22N2 (266.1783)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection Flow Injection; CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu)

   

FOH 16:0

3S,7S-dimethyl-tetradecan-2S-ol

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

Geranyl geraniol

3,7,11,15-tetramethylhexadeca-2E,6E,10E,14-tetraen-1-ol

C20H34O (290.261)


Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   
   

Fural

5-17-09-00292 (Beilstein Handbook Reference)

C5H4O2 (96.0211)


   

Ethol

InChI=1\C16H34O\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17\h17H,2-16H2,1H

C16H34O (242.261)


1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

FLUOROLINK(R) D

(e,e,e)-geranylgeraniol

C20H34O (290.261)


A diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. A geranylgeraniol in which all four double bonds have E- (trans-) geometry. Geranylgeraniol, also known as tetraprenol or (2e,6e,10e)-geranylgeraniol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, geranylgeraniol is considered to be an isoprenoid lipid molecule. Geranylgeraniol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Geranylgeraniol can be found in flaxseed, which makes geranylgeraniol a potential biomarker for the consumption of this food product. Geranylgeraniol is a diterpene alcohol which plays a role in several important biological processes. It is an intermediate in the biosynthesis of other diterpenes and of vitamins E and K. It also used in the post-translational modification known as geranylgeranylation. Geranylgeraniol is a pheromone for bumblebees and a variety of other insects . Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].

   

Cetyl alcohol

Hexadecan-1-ol

C16H34O (242.261)


A long-chain primary fatty alcohol that is hexadecane substituted by a hydroxy group at position 1. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate. 1-Hexadecanol is a fatty alcohol, a lipophilic substrate.

   

Inositol 1-phosphate

Inositol 1-phosphate

C6H13O9P (260.0297)


   

2,4,6/3,5-Pentahydroxycyclohexanone

2,4,6/3,5-Pentahydroxycyclohexanone

C6H10O6 (178.0477)


   

2-Furaldehyde

2-Furaldehyde

C5H4O2 (96.0211)


An aldehyde that is furan with the hydrogen at position 2 substituted by a formyl group.