Nookatone (BioDeep_00000000408)

 

Secondary id: BioDeep_00001867501

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-

化学式: C15H22O (218.1671)
中文名称: 努特卡酮, 诺卡酮, (+)-诺卡酮
谱图信息: 最多检出来源 Viridiplantae(plant) 22.64%

分子结构信息

SMILES: C1C(=O)C=C2[C@]([C@@H]1C)(C[C@@H](CC2)C(=C)C)C
InChI: InChI=1S/C15H22O/c1-10(2)12-5-6-13-8-14(16)7-11(3)15(13,4)9-12/h8,11-12H,1,5-7,9H2,2-4H3

描述信息

Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass.
(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound.

Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available.

Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon.

Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3]
Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].
Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].

同义名列表

53 个代谢物同义名

2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-; 2(3H)-NAPHTHALENONE, 4,4A,5,6,7,8-HEXAHYDRO-4,4A-DIMETHYL-6-(1-METHYLETHENYL)-, (4R-(4.ALPHA.,4A.ALPHA.,6.BETA.))-; 4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-2(3H)-naphthalenone, [4R-(4.alpha.,4a.alpha.,6.beta.)]-; 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, (4R-(4alpha,4aalpha,6beta))-; 6-Isopropenyl-4,4a-dimethyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone-, [4R-(4.alpha.,4a.alpha.,6.beta.)]-; 4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-2(3H)-naphthalenone, (4R-(4alpha,4aalpha,6beta))-; (4R-(4alpha,4aalpha,6beta))-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylvinyl)naphthalen-2(3H)-one; (4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-2(3H)-naphthalenone; Nootkanone; 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, (4R,4aS,6R)-rel; 2(3H)-Naphthalenone, 4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-, (4R,4aS,6R)-; (4RS,4Asr,6RS)-4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)-2(3H)-naphthalenone; (4R,4aS,6R)-4,4a-dimethyl-6-(prop-1-en-2-yl)-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one; (4R,4aS,6R)-4,4a-dimethyl-6-prop-1-en-2-yl-3,4,5,6,7,8-hexahydronaphthalen-2-one; 4,4A,5,6,7,8-HEXAHYDRO-4,4A-DIMETHYL-6-(1-METHYLENE-ETHYL)-2(3H)-NAPHTHALENONE; 4,4a-dimethyl-6-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydronaphthalen-2-one; 4a,5-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-7-keto-3-isopropenylnaphthalene; 4,4A,5,6,7,8-HEXAHYDRO-6-ISO-PROPENYL-4,4A-DIMETHYL-2(3H)-NAPHTHALENONE; 4,4a,5,6,7,8-Hexahydro-6-isopropenyl-4,4a-dimethyl-2(3H)-naphthalenone; (+)-5,6-dimethyl-8-isopropenylbicyclo[4.4.0]dec-1-en-3-one; 5,6-DIMETHYL-8-ISOPROPENYL-BICYCLO(4,4,0)-DEC-1-EN-3-ONE; 5,6-Dimethyl-8-isopropenylbicyclo(4.4.0)dec-1-en-3-one; 4.beta.H,5.alpha.-Eremorphila-1(10)11-dien-2-one; 4.beta.H,5.alpha.-Eremophila-1(10),11-dien-2-one; nootkatone, (4R-(4alpha,4aalpha,6beta))-isomer; 4betaH,5alpha-Eremorphila-1(10)11-dien-2-one; 4Betah,5alpha-eremophila-1(10),11-dien-2-one; 7.BETA.H-EREMOPHILA-1(10),11-DIEN-2-ONE -; 7betaH-Eremophila-1(10),11-dien-2-one -; (+)-Nootkatone, technical, >=85\\% (GC); (+)-Nootkatone, analytical standard; 1(10),11-Eremophiladien-2-one; (+)-Nootkatone, >=99.0\\% (GC); (+)-Nootkatone, crystalline; Nootkatone (+/-)-form [MI]; Nootkatone, >=98\\%, FG; Nootkatone (natural); Nootkatone, (+/-)-; NOOTKATONE [FHFI]; Nootkatone, (+)-; (+/-)-Nootkatone; UNII-3K3OKV2A5A; NOOTKATONE [MI]; UNII-IZ2Y119N4J; (+)-Nootkatone; Tox21_302385; Nootkatone; 3K3OKV2A5A; Nootkatane; Nootkanone; IZ2Y119N4J; nootkaton; Nookatone; Nootkatone



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

26 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 CASP3, CAT, FDPS, KEAP1, MACF1, MAPK14, NFE2L2, NLRP3, NQO1, PIK3CA, PPARG, PRKAA2, PRKX, PTGS2, TLR4
Peripheral membrane protein 2 CYP1B1, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 3 CYP1B1, HMOX1, PTGS2
Nucleus 10 CASP3, HMOX1, KEAP1, MAPK14, NFE2L2, NLRP3, NQO1, PPARG, PRKAA2, PRKX
cytosol 13 CASP3, CAT, FDPS, GPT, HMOX1, KEAP1, MAPK14, NFE2L2, NLRP3, NQO1, PIK3CA, PPARG, PRKAA2
dendrite 2 NQO1, PRKAA2
centrosome 1 NFE2L2
nucleoplasm 9 CASP3, FDPS, HMOX1, KEAP1, MAPK14, NFE2L2, PPARG, PRKAA2, PRKX
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 3 MACF1, TLR4, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 1 PIK3CA
ruffle membrane 1 MACF1
Golgi apparatus membrane 1 NLRP3
Synapse 1 NQO1
cell junction 1 MACF1
cell surface 2 TLR4, TNF
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 3 MACF1, NFE2L2, PRKAA2
Golgi membrane 1 NLRP3
neuronal cell body 4 CASP3, NQO1, PRKAA2, TNF
Cytoplasm, cytosol 3 NFE2L2, NLRP3, NQO1
plasma membrane 5 MACF1, NFE2L2, PIK3CA, TLR4, TNF
Membrane 9 CAT, CYP1B1, FDPS, HMOX1, MACF1, NLRP3, NQO1, PRKAA2, TLR4
axon 1 PRKAA2
caveola 1 PTGS2
extracellular exosome 2 CAT, GPT
endoplasmic reticulum 4 HMOX1, KEAP1, NLRP3, PTGS2
extracellular space 3 HMOX1, IL6, TNF
perinuclear region of cytoplasm 4 HMOX1, PIK3CA, PPARG, TLR4
intercalated disc 1 PIK3CA
mitochondrion 4 CAT, CYP1B1, MAPK14, NLRP3
protein-containing complex 2 CAT, PTGS2
intracellular membrane-bounded organelle 3 CAT, CYP1B1, PPARG
Microsome membrane 2 CYP1B1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TLR4
Secreted 2 IL6, NLRP3
extracellular region 5 CAT, IL6, MAPK14, NLRP3, TNF
mitochondrial outer membrane 1 HMOX1
mitochondrial matrix 2 CAT, FDPS
centriolar satellite 1 KEAP1
external side of plasma membrane 2 TLR4, TNF
actin cytoskeleton 1 MACF1
midbody 1 KEAP1
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, ruffle membrane 1 MACF1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 MACF1
focal adhesion 1 CAT
microtubule 1 MACF1
Peroxisome 2 CAT, FDPS
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
nuclear speck 2 MAPK14, PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 PPARG, TLR4
neuron projection 1 PTGS2
chromatin 2 NFE2L2, PPARG
mediator complex 1 NFE2L2
cell projection 1 MACF1
phagocytic cup 2 TLR4, TNF
cytoskeleton 1 MACF1
spindle pole 1 MAPK14
actin filament 1 KEAP1
Cul3-RING ubiquitin ligase complex 1 KEAP1
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
cytoplasmic stress granule 1 PRKAA2
[Isoform 1]: Cytoplasm 1 MACF1
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Single-pass type IV membrane protein 1 HMOX1
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform 2]: Cytoplasm, cytoskeleton 1 MACF1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Lingling Ma, Tao Wu, Peiling Liu, Dongying Chen, Shengliang Cai, Hefeng Chen, Jingtao Zhou, Chaoyi Zhu, Shuang Li. Green Production of a High-value Mosquito Insecticide of Nootkatone from Seaweed Hydrolysates. Journal of agricultural and food chemistry. 2023 Dec; 71(48):18919-18927. doi: 10.1021/acs.jafc.3c06708. [PMID: 37991146]
  • Xiaomin Deng, Ziling Ye, Jingyu Duan, Fangfang Chen, Yao Zhi, Man Huang, Minjian Huang, Weijia Cheng, Yujie Dou, Zhaolin Kuang, Yanglei Huang, Guangkai Bian, Zixin Deng, Tiangang Liu, Li Lu. Complete pathway elucidation and heterologous reconstitution of (+)-nootkatone biosynthesis from Alpinia oxyphylla. The New phytologist. 2023 Nov; ?(?):. doi: 10.1111/nph.19375. [PMID: 37933426]
  • Tongjie Xiao, Mingyu Pan, Yuanxiao Wang, Yanjiao Huang, Makoto Tsunoda, Yingxia Zhang, Rong Wang, Wenting Hu, Haimei Yang, Lu-Shuang Li, Yanting Song. In vitro bloodbrain barrier permeability study of four main active ingredients from Alpiniae oxyphyllae fructus. Journal of pharmaceutical and biomedical analysis. 2023 Aug; 235(?):115637. doi: 10.1016/j.jpba.2023.115637. [PMID: 37634356]
  • Ola A Habotta, Ahmed Abdeen, Aya A El-Hanafy, Neimet Yassin, Dina Elgameel, Samah F Ibrahim, Doaa Abdelrahaman, Tabinda Hasan, Florin Imbrea, Heba I Ghamry, Liana Fericean, Ali Behairy, Ahmed M Atwa, Afaf Abdelkader, Mohamed R Mahdi, Shaaban A El-Mosallamy. Sesquiterpene nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Jul; 165(?):115133. doi: 10.1016/j.biopha.2023.115133. [PMID: 37454594]
  • Fapetu Kemi Busayo, Jin-Ling Yang, Xu-Po Ding, Ya-Li Wang, Cui-Juan Gai, Fei Wu, Hao-Fu Dai, Wen-Li Mei, Hui-Qin Chen. Identification of volatile compounds and their bioactivities from unpolar fraction of Alpinia oxyphylla Miq. and mining key genes of nootkatone biosynthesis. Natural product research. 2023 Jun; ?(?):1-6. doi: 10.1080/14786419.2023.2220063. [PMID: 37278024]
  • Adela S Oliva Chávez, Stephanie Guzman Valencia, Geoffrey E Lynn, Charluz Arocho Rosario, Donald B Thomas, Tammi L Johnson. Evaluation of the in vitro acaricidal effect of five organic compounds on the cattle fever tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Experimental & applied acarology. 2023 Apr; 89(3-4):447-460. doi: 10.1007/s10493-023-00780-9. [PMID: 37052726]
  • Xin-Hua Zhao, Na An, Meng-Huan Xia, Wen-Ping Liu, Qing-Qi Wang, Ji-Zhang Bao. Nootkatone Improves Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors by Repressing NF-κB/NLRP3-Mediated Neuroinflammation. Chinese journal of integrative medicine. 2023 Jan; 29(1):37-43. doi: 10.1007/s11655-022-3725-2. [PMID: 36401752]
  • Ankush Kumar Jha, Shobhit Gairola, Sourav Kundu, Pakpi Doye, Abu Mohammad Syed, Chetan Ram, Uttam Kulhari, Naresh Kumar, Upadhyayula Suryanarayana Murty, Bidya Dhar Sahu. Biological Activities, Pharmacokinetics and Toxicity of Nootkatone: A Review. Mini reviews in medicinal chemistry. 2022; 22(17):2244-2259. doi: 10.2174/1389557522666220214092005. [PMID: 35156582]
  • Zhen-Miao Qin, Yong-Hui Li, Yin-Feng Tan, Hai-Long Li. Determination of nootkatone in rat plasma by LC-tandem mass spectrometry and its application in a pharmacokinetic study. Biomedical chromatography : BMC. 2021 Dec; 35(12):e5197. doi: 10.1002/bmc.5197. [PMID: 34162012]
  • Shobhit Gairola, Chetan Ram, Abu Mohammad Syed, Pakpi Doye, Uttam Kulhari, Madhav Nilakanth Mugale, Upadhyayula Suryanarayana Murty, Bidya Dhar Sahu. Nootkatone confers antifibrotic effect by regulating the TGF-β/Smad signaling pathway in mouse model of unilateral ureteral obstruction. European journal of pharmacology. 2021 Nov; 910(?):174479. doi: 10.1016/j.ejphar.2021.174479. [PMID: 34480883]
  • Chang-Mu Chen, Chen-Yu Lin, Yao-Pang Chung, Chia-Hung Liu, Kuo-Tong Huang, Siao-Syun Guan, Cheng-Tien Wu, Shing-Hwa Liu. Protective Effects of Nootkatone on Renal Inflammation, Apoptosis, and Fibrosis in a Unilateral Ureteral Obstructive Mouse Model. Nutrients. 2021 Nov; 13(11):. doi: 10.3390/nu13113921. [PMID: 34836176]
  • Xiao Li, Jing-Nan Ren, Gang Fan, Lu-Lu Zhang, Si-Yi Pan. Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. Journal of industrial microbiology & biotechnology. 2021 Aug; 48(7-8):. doi: 10.1093/jimb/kuab046. [PMID: 34279658]
  • Yuqin Gou, Fangyuan Zhang, Yueli Tang, Chunxue Jiang, Ge Bai, He Xie, Min Chen, Zhihua Liao. Engineering Nootkatone Biosynthesis in Artemisia annua. ACS synthetic biology. 2021 05; 10(5):957-963. doi: 10.1021/acssynbio.1c00016. [PMID: 33973783]
  • Tingxu Yan, Fuyuan Li, Weilin Xiong, Bo Wu, Feng Xiao, Bosai He, Ying Jia. Nootkatone improves anxiety- and depression-like behavior by targeting hyperammonemia-induced oxidative stress in D-galactosamine model of liver injury. Environmental toxicology. 2021 Apr; 36(4):694-706. doi: 10.1002/tox.23073. [PMID: 33270352]
  • M F Nagoor Meeran, Sheikh Azimullah, Ernest Adeghate, Shreesh Ojha. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153405. doi: 10.1016/j.phymed.2020.153405. [PMID: 33636578]
  • Jung-Eun Park, Jin-Sun Park, Yea-Hyun Leem, Do-Yeon Kim, Hee-Sun Kim. NQO1 mediates the anti-inflammatory effects of nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK signaling pathway. Free radical biology & medicine. 2021 02; 164(?):354-368. doi: 10.1016/j.freeradbiomed.2021.01.015. [PMID: 33460769]
  • Megan C Dyer, Matthew D Requintina, Kathryn A Berger, Gavino Puggioni, Thomas N Mather. Evaluating the Effects of Minimal Risk Natural Products for Control of the Tick, Ixodes scapularis (Acari: Ixodidae). Journal of medical entomology. 2021 01; 58(1):390-397. doi: 10.1093/jme/tjaa188. [PMID: 33044507]
  • Samer S Habash, Philipp P Könen, Anita Loeschcke, Matthias Wüst, Karl-Erich Jaeger, Thomas Drepper, Florian M W Grundler, A Sylvia S Schleker. The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera schachtii Parasitism by Activating Plant Defense. International journal of molecular sciences. 2020 Dec; 21(24):. doi: 10.3390/ijms21249627. [PMID: 33348829]
  • M F Nagoor Meeran, Sheikh Azimullah, M Marzouq Al Ahbabi, Niraj Kumar Jha, Vinoth-Kumar Lakshmanan, Sameer N Goyal, Shreesh Ojha. Nootkatone, a Dietary Fragrant Bioactive Compound, Attenuates Dyslipidemia and Intramyocardial Lipid Accumulation and Favorably Alters Lipid Metabolism in a Rat Model of Myocardial Injury: An In Vivo and In Vitro Study. Molecules (Basel, Switzerland). 2020 Nov; 25(23):. doi: 10.3390/molecules25235656. [PMID: 33266249]
  • Eunsu Yoo, Jaehak Lee, Pattawika Lertpatipanpong, Junsun Ryu, Chong-Tai Kim, Eul-Yong Park, Seung Joon Baek. Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC cancer. 2020 Sep; 20(1):881. doi: 10.1186/s12885-020-07379-y. [PMID: 32928152]
  • Raena Morley, Mirjana Minceva. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. Journal of chromatography. A. 2020 Aug; 1625(?):461272. doi: 10.1016/j.chroma.2020.461272. [PMID: 32709324]
  • Yu Qi, Xinhui Cheng, Guowei Gong, Tingxu Yan, Yiyang Du, Bo Wu, Kaishun Bi, Ying Jia. Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food & function. 2020 Mar; 11(3):2427-2438. doi: 10.1039/c9fo02927c. [PMID: 32129354]
  • Xiangfeng Meng, Hui Liu, Wenqiang Xu, Weixin Zhang, Zheng Wang, Weifeng Liu. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microbial cell factories. 2020 Feb; 19(1):21. doi: 10.1186/s12934-020-1295-6. [PMID: 32013959]
  • Xiangxiang Zhu, Xiangyun Li, Zhen Chen. Inhibition of anticancer growth in Retinoblastoma cells by naturally occurring sesquiterpene nootkatone is mediated via autophagy, endogenous ROS production, cell cycle arrest and inhibition of NF-κB signalling pathway. Journal of B.U.ON. : official journal of the Balkan Union of Oncology. 2020 Jan; 25(1):427-431. doi: . [PMID: 32277665]
  • Haipeng Zhang, Huan Wen, Jiajing Chen, Zhaoxin Peng, Meiyan Shi, Mengjun Chen, Ziyu Yuan, Yuan Liu, Hongyan Zhang, Juan Xu. Volatile Compounds in Fruit Peels as Novel Biomarkers for the Identification of Four Citrus Species. Molecules (Basel, Switzerland). 2019 Dec; 24(24):. doi: 10.3390/molecules24244550. [PMID: 31842378]
  • Yu Qi, Xinhui Cheng, Huiting Jing, Tingxu Yan, Feng Xiao, Bo Wu, Kaishun Bi, Ying Jia. Combination of schisandrin and nootkatone exerts neuroprotective effect in Alzheimer's disease mice model. Metabolic brain disease. 2019 12; 34(6):1689-1703. doi: 10.1007/s11011-019-00475-4. [PMID: 31422511]
  • Badreldin H Ali, Suhail Al-Salam, Sirin A Adham, Khalid Al Balushi, Mohammed Al Za'abi, Sumaya Beegam, Priya Yuvaraju, Priyadarsini Manoj, Abderrahim Nemmar. Testicular Toxicity of Water Pipe Smoke Exposure in Mice and the Effect of Treatment with Nootkatone Thereon. Oxidative medicine and cellular longevity. 2019; 2019(?):2416935. doi: 10.1155/2019/2416935. [PMID: 31341528]
  • Abderrahim Nemmar, Suhail Al-Salam, Sumaya Beegam, Priya Yuvaraju, Badreldin H Ali. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. American journal of physiology. Heart and circulatory physiology. 2018 05; 314(5):H917-H927. doi: 10.1152/ajpheart.00313.2017. [PMID: 29351455]
  • Ansgar Rühlmann, Georg Groth, Vlada B Urlacher. Characterization of CYP154F1 from Thermobifida fusca YX and Extension of Its Substrate Spectrum by Site-Directed Mutagenesis. Chembiochem : a European journal of chemical biology. 2018 03; 19(5):478-485. doi: 10.1002/cbic.201700565. [PMID: 29266604]
  • Alexander Schifrin, Martin Litzenburger, Michael Ringle, Thuy T B Ly, Rita Bernhardt. New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum So ce56. Chembiochem : a European journal of chemical biology. 2015 Dec; 16(18):2624-32. doi: 10.1002/cbic.201500417. [PMID: 26449371]
  • Robin-Hagen Leonhardt, Ralf G Berger. Nootkatone. Advances in biochemical engineering/biotechnology. 2015; 148(?):391-404. doi: 10.1007/10_2014_279. [PMID: 25326849]
  • Yogini Jaiswal, Zhitao Liang, Ping Guo, Hing-Man Ho, Hubiao Chen, Zhongzhen Zhao. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques. Journal of agricultural and food chemistry. 2014 Jul; 62(29):7302-16. doi: 10.1021/jf502494z. [PMID: 24938835]
  • Tamara Wriessnegger, Peter Augustin, Matthias Engleder, Erich Leitner, Monika Müller, Iwona Kaluzna, Martin Schürmann, Daniel Mink, Günther Zellnig, Helmut Schwab, Harald Pichler. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metabolic engineering. 2014 Jul; 24(?):18-29. doi: 10.1016/j.ymben.2014.04.001. [PMID: 24747046]
  • Katarina Cankar, Adèle van Houwelingen, Miriam Goedbloed, Rokus Renirie, René M de Jong, Harro Bouwmeester, Dirk Bosch, Theo Sonke, Jules Beekwilder. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis). FEBS letters. 2014 Mar; 588(6):1001-7. doi: 10.1016/j.febslet.2014.01.061. [PMID: 24530525]
  • Jules Beekwilder, Adèle van Houwelingen, Katarina Cankar, Aalt D J van Dijk, René M de Jong, Geert Stoopen, Harro Bouwmeester, Jihane Achkar, Theo Sonke, Dirk Bosch. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant biotechnology journal. 2014 Feb; 12(2):174-82. doi: 10.1111/pbi.12124. [PMID: 24112147]
  • Junqing Zhang, Sheng Wang, Yonghui Li, Peng Xu, Feng Chen, Yinfeng Tan, Jinao Duan. Anti-diarrheal constituents of Alpinia oxyphylla. Fitoterapia. 2013 Sep; 89(?):149-56. doi: 10.1016/j.fitote.2013.04.001. [PMID: 23583435]
  • Carole Gavira, René Höfer, Agnès Lesot, Fanny Lambert, Joseph Zucca, Danièle Werck-Reichhart. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metabolic engineering. 2013 Jul; 18(?):25-35. doi: 10.1016/j.ymben.2013.02.003. [PMID: 23518241]
  • Anuja Bharadwaj, Kirby C Stafford, Robert W Behle. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. Journal of medical entomology. 2012 Sep; 49(5):1035-44. doi: 10.1603/me11251. [PMID: 23025184]
  • Robert A Jordan, Terry L Schulze, Marc C Dolan. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). Journal of medical entomology. 2012 Jan; 49(1):101-6. doi: 10.1603/me10241. [PMID: 22308777]
  • Terry L Schulze, Robert A Jordan, Marc C Dolan. Experimental use of two standard tick collection methods to evaluate the relative effectiveness of several plant-derived and synthetic repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). Journal of economic entomology. 2011 Dec; 104(6):2062-7. doi: 10.1603/ec10421. [PMID: 22299371]
  • Robert W Behle, Lina B Flor-Weiler, Anuja Bharadwaj, Kirby C Stafford. A formulation to encapsulate nootkatone for tick control. Journal of medical entomology. 2011 Nov; 48(6):1120-7. doi: 10.1603/me10282. [PMID: 22238870]
  • Konstantin Tsoyi, Hwa Jin Jang, Young Soo Lee, Young Min Kim, Hye Jung Kim, Han Geuk Seo, Jae Heun Lee, Jong Hwan Kwak, Dong-Ung Lee, Ki Churl Chang. (+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction. Journal of ethnopharmacology. 2011 Oct; 137(3):1311-7. doi: 10.1016/j.jep.2011.07.062. [PMID: 21843620]
  • Emilio Villafañe, Diego Tolosa, Alicia Bardón, Adriana Neske. Toxic effects of Citrus aurantium and C. limon essential oils on Spodoptera frugiperda (Lepidoptera: Noctuidae). Natural product communications. 2011 Sep; 6(9):1389-92. doi: . [PMID: 21941921]
  • Eun Ji Seo, Dong-Ung Lee, Jong Hwan Kwak, Sun-Mee Lee, Yeong Shik Kim, Yi-Sook Jung. Antiplatelet effects of Cyperus rotundus and its component (+)-nootkatone. Journal of ethnopharmacology. 2011 Apr; 135(1):48-54. doi: 10.1016/j.jep.2011.02.025. [PMID: 21354294]
  • Robert A Jordan, Marc C Dolan, Joseph Piesman, Terry L Schulze. Suppression of host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey. Journal of economic entomology. 2011 Apr; 104(2):659-64. doi: 10.1603/ec10340. [PMID: 21510219]
  • Marta Ferreira Maia, Sarah J Moore. Plant-based insect repellents: a review of their efficacy, development and testing. Malaria journal. 2011 Mar; 10 Suppl 1(?):S11. doi: 10.1186/1475-2875-10-s1-s11. [PMID: 21411012]
  • Lina B Flor-Weiler, Robert W Behle, Kirby C Stafford. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit. Journal of medical entomology. 2011 Mar; 48(2):322-6. doi: 10.1603/me10148. [PMID: 21485368]
  • Jeong Ho Jin, Dong-Ung Lee, Yeong Shik Kim, Hyun Pyo Kim. Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Archives of pharmacal research. 2011 Feb; 34(2):223-8. doi: 10.1007/s12272-011-0207-z. [PMID: 21380805]
  • Katarina Cankar, Adèle van Houwelingen, Dirk Bosch, Theo Sonke, Harro Bouwmeester, Jules Beekwilder. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS letters. 2011 Jan; 585(1):178-82. doi: 10.1016/j.febslet.2010.11.040. [PMID: 21115006]
  • Wenbing Li, Changjiang Hu, Lanyan Long, Qinwan Huang, Xiuqiong Xie. [Study on quality standards of decoction pieces of salt Alpinia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(24):3278-81. doi: . [PMID: 21438389]
  • Janet C McAllister, Mary F Adams. Mode of action for natural products isolated from essential oils of two trees is different from available mosquito adulticides. Journal of medical entomology. 2010 Nov; 47(6):1123-6. doi: 10.1603/me10098. [PMID: 21175062]
  • Ilizandra A Fernandes, Maria Carolina Esmelindro, Marcos L Corazza, Elton Franceschi, Helen Treichel, Debora de Oliveira, Caren D Frizzo, J Vladimir Oliveira. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme. Journal of the science of food and agriculture. 2010 Jul; 90(9):1460-6. doi: 10.1002/jsfa.3964. [PMID: 20549797]
  • Marc C Dolan, Robert A Jordan, Terry L Schulze, Christopher J Schulze, Mark Cornell Manning, Daniel Ruffolo, Jason P Schmidt, Joseph Piesman, Joseph J Karchesy. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. Journal of economic entomology. 2009 Dec; 102(6):2316-24. doi: 10.1603/029.102.0638. [PMID: 20069863]
  • Menandro N Acda. Toxicity, tunneling and feeding behavior of the termite, Coptotermes vastator, in sand treated with oil of the physic nut, Jatropha curcas. Journal of insect science (Online). 2009; 9(?):1-8. doi: 10.1673/031.009.6401. [PMID: 20053119]
  • Dae-Kyun Ro, Mario Ouellet, Eric M Paradise, Helcio Burd, Diana Eng, Chris J Paddon, Jack D Newman, Jay D Keasling. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC biotechnology. 2008 Nov; 8(?):83. doi: 10.1186/1472-6750-8-83. [PMID: 18983675]
  • Manuel Talon, Fred G Gmitter. Citrus genomics. International journal of plant genomics. 2008; 2008(?):528361. doi: 10.1155/2008/528361. [PMID: 18509486]
  • Rick G Kelsey, Paul E Hennon, Manuela Huso, Joseph J Karchesy. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska. Journal of chemical ecology. 2005 Nov; 31(11):2653-70. doi: 10.1007/s10886-005-7618-6. [PMID: 16273433]
  • Nicholas A Panella, Marc C Dolan, Joseph J Karchesy, Yeping Xiong, Javier Peralta-Cruz, Mohammad Khasawneh, John A Montenieri, Gary O Maupin. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. Journal of medical entomology. 2005 May; 42(3):352-8. doi: 10.1093/jmedent/42.3.352. [PMID: 15962787]
  • Sanaa A Ibrahim, Gregg Henderson, Betty C R Zhu, Huixin Fei, Roger A Laine. Toxicity and behavioral effects of nootkatone, 1,10-dihydronootkatone, and tetrahydronootkatone to the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of economic entomology. 2004 Feb; 97(1):102-11. doi: 10.1093/jee/97.1.102. [PMID: 14998133]
  • Liat Sharon-Asa, Moshe Shalit, Ahuva Frydman, Einat Bar, Doron Holland, Etti Or, Uri Lavi, Efraim Lewinsohn, Yoram Eyal. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. The Plant journal : for cell and molecular biology. 2003 Dec; 36(5):664-74. doi: 10.1046/j.1365-313x.2003.01910.x. [PMID: 14617067]
  • Betty C R Zhu, Gregg Henderson, Anne M Sauer, Ying Yu, William Crowe, Roger A Laine. Structure-activity of valencenoid derivatives and their repellence to the Formosan subterranean termite. Journal of chemical ecology. 2003 Dec; 29(12):2695-701. doi: 10.1023/b:joec.0000008013.07845.4c. [PMID: 14969356]
  • Tomona Hata, Ikuyo Sakaguchi, Masahiro Mori, Norikazu Ikeda, Yoshiko Kato, Miki Minamino, Kazuhito Watabe. Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells. In vivo (Athens, Greece). 2003 Nov; 17(6):553-9. doi: . [PMID: 14758720]
  • Lara Maistrello, Gregg Henderson, Roger A Laine. Comparative effects of vetiver oil, nootkatone and disodium octaborate tetrahydrate on Coptotermes formosanus and its symbiotic fauna. Pest management science. 2003 Jan; 59(1):58-68. doi: 10.1002/ps.601. [PMID: 12558100]
  • Jeoung-Hee Ha, Kwang-Youn Lee, Hyoung-Chul Choi, Jungsook Cho, Byung-Soo Kang, Jae-Chul Lim, Dong-Ung Lee. Modulation of radioligand binding to the GABA(A)-benzodiazepine receptor complex by a new component from Cyperus rotundus. Biological & pharmaceutical bulletin. 2002 Jan; 25(1):128-30. doi: 10.1248/bpb.25.128. [PMID: 11824542]
  • L Maistrello, G Henderson, R A Laine. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of economic entomology. 2001 Dec; 94(6):1532-7. doi: 10.1603/0022-0493-94.6.1532. [PMID: 11777060]
  • B C Zhu, G Henderson, F Chen, L Maistrello, R A Laine. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). Journal of chemical ecology. 2001 Mar; 27(3):523-31. doi: 10.1023/a:1010301308649. [PMID: 11441443]
  • M Miyazawa, H Tougo, M Ishihara. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi. Natural product letters. 2001; 15(3):205-10. doi: 10.1080/10575630108041281. [PMID: 11858553]