Cinnamaldehyde (BioDeep_00000000263)

 

Secondary id: BioDeep_00000173427, BioDeep_00000400208, BioDeep_00000860142, BioDeep_00001892497

natural product human metabolite PANOMIX_OTCML-2023 Volatile Flavor Compounds


代谢物信息卡片


Cinnamaldehyde, United States Pharmacopeia (USP) Reference Standard

化学式: C9H8O (132.0575118)
中文名称: 肉桂醛, 桂皮醛, 3-苯基丙-2-烯醛
谱图信息: 最多检出来源 Viridiplantae(plant) 0.15%

分子结构信息

SMILES: C1=CC=C(C=C1)C=CC=O
InChI: InChI=1/C9H8O/c10-8-4-7-9-5-2-1-3-6-9/h1-8H/b7-4+

描述信息

(E)-cinnamaldehyde is the E (trans) stereoisomer of cinnamaldehyde, the parent of the class of cinnamaldehydes. It has a role as a hypoglycemic agent, an EC 4.3.1.24 (phenylalanine ammonia-lyase) inhibitor, a vasodilator agent, an antifungal agent, a flavouring agent, a plant metabolite and a sensitiser. It is a 3-phenylprop-2-enal and a member of cinnamaldehydes.
Cinnamaldehyde is a naturally occurring flavonoid that gives the spice cinnamon its flavour and odour. It occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum such as camphor and cassia. Sensitivity to cinnamaldehyde may be identified with a clinical patch test.
Cinnamaldehyde is a Standardized Chemical Allergen. The physiologic effect of cinnamaldehyde is by means of Increased Histamine Release, and Cell-mediated Immunity.
Cinnamaldehyde is a natural product found in Chaerophyllum bulbosum, Cinnamomum sieboldii, and other organisms with data available.
Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde.
Cinnamaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae.
Cinnamaldehyde, also known as (E)-3-phenyl-2-propenal or 3-phenylacrylaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. Cinnamaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cinnamaldehyde is a sweet, candy, and cinnamon tasting compound and can be found in a number of food items such as sour cherry, rubus (blackberry, raspberry), horseradish, and sea-buckthornberry, which makes cinnamaldehyde a potential biomarker for the consumption of these food products. Cinnamaldehyde can be found primarily in feces, as well as in human neuron and skin tissues. Cinnamaldehyde exists in all eukaryotes, ranging from yeast to humans. Cinnamaldehyde is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamaldehyde is an organic compound with the formula C6H5CH=CHCHO. Occurring naturally as predominantly the trans (E) isomer, it gives cinnamon its flavor and odor. It is a flavonoid that is naturally synthesized by the shikimate pathway. This pale yellow, viscous liquid occurs in the bark of cinnamon trees and other species of the genus Cinnamomum. The essential oil of cinnamon bark is about 50\\\\% cinnamaldehyde . The specific symptoms that can result from cinnamic aldehyde allergy can vary considerably amongst patients from a severe anaphylactic reaction to asthma, abdominal symptoms, eczema or headaches (L2140) (T3DB).
Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde.
D020011 - Protective Agents > D016587 - Antimutagenic Agents
D000074385 - Food Ingredients > D005503 - Food Additives
D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents
D000970 - Antineoplastic Agents
Acquisition and generation of the data is financially supported in part by CREST/JST.
trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].
trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].

同义名列表

115 个代谢物同义名

Cinnamaldehyde, United States Pharmacopeia (USP) Reference Standard; TRANS-CINNAMALDEHYDE (CONSTITUENT OF CINNAMOMUM CASSIA BARK) [DSC]; CINNAMALDEHYDE (CONSTITUENT OF CINNAMOMUM VERUM BARK) [DSC]; trans-Cinnamaldehyde; trans-3-Phenylacrylaldehyde; InChI=1/C9H8O/c10-8-4-7-9-5-2-1-3-6-9/h1-8H/b7-4; Cinnamaldehyde, Vetec(TM) reagent grade, 93\\%; 2-07-00-00273 (Beilstein Handbook Reference); 4-07-00-00984 (Beilstein Handbook Reference); (E)-3-phenyl-2-propenal(E)-cinnamaldehyde; trans-Cinnamaldehyde, analytical standard; Cinnamaldehyde min. 98\\%, for synthesis; trans-Cinnamaldehyde, >=98\\%, FCC, FG; B99DD6C7-1C6D-4FE3-A172-54BFDB987683; Cinnamaldehyde, natural, >=95\\%, FG; trans-cinnamaldehyde (incorrect); trans-3-phenylprop-2-enaldehyde; (E)-cinnamaldehyde (incorrect); cinnamic aldehyde, (E)-isomer; Cinnamaldehyde (trans), neat; 2-propenal, 3-phenyl-, (2E)-; trans-Cinnamaldehyde, >=99\\%; Hefty Dog and Cat Repellent; Cinnamic aldehyde (natural); trans-3-Phenylacrylaldehyde; 2-Propenal, 3-phenyl-, (E)-; (E)-3-phenyl-acrylaldehyde; (2E)-3-phenylacrylaldehyde; trans-Cinnamaldehyde, 99\\%; (E)-3-Phenylprop-2-en-1-al; 3-Phenyl-2-propenaldehyde; trans-3-Phenyl-2-propenal; Aldehyd skoricovy [Czech]; 3-phenylprop-2-enaldehyde; (E)-3-phenylacrylaldehyde; Trans-Cinnamaldehyde ,(S); (3E)-3-phenylprop-2-enal; (2E)-3-Phenyl-2-propenal; (E)-3-Phenylprop-2-enone; (E)-phenylvinyl aldehyde; (2E)-3-phenylprop-2-enal; trans-Cinnamic aldehyde; 2E)-3-Phenyl-2-propenal; trans cinnamic aldehyde; trans-3-phenyl-propenal; Benzylideneacetaldehyde; CINNAMALDEHYDE [WHO-DD]; (E)-3-phenylprop-2-enal; CINNAMALDEHYDE [USP-RS]; 3-Phenyl-2-propene-1-al; (E)-3-Phenyl-2-propenal; 3-Fenylpropenal [Czech]; trans-Cinnamylaldehyde; 3-Phenyl-2-propen-1-al; trans-3-Phenylpropenal; trans-3-Phenylacrolein; (trans)-cinnamaldehyde; CINNAMALDEHYDE (TRANS); Cinnamaldehyde, trans-; trans-Benzenepropenal; (E)-3-Phenyl-propenal; CINNAMALDEHYDE [HSDB]; .beta.-phenylacrolein; CINNAMALDEHYDE [FHFI]; 2-Propenal, 3-phenyl-; 3-Phenylacrylaldehyde; (E)-Cinnamic aldehyde; trans-cinnamaldehyde; trans cinnamaldehyde; CINNAMALDEHYDE [FCC]; Cinnamaldehyde, (E)-; (E)-3-Phenylacrolein; (E)-3-Phenylpropenal; 3-phenylprop-2-enal; Cinnamaldehyde [NF]; Acrolein, 3-phenyl-; beta-phenylacrolein; transcinnamaldehyde; supercinnamaldehyde; E-Cinnamyl aldehyde; CINNAMALDEHYDE [MI]; CINNAMALDEHYDE [II]; 3-phenyl-2-propenal; beta-Phenylcrolein; (E)-Cinnamaldehyde; cinnamic aldehyde; |A-Phenylacrolein; Aldehyd skoricovy; 3-phenyl-propenal; Cinnamyl aldehyde; Cinnamylaldehyde; 3-Phenylacrolein; 3-Phenylpropenal; e-cinnamaldehyde; UNII-SR60A3XG0F; Cassia aldehyde; 3-Fenylpropenal; CINNAMAL [INCI]; Phenylacrolein; Cinnamaldehyde; Cinnemaldehyde; Tox21_201804; Tox21_303271; Zimtaldehyde; Tox21_200272; Tox21_111144; WLN: VH1U1R; SR60A3XG0F; AI3-33275; AI3-00473; Cinnamal; Abion CA; CNMA; Cinnamaldehyde; 3-Phenylprop-2-enal; Cinnamaldehyde



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

44 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Chen-Yan Li, Li-Juan Liao, Shi-Xian Yang, Lu-Yao Wang, Hao Chen, Peipei Luo, Gan-Rong Huang, Yan-Qiang Huang. Cinnamaldehyde: An effective component of Cinnamomum cassia inhibiting Helicobacter pylori. Journal of ethnopharmacology. 2024 Aug; 330(?):118222. doi: 10.1016/j.jep.2024.118222. [PMID: 38663778]
  • Fugang Liu, Yanfang Yang, Haoran Dong, Yanhui Zhu, Weisheng Feng, Hezhen Wu. Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155651. doi: 10.1016/j.phymed.2024.155651. [PMID: 38688144]
  • Narges Hojati, Sedigheh Amiri, Elahe Abedi, Mohsen Radi. Effect of cinnamaldehyde-nanoemulsion and nanostructured lipid carriers on physicochemical attributes of reduced-nitrite sausages. Food chemistry. 2024 Jun; 444(?):138658. doi: 10.1016/j.foodchem.2024.138658. [PMID: 38325076]
  • Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens. Biomaterials advances. 2024 Jun; 160(?):213863. doi: 10.1016/j.bioadv.2024.213863. [PMID: 38642516]
  • Jinyue Sun, Qian-Jun Shen, Jia-Neng Pan, Xiaodong Zheng, Ting Yu, Wen-Wen Zhou. Ferrous sulfate combined with ultrasound emulsified cinnamaldehyde nanoemulsion to cause ferroptosis in Escherichia coli O157:H7. Ultrasonics sonochemistry. 2024 Jun; 106(?):106884. doi: 10.1016/j.ultsonch.2024.106884. [PMID: 38677267]
  • Nesma A Ghazal, Yara T Agamia, Basant K Meky, Nagwa M Assem, Wafaa M Abdel-Rehim, Sara A Shaker. Cinnamaldehyde ameliorates STZ-induced diabetes through modulation of autophagic process in adipocyte and hepatic tissues on rats. Scientific reports. 2024 05; 14(1):10053. doi: 10.1038/s41598-024-60150-2. [PMID: 38698047]
  • Peng Ye, Jianmu Su, Jianhao Lin, Yanqun Li, Hong Wu. Identification of a cinnamoyl-CoA reductase from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis. Planta. 2024 Apr; 259(6):138. doi: 10.1007/s00425-024-04419-w. [PMID: 38687380]
  • Yan-Guang Li, Jiang-Hong Li, Hai-Qin Wang, Junhua Liao, Xiao-Ya Du. Cinnamaldehyde protects cardiomyocytes from oxygen-glucose deprivation/reoxygenation-induced lipid peroxidation and DNA damage via activating the Nrf2 pathway. Chemical biology & drug design. 2024 02; 103(2):e14489. doi: 10.1111/cbdd.14489. [PMID: 38404216]
  • Yun Meng, Ye Cai, Mengyao Cui, Yuhang Xu, Long Wu, Xiang Li, Xiaoqin Chu. Solid self-microemulsifying drug delivery system (S-SMEDDS) prepared by spray drying to improve the oral bioavailability of cinnamaldehyde (CA). Pharmaceutical development and technology. 2024 Feb; 29(2):112-122. doi: 10.1080/10837450.2024.2312851. [PMID: 38308442]
  • Aleksandra Zimińska, Izabela Lipska, Joanna Gajewska, Anna Draszanowska, Manuel Simões, Magdalena A Olszewska. Antibacterial and Antibiofilm Effects of Photodynamic Treatment with Curcuma L. and Trans-Cinnamaldehyde against Listeria monocytogenes. Molecules (Basel, Switzerland). 2024 Feb; 29(3):. doi: 10.3390/molecules29030685. [PMID: 38338429]
  • Jishuai Sun, Xiaojing Leng, Jiachen Zang, Guanghua Zhao. Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review. Critical reviews in food science and nutrition. 2024; 64(1):140-152. doi: 10.1080/10408398.2022.2105300. [PMID: 35900224]
  • Jihye Jung, Dawon Jo, Soo-Jin Kim. Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment. Journal of microbiology and biotechnology. 2023 Dec; 34(4):1-9. doi: 10.4014/jmb.2311.11043. [PMID: 38146216]
  • Imam Tri Wahyudi, Dedi Jusadi, Mia Setiawati, Julie Ekasari, Muhammad Agus Suprayudi. Dietary supplementation of cinnamaldehyde positively affects the physiology, feed utilization, growth, and body composition of striped catfish Pangasianodon hypophthalmus. Fish physiology and biochemistry. 2023 Dec; ?(?):. doi: 10.1007/s10695-023-01287-1. [PMID: 38112905]
  • Joshua M Lyte, Komala Arsi, Valentina Caputi, Rohana Liyanage, Anna L Facchetti V Assumpcao, Palmy R R Jesudhasan, Annie M Donoghue. Inclusion of trans-cinnamaldehyde and caprylic acid in feed results in detectable concentrations in the chicken gut and reduces foodborne pathogen carriage. Poultry science. 2023 Dec; 103(2):103368. doi: 10.1016/j.psj.2023.103368. [PMID: 38157787]
  • Yansheng Zhao, Mei Xiao, Aya Samy Eweys, Juan Bai, Osama M Darwesh, Xiang Xiao. Cinnamaldehyde Alleviates the Oxidative Stress of Caenorhabditis elegans in the Presence of Lactic Acid. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Dec; 78(4):683-690. doi: 10.1007/s11130-023-01094-2. [PMID: 37688685]
  • Huahua Li, Ziwei Peng, Yang Song, Minhang Dou, Xinying Lu, Minghui Li, Xiaofeng Zhai, Yan Gu, Rexidanmu Mamujiang, Shouying Du, Jie Bai. Study of the permeation-promoting effect and mechanism of solid microneedles on different properties of drugs. Drug delivery. 2023 Dec; 30(1):2165737. doi: 10.1080/10717544.2023.2165737. [PMID: 36644816]
  • Chen Yan, Na Li, Yuchi Zhang, Yun Wei. Enrichment of cinnamaldehyde from Cinnamomum cassia by electroosmotic coupled particle-assisted solvent flotation. Journal of chromatography. A. 2023 Nov; 1710(?):464411. doi: 10.1016/j.chroma.2023.464411. [PMID: 37778100]
  • Liangxin Zhao, Shensi Qian, Xu Wang, Tiantian Si, Jinke Xu, Zhengtao Wang, Qihui Sun, Yong Yang, Rong Rong. UPLC-Q-Exactive/MS based analysis explore the correlation between components variations and anti-influenza virus effect of four quantified extracts of Chaihu Guizhi decoction. Journal of ethnopharmacology. 2023 Oct; ?(?):117318. doi: 10.1016/j.jep.2023.117318. [PMID: 37838293]
  • Yener Özel, İbrahim Çavuş, Mehmet Ünlü, Ahmet Özbilgin. [Investigation of the Efficacy of Cinnamaldehyde, Cannabidiol and Eravacycline in a Malaria Model]. Mikrobiyoloji bulteni. 2023 Oct; 57(4):608-624. doi: 10.5578/mb.20239949. [PMID: 37885389]
  • Sanne van Gastelen, David Yáñez-Ruiz, Hajer Khelil-Arfa, Alexandra Blanchard, André Bannink. Effect of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows. Journal of dairy science. 2023 Sep; ?(?):. doi: 10.3168/jds.2023-23406. [PMID: 37709037]
  • Wenqi Yin, Ruyu Yan, Xiaoyi Zhou, Xiaojing Li, Shangyuan Sang, David Julian McClements, Long Chen, Jie Long, Aiquan Jiao, Jinpeng Wang, Zhengyu Jin, Chao Qiu. Preparation of robust, water-resistant, antibacterial, and antioxidant chitosan-based films by incorporation of cinnamaldehyde-tannin acid-zinc acetate nanoparticles. Food chemistry. 2023 Sep; 419(?):136004. doi: 10.1016/j.foodchem.2023.136004. [PMID: 37054511]
  • Sherief M Abdel-Raheem, Marwa I Abd El-Hamid, Doaa Ibrahim, Rania M S El-Malt, Waleed Rizk El-Ghareeb, Hesham A Ismail, Saad Ibrahim Al-Sultan, Ahmed M A Meligy, Reham M ELTarabili. Future scope of plant-derived bioactive compounds in the management of methicillin-resistant Staphylococcus aureus: In vitro antimicrobial and antivirulence prospects to combat MRSA. Microbial pathogenesis. 2023 Aug; 183(?):106301. doi: 10.1016/j.micpath.2023.106301. [PMID: 37579824]
  • Xinshu Zou, Shuang Cai, Tingting Wang, Sidi Zheng, Xilong Cui, Jingyou Hao, Xueying Chen, Yanyan Liu, Zhiyun Zhang, Yanhua Li. Natural Antibacterial Agent-based Nanoparticles for Effective Treatment of Intracellular MRSA Infection. Acta biomaterialia. 2023 Aug; ?(?):. doi: 10.1016/j.actbio.2023.08.004. [PMID: 37557944]
  • Mohaddeseh Khaafi, Zahra Tayarani-Najaran, Behjat Javadi. Cinnamaldehyde as a promising dietary phytochemical against metabolic syndrome: A systematic review. Mini reviews in medicinal chemistry. 2023 Jul; ?(?):. doi: 10.2174/1389557523666230725113446. [PMID: 37489782]
  • Wei Jia, Xiwen He, Wenhui Jin, Jinping Gu, Siyu Yu, Jianlin He, Zhiwei Yi, Bing Cai, Huiyuan Gao, Longhe Yang. Ramulus Cinnamomi essential oil exerts an anti-inflammatory effect on RAW264.7 cells through N-acylethanolamine acid amidase inhibition. Journal of ethnopharmacology. 2023 Jun; ?(?):116747. doi: 10.1016/j.jep.2023.116747. [PMID: 37311500]
  • Shuai Cheng, Ruiying Su, Luyi Song, Xiangyang Bai, Hui Yang, Zhuo Li, Zhenye Li, Xiangjun Zhan, Xiaodong Xia, Xin Lü, Chao Shi. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics. Food microbiology. 2023 Jun; 112(?):104241. doi: 10.1016/j.fm.2023.104241. [PMID: 36906323]
  • Jiang Chen, Hua Wang, Yuanshan Chen, Qiujin Zhu, Jing Wan. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food research international (Ottawa, Ont.). 2023 06; 168(?):112794. doi: 10.1016/j.foodres.2023.112794. [PMID: 37120239]
  • Chung-Chih Huang, Yun-Ting Lee, Thach-Thao Ly, Chong-Yue Wang, Yao-Tsung Chang, Ping-Fu Hou, Zin-Huang Liu, Hao-Jen Huang. Volatile cinnamaldehyde induces systemic salt tolerance in the roots of rice (Oryza sativa). Physiologia plantarum. 2023 May; ?(?):e13938. doi: 10.1111/ppl.13938. [PMID: 37243874]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Arti Nile, Jisoo Shin, Juhyun Shin, Gyun Seok Park, Suhyun Lee, Ji-Ho Lee, Kyung-Woo Lee, Beob Gyun Kim, Sung Gu Han, Ramesh Kumar Saini, Jae-Wook Oh. Cinnamaldehyde-Rich Cinnamon Extract Induces Cell Death in Colon Cancer Cell Lines HCT 116 and HT-29. International journal of molecular sciences. 2023 May; 24(9):. doi: 10.3390/ijms24098191. [PMID: 37175897]
  • Lei Sun, Ann Van Loey, Carolien Buvé, Chris W Michiels. Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes. Microbiology spectrum. 2023 Apr; ?(?):e0487722. doi: 10.1128/spectrum.04877-22. [PMID: 37036358]
  • Lichen Chen, Jixiang Yuan, Hang Li, Yi Ding, Xuejia Yang, Ziwei Yuan, Zujian Hu, Yuanyuan Gao, Xilong Wang, Hong Lu, Yong Cai, Yongheng Bai, Xiaodong Pan. Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. International immunopharmacology. 2023 Apr; 118(?):110088. doi: 10.1016/j.intimp.2023.110088. [PMID: 37011503]
  • Anita Vidács, Erika Beáta Kerekes, Miklós Takó, Csaba Vágvölgyi, Judit Krisch. Eradication of multiple-species biofilms from food industrial and domestic surfaces using essential oils. Food science and technology international = Ciencia y tecnologia de los alimentos internacional. 2023 Mar; ?(?):10820132231165543. doi: 10.1177/10820132231165543. [PMID: 36959708]
  • Yanrong Liu, Zhengqun Liu, Qiang Luo, Zhuwen Sun, Ning Li, Zi Zheng, Shuqin Mu, Xiaoqiao Zhou, Jun Yan, Chao Sun, Hongfu Zhang. Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells. Molecular biology reports. 2023 Mar; 50(3):2033-2039. doi: 10.1007/s11033-022-08101-w. [PMID: 36538173]
  • Thaiane G Gaique, Silvia K Boechat, Jessika Geisebel O Neto, Thais Bento-Bernardes, Renata F Medeiros, Carmen C Pazos-Moura, Karen J Oliveira. Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats. Hormones (Athens, Greece). 2023 Feb; ?(?):. doi: 10.1007/s42000-023-00442-w. [PMID: 36810755]
  • Tanapoom Moungthipmalai, Cheepchanok Puwanard, Jirapon Aungtikun, Sirawut Sittichok, Mayura Soonwera. Ovicidal toxicity of plant essential oils and their major constituents against two mosquito vectors and their non-target aquatic predators. Scientific reports. 2023 Feb; 13(1):2119. doi: 10.1038/s41598-023-29421-2. [PMID: 36746998]
  • Tingting Feng, Xinshuo Wang, Chunli Fan, Xuejiao Wang, Xingwei Wang, Heping Cui, Shuqin Xia, Qingrong Huang. The selective encapsulation and stabilization of cinnamaldehyde and eugenol in high internal phase Pickering emulsions: Regulating the interfacial properties. Food chemistry. 2023 Feb; 401(?):134139. doi: 10.1016/j.foodchem.2022.134139. [PMID: 36096006]
  • Aurélien Cuchet, Anthony Anchisi, Frédéric Schiets, Elise Carénini, Patrick Jame, Hervé Casabianca. δ18O compound-specific stable isotope assessment: An advanced analytical strategy for sophisticated adulterations detection in essential oils - Application to spearmint, cinnamon, and bitter almond essential oils authentication. Talanta. 2023 Jan; 252(?):123801. doi: 10.1016/j.talanta.2022.123801. [PMID: 35969926]
  • Meijiao Mao, Wang Zheng, Bin Deng, Youhua Wang, Duan Zhou, Lin Shen, Wankang Niku, Na Zhang. Cinnamaldehyde alleviates doxorubicin-induced cardiotoxicity by decreasing oxidative stress and ferroptosis in cardiomyocytes. PloS one. 2023; 18(10):e0292124. doi: 10.1371/journal.pone.0292124. [PMID: 37824478]
  • Ha Thi Thanh Nguyen, Atsushi Miyamoto, Hai Thanh Nguyen, Huong Thi Pham, Hong Thi Hoang, Ngoc Thi My Tong, Linh Thi Ngoc Truong, Ha Thi Thu Nguyen. Short communication: Antibacterial effects of essential oils from Cinnamomum cassia bark and Eucalyptus globulus leaves-The involvements of major constituents. PloS one. 2023; 18(7):e0288787. doi: 10.1371/journal.pone.0288787. [PMID: 37450504]
  • Kaihui Chang, Nan Zeng, Yonghe Ding, Xiangzhong Zhao, Chengwen Gao, Yafang Li, Haoxu Wang, Xiaoyu Liu, Yujuan Niu, Yuanchao Sun, Teng Li, Yongyong Shi, Chuanhong Wu, Zhiqiang Li. Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin. Food & function. 2022 Dec; 13(24):13028-13039. doi: 10.1039/d2fo02309a. [PMID: 36449017]
  • Long Wu, Yun Meng, Yuhang Xu, Xiaoqin Chu. Improved uptake and bioavailability of cinnamaldehyde via solid lipid nanoparticles for oral delivery. Pharmaceutical development and technology. 2022 Dec; 27(10):1038-1048. doi: 10.1080/10837450.2022.2147542. [PMID: 36367964]
  • Zhifei Chen, Futao Jing, Mingxiang Lu, Chen Su, Ruixue Tong, Luqing Pan. Effects of dietary trans-cinnamaldehyde on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Fish & shellfish immunology. 2022 Dec; 131(?):908-917. doi: 10.1016/j.fsi.2022.11.008. [PMID: 36356856]
  • Fei Luan, Ziqin Lei, Xi Peng, Li Chen, Lixia Peng, Yao Liu, Zhili Rao, Ruocong Yang, Nan Zeng. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chemico-biological interactions. 2022 Dec; 368(?):110245. doi: 10.1016/j.cbi.2022.110245. [PMID: 36341777]
  • Qi Xiao. Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155. Renal failure. 2022 Dec; 44(1):601-614. doi: 10.1080/0886022x.2022.2056485. [PMID: 35361048]
  • Farah Naz, Mukesh Kumar, Tirthankar Koley, Priyanka Sharma, Muhammad Anzarul Haque, Arti Kapil, Manoj Kumar, Punit Kaur, Abdul Samath Ethayathulla. Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. International journal of biological macromolecules. 2022 Oct; 219(?):428-437. doi: 10.1016/j.ijbiomac.2022.07.241. [PMID: 35932806]
  • Chunling Jiang, Jiaju Hong, Jing Meng, Jie Ou, Qingchao Xie, Yingjie Pan, Yong Zhao, Haiquan Liu. Antibacterial activity of essential oils extracted from the unique Chinese spices cassia bark, bay fruits and cloves. Archives of microbiology. 2022 Oct; 204(11):674. doi: 10.1007/s00203-022-03205-0. [PMID: 36255521]
  • Evan C Palmer-Young, Lindsey M Markowitz, Kyle Grubbs, Yi Zhang, Miguel Corona, Ryan Schwarz, Yanping Chen, Jay D Evans. Antiparasitic effects of three floral volatiles on trypanosomatid infection in honey bees. Journal of invertebrate pathology. 2022 10; 194(?):107830. doi: 10.1016/j.jip.2022.107830. [PMID: 36174749]
  • Xiaoying Yang, Maria Elena Castell-Perez, Rosana G Moreira, Zeynep Sevimli-Yurttas. trans-Cinnamaldehyde-encapsulated zeolitic imidazolate framework-8 nanoparticle complex solutions to inactivate Escherichia coli O157:H7 on fresh spinach leaves. Journal of food science. 2022 Oct; 87(10):4649-4664. doi: 10.1111/1750-3841.16294. [PMID: 36045506]
  • Lin Zong, Hao Gao, Chenwei Chen, Jing Xie. Effects of starch/polyvinyl alcohol active film containing cinnamaldehyde on the quality of large yellow croaker (Pseudosciaena crocea) proteins during frozen storage. Food chemistry. 2022 Sep; 389(?):133065. doi: 10.1016/j.foodchem.2022.133065. [PMID: 35489262]
  • Ruohui Xu, Xiaoli Xiao, Shengan Zhang, Jiashu Pan, Yingjue Tang, Wenjun Zhou, Guang Ji, Yanqi Dang. The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113367. doi: 10.1016/j.biopha.2022.113367. [PMID: 35780619]
  • Huanhuan Cui, Cuie Tang, Shan Wu, David Julian McClements, Shilin Liu, Bin Li, Yan Li. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food chemistry. 2022 Aug; 384(?):132589. doi: 10.1016/j.foodchem.2022.132589. [PMID: 35258001]
  • Jingbao Chen, Wu Long, Baoqi Dong, Wenxuan Cao, Xu Yuhang, Yun Meng, Chu Xiaoqin. Hexagonal liquid crystalline system containing cinnamaldehyde for enhancement of skin permeation of sinomenine hydrochloride. Pharmaceutical development and technology. 2022 Jul; 27(6):684-694. doi: 10.1080/10837450.2022.2107011. [PMID: 35880620]
  • Tahere Molania, Ali Malekzadeh Shafaroudi, Majid Saeedi, Mahmood Moosazadeh, Faeze Valipour, Seyyed Sohrab Rostamkalaei, Negareh Salehabadi, Maede Salehi. Evaluation of cinnamaldehyde mucoadhesive patches on minor recurrent aphthous stomatitis: a randomized, double-blind, placebo-controlled clinical trial. BMC oral health. 2022 06; 22(1):235. doi: 10.1186/s12903-022-02248-5. [PMID: 35701773]
  • Ziliang Yan, Shaojie Wu, Yue Zhou, Feng Li. Acid-Responsive Micelles Releasing Cinnamaldehyde Enhance RSL3-Induced Ferroptosis in Tumor Cells. ACS biomaterials science & engineering. 2022 06; 8(6):2508-2517. doi: 10.1021/acsbiomaterials.2c00236. [PMID: 35648631]
  • Jiehao Chen, Wenyan Wei, Chao Liang, Yongqiang Ren, Yi Geng, Defang Chen, Weiming Lai, Hongrui Guo, Huidan Deng, Xiaoli Huang, Ping Ouyang. Protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila. Microbial pathogenesis. 2022 Jun; 167(?):105572. doi: 10.1016/j.micpath.2022.105572. [PMID: 35561978]
  • Bükay Yenice Gursu, İlknur Dag, Gökhan Dikmen. Antifungal and antibiofilm efficacy of cinnamaldehyde-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. International microbiology : the official journal of the Spanish Society for Microbiology. 2022 May; 25(2):245-258. doi: 10.1007/s10123-021-00210-z. [PMID: 34528147]
  • Remzi Çelik, Handan Mert, Bahat Comba, Nihat Mert. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2022 May; 27(3):270-277. doi: 10.1080/1354750x.2022.2032351. [PMID: 35078379]
  • Dongdong Qian, Jing Tian, Sining Wang, Xiaoli Shan, Pei Zhao, Huihua Chen, Ming Xu, Wei Guo, Chen Zhang, Rong Lu. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway. BMC complementary medicine and therapies. 2022 Apr; 22(1):115. doi: 10.1186/s12906-022-03594-1. [PMID: 35468773]
  • Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants. Carbohydrate polymers. 2022 Apr; 282(?):119111. doi: 10.1016/j.carbpol.2022.119111. [PMID: 35123746]
  • Jessika Geisebel Oliveira Neto, Silvia Karl Boechat, Juliana Santos Romão, Lia Rafaella Ballard Kuhnert, Carmen Cabanelas Pazos-Moura, Karen Jesus Oliveira. Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity. Food & function. 2022 Mar; 13(6):3405-3418. doi: 10.1039/d1fo03871k. [PMID: 35230374]
  • Huxuan Wang, Zhonghua Peng, Hongmin Sun. Antifungal activities and mechanisms of trans-cinnamaldehyde and thymol against food-spoilage yeast Zygosaccharomyces rouxii. Journal of food science. 2022 Mar; 87(3):1197-1210. doi: 10.1111/1750-3841.16075. [PMID: 35152410]
  • Ling Zhu, Audrey I S Andersen-Civil, Laura J Myhill, Stig M Thamsborg, Witold Kot, Lukasz Krych, Dennis S Nielsen, Alexandra Blanchard, Andrew R Williams. The phytonutrient cinnamaldehyde limits intestinal inflammation and enteric parasite infection. The Journal of nutritional biochemistry. 2022 02; 100(?):108887. doi: 10.1016/j.jnutbio.2021.108887. [PMID: 34655757]
  • Pu Chen, Jun Zhou, Anmin Ruan, Lingfeng Zeng, Jun Liu, Qingfu Wang. Cinnamic Aldehyde, the main monomer component of Cinnamon, exhibits anti-inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway. Journal of cellular and molecular medicine. 2022 02; 26(3):913-924. doi: 10.1111/jcmm.17148. [PMID: 34964259]
  • Nina Sang, Lixian Jiang, Zefeng Wang, Yuying Zhu, Guoqiang Lin, Ruixiang Li, Jiange Zhang. Bacteria-targeting liposomes for enhanced delivery of cinnamaldehyde and infection management. International journal of pharmaceutics. 2022 Jan; 612(?):121356. doi: 10.1016/j.ijpharm.2021.121356. [PMID: 34919996]
  • Jing Tian, Xiao-Li Shan, Si-Ning Wang, Hui-Hua Chen, Pei Zhao, Dong-Dong Qian, Ming Xu, Wei Guo, Chen Zhang, Rong Lu. Trans-cinnamaldehyde suppresses microtubule detyrosination and alleviates cardiac hypertrophy. European journal of pharmacology. 2022 Jan; 914(?):174687. doi: 10.1016/j.ejphar.2021.174687. [PMID: 34883072]
  • Shiwen Ke, Wei Zhu, Zhihui Lan, Yuanbing Zhang, Lisha Mo, Guoshuang Zhu, Liangji Liu. Cinnamaldehyde regulates mitochondrial quality against hydrogen peroxide induced apoptosis in mouse lung mesenchymal stem cells via the PINK1/Parkin signaling pathway. PeerJ. 2022; 10(?):e14045. doi: 10.7717/peerj.14045. [PMID: 36340192]
  • Jasleen Kaur, Vijay Kumar, Vibhu Kumar, Sadiah Shafi, Pragyanshu Khare, Neha Mahajan, Sanjay K Bhadada, Kanthi Kiran Kondepudi, Rupam Kumar Bhunia, Anurag Kuhad, Mahendra Bishnoi. Combination of TRP channel dietary agonists induces energy expending and glucose utilizing phenotype in HFD-fed mice. International journal of obesity (2005). 2022 01; 46(1):153-161. doi: 10.1038/s41366-021-00967-3. [PMID: 34564707]
  • Dan He, Qiang Li, Guangli Du, Shaoli Chen, Puhua Zeng. Experimental Study on the Mechanism of Cinnamaldehyde Ameliorate Proteinuria Induced by Adriamycin. BioMed research international. 2022; 2022(?):9600450. doi: 10.1155/2022/9600450. [PMID: 35993052]
  • Li Lu, Yuan Xiong, Juan Zhou, Guangji Wang, Bobin Mi, Guohui Liu. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. Oxidative medicine and cellular longevity. 2022; 2022(?):9177108. doi: 10.1155/2022/9177108. [PMID: 36254234]
  • Zeynab Aminzadeh, Nasrin Ziamajidi, Roghayeh Abbasalipourkabir. Anticancer Effects of Cinnamaldehyde Through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer. Anti-cancer agents in medicinal chemistry. 2022; 22(6):1139-1148. doi: 10.2174/1871520621666210726142814. [PMID: 34315398]
  • Basma S Ismail, Basant Mahmoud, Eman S Abdel-Reheim, Hanan A Soliman, Tarek M Ali, Basem H Elesawy, Mohamed Y Zaky. Cinnamaldehyde Mitigates Atherosclerosis Induced by High-Fat Diet via Modulation of Hyperlipidemia, Oxidative Stress, and Inflammation. Oxidative medicine and cellular longevity. 2022; 2022(?):4464180. doi: 10.1155/2022/4464180. [PMID: 35774377]
  • Esra Pekoglu, Belgin Buyukakilli, Cagatay Han Turkseven, Ebru Balli, Gulsen Bayrak, Burak Cimen, Senay Balci. Effects of Trans-Cinnamaldehyde on Reperfused Ischemic Skeletal Muscle and the Relationship to Laminin. Journal of investigative surgery : the official journal of the Academy of Surgical Research. 2021 Dec; 34(12):1329-1338. doi: 10.1080/08941939.2020.1802538. [PMID: 32752972]
  • Paula Marchesini, Ari Sérgio de Oliveira Lemos, Ricardo de Oliveira Barbosa Bitencourt, Jéssica Fiorotti, Isabele da Costa Angelo, Rodrigo Luiz Fabri, Lívio Martins Costa-Júnior, Welber Daniel Zaneti Lopes, Vânia Rita Elias Pinheiro Bittencourt, Caio Monteiro. Assessment of lipid profile in fat body and eggs of Rhipicephalus microplus engorged females exposed to (E)-cinnamaldehyde and α-bisabolol, potential acaricide compounds. Veterinary parasitology. 2021 Dec; 300(?):109596. doi: 10.1016/j.vetpar.2021.109596. [PMID: 34695723]
  • Bin Duan, Zhouju Gao, Okwong Oketch Reymick, Qiuli Ouyang, Yue Chen, Chunyan Long, Bao Yang, Nengguo Tao. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. Pesticide biochemistry and physiology. 2021 Nov; 179(?):104976. doi: 10.1016/j.pestbp.2021.104976. [PMID: 34802526]
  • Arunaksharan Narayanankutty, Krishnaprasad Kunnath, Ahmed Alfarhan, Rajakrishnan Rajagopal, Varsha Ramesh. Chemical Composition of Cinnamomum verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206303. [PMID: 34684884]
  • Ankita Kumari, Karuna Singh. Evaluation of prophylactic efficacy of cinnamaldehyde in murine model against Paradendryphiella arenariae mycotoxin tenuazonic acid-induced oxidative stress and organ toxicity. Scientific reports. 2021 09; 11(1):19420. doi: 10.1038/s41598-021-98319-8. [PMID: 34593834]
  • Saurav Ranjitkar, Delong Zhang, Fei Sun, Saleh Salman, Wu He, Kumar Venkitanarayanan, Edan R Tulman, Xiuchun Tian. Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamaldehyde, carvacrol, and eugenol. Scientific reports. 2021 08; 11(1):16281. doi: 10.1038/s41598-021-95394-9. [PMID: 34381064]
  • Chongwu Yang, Muhammad Attiq Rehman, Xianhua Yin, Catherine D Carrillo, Q I Wang, Chengbo Yang, Joshua Gong, Moussa S Diarra. Antimicrobial Resistance Phenotypes and Genotypes of Escherichia coli Isolates from Broiler Chickens Fed Encapsulated Cinnamaldehyde and Citral. Journal of food protection. 2021 08; 84(8):1385-1399. doi: 10.4315/jfp-21-033. [PMID: 33770170]
  • Ritesh Shantilal Tandel, Pragyan Dash, Raja Aadil Hussain Bhat, Dimpal Thakuria, Paramita Banerjee Sawant, Nityanand Pandey, Suresh Chandra, Narinder Kumar Chadha. Anti-oomycetes and immunostimulatory activity of natural plant extract compounds against Saprolegnia spp.: Molecular docking and in-vitro studies. Fish & shellfish immunology. 2021 Jul; 114(?):65-81. doi: 10.1016/j.fsi.2021.04.018. [PMID: 33895254]
  • Chuks F Nwanade, Min Wang, Tianhong Wang, Xiaoyu Zhang, Can Wang, Zhijun Yu, Jingze Liu. Acaricidal activity of Cinnamomum cassia (Chinese cinnamon) against the tick Haemaphysalis longicornis is linked to its content of (E)-cinnamaldehyde. Parasites & vectors. 2021 Jun; 14(1):330. doi: 10.1186/s13071-021-04830-2. [PMID: 34158107]
  • Liu Liu, Xiaoqin Chu, Chunling Tian, Mengqiu Xia, Lu Zhang, Jianqin Jiang, Shuangying Gui. Chemo Proling and Simultaneous Analysis of Different Combinations of Sinomenii Caulis and Ramulus Cinnamomi Using UHPLC-Q-TOF-MS, GC-MS and HPLC Methods. Journal of chromatographic science. 2021 Jun; 59(7):606-617. doi: 10.1093/chromsci/bmab048. [PMID: 33969409]
  • Alicja Michalczyk, Paulina Ostrowska. Essential oils and their components in combating fungal pathogens of animal and human skin. Journal de mycologie medicale. 2021 Jun; 31(2):101118. doi: 10.1016/j.mycmed.2021.101118. [PMID: 33548912]
  • E Dumas, P Degraeve, N-T-T Trinh, M Le Thanh, N Oulahal. Interstrains comparison of the antimicrobial effect and mode of action of a Vietnamese Cinnamomum cassia essential oil from leaves and its principal component against Listeria monocytogenes. Letters in applied microbiology. 2021 Jun; 72(6):757-766. doi: 10.1111/lam.13465. [PMID: 33598964]
  • Hui Jiang, Jian Liu, Yanling Wang, Leijing Chen, Hui Liu, Zhen Wang, Bin Wang. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule. Journal of mass spectrometry : JMS. 2021 May; 56(5):e4711. doi: 10.1002/jms.4711. [PMID: 33764633]
  • Aida Dizdarević, Melani Marić, Iram Shahzadi, Nuri Ari Efiana, Barbara Matuszczak, Andreas Bernkop-Schnürch. Imine bond formation as a tool for incorporation of amikacin in self-emulsifying drug delivery systems (SEDDS). European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2021 May; 162(?):82-91. doi: 10.1016/j.ejpb.2021.03.001. [PMID: 33737147]
  • Ahmed I Foudah, Faiyaz Shakeel, Mohammed H Alqarni, Samir A Ross, Mohammad A Salkini, Prawez Alam. Simultaneous Estimation of Cinnamaldehyde and Eugenol in Essential Oils and Traditional and Ultrasound-Assisted Extracts of Different Species of Cinnamon Using a Sustainable/Green HPTLC Technique. Molecules (Basel, Switzerland). 2021 Apr; 26(7):. doi: 10.3390/molecules26072054. [PMID: 33916710]
  • Jie-Hua Deng, Ji-Hong Li, Yi-le Zhao, Gang-Sheng Wang. Effect and Safety of Cinnamaldehyde on Immunosuppressed Mice with Invasive Pulmonary Candidiasis. Chinese journal of integrative medicine. 2021 Apr; 27(4):286-290. doi: 10.1007/s11655-020-3075-x. [PMID: 32415645]
  • Harrison J Cox, Jing Li, Preety Saini, Joy R Paterson, Gary J Sharples, Jas Pal S Badyal. Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. Journal of materials chemistry. B. 2021 03; 9(12):2918-2930. doi: 10.1039/d0tb02379e. [PMID: 33885647]
  • Katherine Miranda-Cadena, Marisol Dias, Augusto Costa-Barbosa, Tony Collins, Cristina Marcos-Arias, Elena Eraso, Célia Pais, Guillermo Quindós, Paula Sampaio. Development and Characterization of Monoolein-Based Liposomes of Carvacrol, Cinnamaldehyde, Citral, or Thymol with Anti-Candida Activities. Antimicrobial agents and chemotherapy. 2021 03; 65(4):. doi: 10.1128/aac.01628-20. [PMID: 33468460]
  • Shu Wang, Ok-Hwa Kang, Dong-Yeul Kwon. Trans-Cinnamaldehyde Exhibits Synergy with Conventional Antibiotic against Methicillin-Resistant Staphylococcus aureus. International journal of molecular sciences. 2021 Mar; 22(5):. doi: 10.3390/ijms22052752. [PMID: 33803167]
  • Andrew D Birmingham, Daniel Esquivel-Alvarado, Michael Maranan, Christian G Krueger, Jess D Reed. Inter-Laboratory Validation of 4-(Dimethylamino) Cinnamaldehyde (DMAC) Assay Using Cranberry Proanthocyanidin Standard for Quantification of Soluble Proanthocyanidins in Cranberry Foods and Dietary Supplements, First Action Official MethodSM: 2019.06. Journal of AOAC International. 2021 Mar; 104(1):216-222. doi: 10.1093/jaoacint/qsaa084. [PMID: 33251544]
  • Arun Saini, Chandravati Yadav, Sushanta K Sethi, Bai-Liang Xue, Yuanyuan Xia, Ke Li, Gaurav Manik, Xinping Li. Microdesigned Nanocellulose-Based Flexible Antibacterial Aerogel Architectures Impregnated with Bioactive Cinnamomum cassia. ACS applied materials & interfaces. 2021 Feb; 13(4):4874-4885. doi: 10.1021/acsami.0c20258. [PMID: 33464809]
  • Shu-Lan Qu, Long Chen, Xue-Shan Wen, Jian-Ping Zuo, Xiao-Yu Wang, Zhi-Jie Lu, Yi-Fu Yang. Suppression of Th17 cell differentiation via sphingosine-1-phosphate receptor 2 by cinnamaldehyde can ameliorate ulcerative colitis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Feb; 134(?):111116. doi: 10.1016/j.biopha.2020.111116. [PMID: 33341041]
  • Yan Hu, Fei Liu, Junxiao Pang, David Julian McClements, Zhiqin Zhou, Bin Li, Yan Li. Biopolymer Additives Enhance Tangeretin Bioavailability in Emulsion-Based Delivery Systems: An In Vitro and In Vivo Study. Journal of agricultural and food chemistry. 2021 Jan; 69(2):730-740. doi: 10.1021/acs.jafc.0c03635. [PMID: 33356230]
  • Dan He, Qiang Li, Guangli Du, Jijia Sun, Guofeng Meng, Shaoli Chen. Research on the Mechanism of Guizhi to Treat Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking Technology. BioMed research international. 2021; 2021(?):8141075. doi: 10.1155/2021/8141075. [PMID: 34873575]
  • Cynthia Lizeth Barrera-Martínez, Felipe Padilla-Vaca, Ioannis Liakos, Héctor Iván Meléndez-Ortiz, Gladis Y Cortez-Mazatan, René Darío Peralta-Rodríguez. Chitosan microparticles as entrapment system for trans- cinnamaldehyde: Synthesis, drug loading, and in vitro cytotoxicity evaluation. International journal of biological macromolecules. 2021 Jan; 166(?):322-332. doi: 10.1016/j.ijbiomac.2020.10.188. [PMID: 33127551]
  • Honglei Zhao, Hongyan Wu, Meitao Duan, Ruixuan Liu, Quanhong Zhu, Kai Zhang, Lili Wang. Cinnamaldehyde Improves Metabolic Functions in Streptozotocin-Induced Diabetic Mice by Regulating Gut Microbiota. Drug design, development and therapy. 2021; 15(?):2339-2355. doi: 10.2147/dddt.s288011. [PMID: 34103897]
  • Qingfei Fan, Fengmei Huang, Lan Zhou, Wenqian He, Xian Jiang, Zhi Na, Pianchou Gongpan, Huabin Hu, Qishi Song. Development of a strategy for a quick process for separation of volatile compounds in counter-current chromatography: purification of cinnamaldehyde from Cinnamomum cassia by high performance counter-current chromatography. Preparative biochemistry & biotechnology. 2021; 51(10):1056-1059. doi: 10.1080/10826068.2021.1894444. [PMID: 33775215]