Guanine (BioDeep_00000000243)
Secondary id: BioDeep_00000399885
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H5N5O (151.0494)
中文名称: 鸟嘌呤
谱图信息:
最多检出来源 Homo sapiens(blood) 27.94%
Last reviewed on 2024-07-24.
Cite this Page
Guanine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/guanine (retrieved
2025-01-05) (BioDeep RN: BioDeep_00000000243). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=NC2=C(N1)C(=O)N=C(N2)N
InChI: InChI=1S/C5H5N5O/c6-5-9-3-2(4(11)10-5)7-1-8-3/h1H,(H4,6,7,8,9,10,11)
描述信息
Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA. Guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Guanine nucleotide-binding regulatory proteins may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome, an inborn error of metabolism, which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. G and 8-oxoG are the most reactive bases toward Peroxynitrite and possibly the major contributors to peroxynitrite-derived genotoxic and mutagenic lesions. The neutral G radical, reacts with NO2 to yield 8-nitroguanine and 5-nitro-4-guanidinohydantoin (PMID: 16352449, 2435586, 2838362, 1487231).
Guanine is a 2-aminopurine carrying a 6-oxo substituent. It has a role as a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase, an oxopurine and a member of 2-aminopurines. It derives from a hydride of a 9H-purine.
Guanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Guanine is a natural product found in Fritillaria thunbergii, Isatis tinctoria, and other organisms with data available.
Guanine is a purine base that is a constituent of nucleotides occurring in nucleic acids.
Guanine is a mineral with formula of C5H3(NH2)N4O. The corresponding IMA (International Mineralogical Association) number is IMA1973-056. The IMA symbol is Gni.
Guanine is a metabolite found in or produced by Saccharomyces cerevisiae.
Occurs widely in animals and plants. Component of nucleic acids (CCD)
A 2-aminopurine carrying a 6-oxo substituent.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
[Spectral] Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Guanine (exact mass = 151.04941) and D-Gluconic acid (exact mass = 196.0583) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Guanine (exact mass = 151.04941) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54
CONFIDENCE standard compound; ML_ID 43
同义名列表
90 个代谢物同义名
Guanine, Pharmaceutical Secondary Standard; Certified Reference Material; Phosphonium,[3-(dimethylamino)propyl]triphenyl bromide hydrobromide; InChI=1/C5H5N5O/c6-5-9-3-2(4(11)10-5)7-1-8-3/h1H,(H4,6,7,8,9,10,11; Guanine, United States Pharmacopeia (USP) Reference Standard; VALACICLOVIR HYDROCHLORIDE HYDRATE IMPURITY A (EP IMPURITY); VALACICLOVIR HYDROCHLORIDE HYDRATE IMPURITY A [EP IMPURITY]; VALGANCICLOVIR HYDROCHLORIDE IMPURITY B (USP IMPURITY); VALGANCICLOVIR HYDROCHLORIDE IMPURITY B [USP IMPURITY]; VALACICLOVIR HYDROCHLORIDE IMPURITY A (EP IMPURITY); VALACICLOVIR HYDROCHLORIDE IMPURITY A [EP IMPURITY]; 2-Amino-1,7-dihydro-6H-purin-6-one (Guanine); 2-AMINO-1,7-DIHYDRO-6H-PURIN-6-ONE [WHO-IP]; 6H-Purin-6-one, 2-amino-1,7-dihydro- (9CI); Valganciclovir hydrochloride impurity b; Guanine, Vetec(TM) reagent grade, 99\\%; 6H-Purin-6-one, 2-amino-1,7-dihydro-; GANCICLOVIR IMPURITY F (EP IMPURITY); GANCICLOVIR IMPURITY F [EP IMPURITY]; 3D215030-CD54-4835-A5F4-F00F86B90978; 6H-Purin-6-one, 2-amino-1,9-dihydro-; Valacyclovir hydrochloride, guanine-; 6H-purin-6-one, 2-amino-3,7-dihydro-; 2-amino-1,9-dihydro-6H-purin-6-one; ACICLOVIR IMPURITY B (EP IMPURITY); 2-amino-6,7-dihydro-1H-purin-6-one; 2-amino-6,7-dihydro-3H-purin-6-one; 2-Amino-1,7-dihydro-6H-purin-6-one; 2-amino-3,7-dihydro-6H-purin-6-one; ACICLOVIR IMPURITY B [EP IMPURITY]; 2-amino-6,9-dihydro-1H-purin-6-one; 2-Amino-1,9-dihydro-purin-6-one; 2-amino-1,9-dihydropurin-6-one; 2-amino-1,7-dihydropurin-6-one; ACICLOVIR IMPURITY B [WHO-IP]; 2-Amino-6-hydroxy-1H-purine; 2-amino-1H-purin-6(7H)-one; 2-amino-1h-purin-6(9h)-one; 2-AMINO-3H-PURIN-6(7H)-ONE; 6-Hydroxy-2-aminopurine; Aciclovir EP Impurity B; 2-Amino-6-hydroxypurine; GUANINE [USP IMPURITY]; 2-amino-6-hydroxypurin; Hypoxanthine, 2-amino-; GUANINE (USP IMPURITY); Natural pearl essence; 2-amino-9H-purin-6-ol; 2-amino-7H-purin-6-ol; GUANINE (EP IMPURITY); GUANINE [EP IMPURITY]; ACICLOVIR IMPURITY B; C.I. Natural White 1; 2-amino-Hypoxanthine; 2-amino-6-oxopurine; 2-Aminohypoxanthine; CI Natural white 1; 2-amino-6-oxypurin; Guanine, BioUltra; 2-Amino-6-purinol; GUANINE [USP-RS]; GUANINE (USP-RS); GUANINE [WHO-IP]; UNII-5Z93L87A1R; Natural white 1; GUANINE [HSDB]; GUANINE [INCI]; Stella Polaris; Pearl essence; Guanine, 98\\%; Guanine (8CI); Oprea1_875298; NCI60_012450; Mearlmaid AA; GUANINE [MI]; Guanine enol; Guanine,(S); 5Z93L87A1R; 9h-guanine; Pathocidin; AI3-24393; Mearlmaid; Dew Pearl; Guanine; Naturon; Guanin; GUN; GUA; G; Guanine; Guanine
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:16235
- KEGG: C00242
- PubChem: 135398634
- HMDB: HMDB0000132
- Metlin: METLIN315
- DrugBank: DB02377
- ChEMBL: CHEMBL219568
- Wikipedia: Guanine
- MeSH: Guanine
- ChemIDplus: 0000073405
- MetaCyc: GUANINE
- KNApSAcK: C00001501
- foodb: FDB004222
- chemspider: 744
- CAS: 66224-64-4
- CAS: 73-40-5
- MoNA: KNA00640
- MoNA: KNA00167
- MoNA: KNA00641
- MoNA: PS024001
- MoNA: PS024007
- MoNA: PS024002
- MoNA: ML004301
- MoNA: KNA00247
- MoNA: KNA00166
- MoNA: PR100561
- MoNA: KNA00246
- MoNA: ML004351
- MoNA: UA005401
- MoNA: PR100138
- MoNA: KNA00244
- MoNA: KNA00165
- MoNA: KNA00643
- PMhub: MS000000374
- MetaboLights: MTBLC16235
- PDB-CCD: GUN
- 3DMET: B00067
- NIKKAJI: J9.344K
- RefMet: Guanine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-78
- PubChem: 3541
- KNApSAcK: 16235
- LOTUS: LTS0179440
- wikidata: Q169313
分类词条
相关代谢途径
Reactome(7)
BioCyc(20)
- nucleoside and nucleotide degradation (archaea)
- salvage pathways of purine and pyrimidine nucleotides
- purine and pyrimidine metabolism
- superpathway of purines degradation in plants
- salvage pathways of purine nucleosides
- salvage pathways of purine nucleosides I
- purine nucleotides degradation II (aerobic)
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- salvage pathways of guanine, xanthine, and their nucleosides
- guanosine nucleotides degradation
- purine nucleotides degradation
- purine ribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- guanosine nucleotides degradation III
- purine deoxyribonucleosides degradation
- purine deoxyribonucleosides degradation II
- purine deoxyribonucleosides degradation I
PlantCyc(5)
代谢反应
954 个相关的代谢反应过程信息。
Reactome(93)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
G, dG + Pi ⟶ Gua + R1P, dRibP
- Purine catabolism:
G, dG + Pi ⟶ Gua + R1P, dRibP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H2O + dGMP ⟶ 2DORP + Gua
- Purine catabolism:
H2O + dGMP ⟶ 2DORP + Gua
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- tRNA processing:
H2O ⟶ ammonia
- tRNA modification in the nucleus and cytosol:
H2O ⟶ ammonia
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Purine salvage:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Gua + R1P, dRibP ⟶ G, dG + Pi
- Purine salvage:
Gua + R1P, dRibP ⟶ G, dG + Pi
BioCyc(239)
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanine ⟶ ammonia + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribose + guanine
- guanosine nucleotides degradation II:
H2O + guanine ⟶ ammonia + xanthine
- purine nucleotides degradation I (plants):
H2O + guanine ⟶ ammonia + xanthine
- purine nucleosides salvage II (plant):
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribose + guanine
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribose + adenine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribose + guanine
- guanosine nucleotides degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation:
AMP + H2O ⟶ adenosine + phosphate
- purine nucleotides degradation II (aerobic):
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- queuosine biosynthesis:
a guanine34 in tRNA + preQ1 ⟶ a 7-aminomethyl-7-deazaguanosine34 in tRNA + guanine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides degradation II:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of purine nucleotide salvage:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine nucleotides degradation I (plants):
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine ribonucleosides degradation:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- nucleoside and nucleotide degradation (archaea):
UMP + phosphate ⟶ α-D-ribose 1,5-bisphosphate + uracil
- purine nucleobases degradation I (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanine and guanosine salvage:
ATP + guanosine ⟶ ADP + GMP + H+
- superpathway of purine nucleotide salvage:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- archaeosine biosynthesis II:
a guanine15 in archaeal tRNA + preQ0 ⟶ guanine + preQ0 at position 15 of an archaeal tRNA
- archaeosine biosynthesis I:
a guanine15 in archaeal tRNA + preQ0 ⟶ guanine + preQ0 at position 15 of an archaeal tRNA
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of guanine and guanosine salvage:
ATP + guanosine ⟶ ADP + GMP + H+
- salvage pathways of guanine, xanthine and their nucleosides:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine nucleosides salvage:
AMP + diphosphate ⟶ PRPP + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleosides salvage II (plant):
AMP + diphosphate ⟶ PRPP + adenine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage:
guanosine + phosphate ⟶ α-D-ribose-1-phosphate + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation II (aerobic):
AMP + H2O ⟶ adenosine + phosphate
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation:
adenine + deoxyribose 1-phosphate ⟶ deoxyadenosine + phosphate
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- salvage pathways of purine and pyrimidine nucleotides:
AMP + diphosphate ⟶ PRPP + adenine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ PRPP + adenine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine nucleotides degradation II (aerobic):
AMP + H2O ⟶ adenosine + phosphate
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- purine nucleotides degradation III (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- purine nucleotides degradation IV (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine deoxyribonucleosides degradation:
deoxyadenosine + phosphate ⟶ adenine + deoxyribose 1-phosphate
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + guanine
- purine nucleotides degradation III (anaerobic):
acetylphosphate + ammonia + an oxidized thioredoxin ⟶ a reduced thioredoxin + gly + phosphate
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine nucleotides degradation II (aerobic):
H2O + adenosine ⟶ ammonia + inosine
- archaeosine biosynthesis:
H2O + gln + preQ0 at position 15 of an archaeal tRNA ⟶ archaeosine at position 15 of an archaeal tRNA + glt
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2'-deoxy-α-D-ribose 1-phosphate + adenine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine nucleobases degradation II (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleobases degradation I (anaerobic):
4-ureido-5-imidazole carboxylate + H2O + H+ ⟶ 4-amino-5-imidazole carboxylate + CO2 + ammonia
- guanine and guanosine salvage I:
GMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation II (aerobic):
H2O + adenosine ⟶ ammonia + inosine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- guanine and guanosine salvage:
GMP + diphosphate ⟶ PRPP + guanine
- queuosine biosynthesis:
SAM + a 7-aminomethyl-7-deazaguanosine34 in tRNA ⟶ H+ + adenine + an epoxyqueuosine34 in tRNA + met
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
WikiPathways(3)
- Purine metabolism:
P1,P4-Bis(5'-xanthosyl) tetraphosphate ⟶ XTP
- Purine metabolism and related disorders:
Adenine ⟶ AMP
- Purine metabolism:
Adenine ⟶ AMP
Plant Reactome(0)
INOH(5)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- GMP + Pyrophosphate = Guanine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
GMP + Pyrophosphate ⟶ D-5-Phospho-ribosyl 1-diphosphate + Guanine
- GMP + Pyrophosphate = Guanine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
GMP + Pyrophosphate ⟶ D-5-Phospho-ribosyl 1-diphosphate + Guanine
- Deoxy-guanosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Guanine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Guanine ⟶ Deoxy-guanosine + Orthophosphate
- Guanosine + Orthophosphate = Guanine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
D-Ribose 1-phosphate + Guanine ⟶ Guanosine + Orthophosphate
PlantCyc(561)
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleosides salvage II (plant):
ATP + guanosine ⟶ ADP + GMP + H+
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- purine nucleosides salvage II (plant):
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribofuranose + adenine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanine and guanosine salvage II:
GMP + diphosphate ⟶ PRPP + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H2O + O2 + urate ⟶ CO2 + allantoin + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleosides salvage II (plant):
H2O + adenosine ⟶ D-ribofuranose + adenine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- Organic Nitrogen Assimilation:
NAD+ + glu ⟶ 2-oxoglutarate + H+ + NADH + gln
- queuosine biosynthesis II (queuine salvage):
a guanine34 in tRNA + queuine ⟶ a queuosine34 in tRNA + guanine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(51)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Guanine and Guanosine Salvage:
Adenosine triphosphate + Guanosine ⟶ Adenosine diphosphate + Guanosine monophosphate + Hydrogen Ion
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
- PreQ0 Metabolism:
S-Adenosylmethionine ⟶ Adenine + Hydrogen Ion + L-Methionine + epoxyqueuosine
- Purine Deoxyribonucleosides Degradation:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Ribonucleosides Degradation:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
PharmGKB(0)
17 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3055 - Chlamydomonas reinhardtii:
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 108546 - Fritillaria thunbergii: 10.1002/JSSC.200900866
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 161756 - Isatis tinctoria: 10.1016/S0040-4020(97)00846-6
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 4054 - Panax ginseng: 10.1248/YAKUSHI1947.98.8_1132
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 199225 - 半夏: -
- 33090 - 板蓝根: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yiping Li, Xiaolong Wang. The role of DNA and RNA guanosine oxidation in cardiovascular diseases.
Pharmacological research.
2024 Jun; 204(?):107187. doi:
10.1016/j.phrs.2024.107187
. [PMID: 38657843] - Yuhang Wang, Shuo Zhao, Shuhong Wang, Jing Zhang, Yanli Zhao, Cai Ye, Zhiyu Zhao, Jinlian Li, Hongkuan Shen, Dongmei Wu. Electrochemistry detection of estrogenic effect: Regulation of de novo purine synthesis and catabolism by gibberellin and fulvestrant.
Bioelectrochemistry (Amsterdam, Netherlands).
2024 Apr; 156(?):108634. doi:
10.1016/j.bioelechem.2023.108634
. [PMID: 38160510] - Yun Qiu, Bin Liu, Wenchao Zhou, Xueqing Tao, Yang Liu, Linxi Mao, Huizhen Wang, Hanwen Yuan, Yupei Yang, Bin Li, Wei Wang, Yixing Qiu. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging.
The Analyst.
2024 Jan; 149(2):537-545. doi:
10.1039/d3an01521a
. [PMID: 38088097] - Mai Takakura, Yu Hong Lam, Reiko Nakagawa, Man Yung Ng, Xinyue Hu, Priyanshu Bhargava, Abdalla G Alia, Yuzhe Gu, Zigao Wang, Takeshi Ota, Yoko Kimura, Nao Morimoto, Fumitaka Osakada, Ah Young Lee, Danny Leung, Tomoyuki Miyashita, Juan Du, Hiroyuki Okuno, Yukinori Hirano. Differential second messenger signaling via dopamine neurons bidirectionally regulates memory retention.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Sep; 120(36):e2304851120. doi:
10.1073/pnas.2304851120
. [PMID: 37639608] - Hui-Xia Zhang, Dian Yu, Jian-Feng Sun, Ling Zeng, Cai-Yun Wang, Li-Ping Bai, Guo-Yuan Zhu, Zhi-Hong Jiang, Wei Zhang. An integrated approach to evaluate acetamiprid-induced oxidative damage to tRNA in human cells based on oxidized nucleotide and tRNA profiling.
Environment international.
2023 Jun; 178(?):108038. doi:
10.1016/j.envint.2023.108038
. [PMID: 37343327] - Shaowen Yin, Wenxian Lan, Xianfeng Hou, Zhijun Liu, Hongjuan Xue, Chunxi Wang, Gong-Li Tang, Chunyang Cao. Trioxacarcin A Interactions with G-Quadruplex DNA Reveal Its Potential New Targets as an Anticancer Agent.
Journal of medicinal chemistry.
2023 05; 66(10):6798-6810. doi:
10.1021/acs.jmedchem.3c00178
. [PMID: 37154782] - Haopeng Yu, Yiman Qi, Bibo Yang, Xiaofei Yang, Yiliang Ding. G4Atlas: a comprehensive transcriptome-wide G-quadruplex database.
Nucleic acids research.
2023 01; 51(D1):D126-D134. doi:
10.1093/nar/gkac896
. [PMID: 36243987] - Kevin Xiao, Homa Ghalei, Sohail Khoshnevis. RNA structural probing of guanine and uracil nucleotides in yeast.
PloS one.
2023; 18(7):e0288070. doi:
10.1371/journal.pone.0288070
. [PMID: 37418367] - Zhi-Min Zhao, Chuan-Wu Zhu, Jia-Quan Huang, Xiao-Dong Li, Yu-Xi Zhang, Jian Liang, Wei Zhang, Yong Zhang, Xian-Gao Jiang, Ya-Li Zong, Ke-Jun Zhang, Ke-Wei Sun, Biao Zhang, Yun-Hai Lv, Hui-Chun Xing, Qing Xie, Ping Liu, Cheng-Hai Liu. Efficacy and safety of Fuzheng Huayu tablet on persistent advanced liver fibrosis following 2 years entecavir treatment: A single arm clinical objective performance criteria trial.
Journal of ethnopharmacology.
2022 Nov; 298(?):115599. doi:
10.1016/j.jep.2022.115599
. [PMID: 35932973] - Qiankun Hu, Xun Qi, Yiqi Yu, Yueqiu Gao, Xinxin Zhang, Qianqian Wang, Xueyun Zhang, Yunhui Zhuo, Jing Li, Jiming Zhang, Liang Chen, Yuxian Huang. The efficacy and safety of adding on or switching to peginterferon α-2b in HBeAg-positive chronic hepatitis B patients with long-term entecavir treatment: a multicentre randomised controlled trial.
Alimentary pharmacology & therapeutics.
2022 11; 56(9):1394-1407. doi:
10.1111/apt.17222
. [PMID: 36128636] - Qi Zhang, Jinlin Liang, Junhua Yin, Yiyue Jiang, Ning Yu, Xingmei Liao, Siru Zhao, Leyuan Wu, Rong Fan. Real-life impact of tenofovir disoproxil fumarate and entecavir therapy on lipid profile, glucose, and uric acid in chronic hepatitis B patients.
Journal of medical virology.
2022 11; 94(11):5465-5474. doi:
10.1002/jmv.27977
. [PMID: 35794065] - Weihan Hua, Ziqi Gan, Yeke Wu, Lixing Zhao. Identification of a novel missense mutation in non-syndromic familial multiple supernumerary teeth.
Archives of oral biology.
2022 Nov; 143(?):105542. doi:
10.1016/j.archoralbio.2022.105542
. [PMID: 36108431] - Xiaofei Yang, Haopeng Yu, Susan Duncan, Yueying Zhang, Jitender Cheema, Haifeng Liu, J Benjamin Miller, Jie Zhang, Chun Kit Kwok, Huakun Zhang, Yiliang Ding. RNA G-quadruplex structure contributes to cold adaptation in plants.
Nature communications.
2022 10; 13(1):6224. doi:
10.1038/s41467-022-34040-y
. [PMID: 36266343] - Dan-Ying Cheng, Zhi-Min Zhao, Gang Wan, Huan-Wei Zheng, Jia-Quan Huang, Cheng-Hai Liu, Hui-Chun Xing. Impact of Fuzheng Huayu tablet on antiviral effect of entecavir in patients with hepatitis B cirrhosis.
Hepatobiliary & pancreatic diseases international : HBPD INT.
2022 Oct; 21(5):479-484. doi:
10.1016/j.hbpd.2022.03.007
. [PMID: 35346577] - Jia-Yi Lin, Way-Rong Lin, I-Son Ng. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production.
Biotechnology journal.
2022 Oct; 17(10):e2100514. doi:
10.1002/biot.202100514
. [PMID: 34800080] - Mohamed Hamdi, Enas Elmowafy, Hend Mohamed Abdel-Bar, Akram M ElKashlan, Khuloud T Al-Jamal, Gehanne A S Awad. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects.
International journal of biological macromolecules.
2022 Sep; 217(?):731-747. doi:
10.1016/j.ijbiomac.2022.07.067
. [PMID: 35841964] - Fangfang Niu, Changyang Ji, Zizhen Liang, Rongfang Guo, Yixuan Chen, Yonglun Zeng, Liwen Jiang. ADP-ribosylation factor D1 modulates Golgi morphology, cell plate formation, and plant growth in Arabidopsis.
Plant physiology.
2022 09; 190(2):1199-1213. doi:
10.1093/plphys/kiac329
. [PMID: 35876822] - Martin Bitomský, Lucie Kobrlová, Michal Hroneš, Jitka Klimešová, Martin Duchoslav. Stoichiometry versus ecology: the relationships between genome size and guanine-cytosine content, and tissue nitrogen and phosphorus in grassland herbs.
Annals of botany.
2022 09; 130(2):189-197. doi:
10.1093/aob/mcac079
. [PMID: 35700050] - Dezhen Wang, Elaine S Ho, M Grazia Cotticelli, Peining Xu, Jill S Napierala, Lauren A Hauser, Marek Napierala, Blanca E Himes, Robert B Wilson, David R Lynch, Clementina Mesaros. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia.
Journal of lipid research.
2022 09; 63(9):100255. doi:
10.1016/j.jlr.2022.100255
. [PMID: 35850241] - Jana Pilátová, Tomáš Pánek, Miroslav Oborník, Ivan Čepička, Peter Mojzeš. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes.
The ISME journal.
2022 09; 16(9):2290-2294. doi:
10.1038/s41396-022-01264-1
. [PMID: 35672454] - Mingyuan Zhang, Haikun Zhang, Xiaoming Cheng, Xiaomei Wang, Hongqin Xu, Xiuzhu Gao, Ruihong Wu, Dake Zhang, Yuchen Xia, Junqi Niu. Liver biopsy of chronic hepatitis B patients indicates HBV integration profile may complicate the endpoint and effect of entecavir treatment.
Antiviral research.
2022 08; 204(?):105363. doi:
10.1016/j.antiviral.2022.105363
. [PMID: 35709897] - Roxanna J Llinas, Jia Qi Xiong, Natalie M Clark, Sarah E Burkhart, Bonnie Bartel. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs.
Plant physiology.
2022 08; 189(4):2175-2192. doi:
10.1093/plphys/kiac221
. [PMID: 35608297] - Dongchang Zeng, Zhiye Zheng, Yuxin Liu, Taoli Liu, Tie Li, Jianhong Liu, Qiyu Luo, Yang Xue, Shengting Li, Nan Chai, Suize Yu, Xianrong Xie, Yao-Guang Liu, Qinlong Zhu. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
International journal of molecular sciences.
2022 Jul; 23(14):. doi:
10.3390/ijms23147990
. [PMID: 35887335] - Tomoyuki Otsuka, Sumiyuki Nishida, Takayuki Shibahara, Burcu Temizoz, Masanari Hamaguchi, Takayuki Shiroyama, Keiko Kimura, Kotaro Miyake, Haruhiko Hirata, Yumiko Mizuno, Mayu Yagita, Yusuke Manabe, Etsushi Kuroda, Yoshito Takeda, Hiroshi Kida, Ken J Ishii, Atsushi Kumanogoh. CpG ODN (K3)-toll-like receptor 9 agonist-induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: a phase I study.
BMC cancer.
2022 Jul; 22(1):744. doi:
10.1186/s12885-022-09818-4
. [PMID: 35799134] - Edwin K Jackson, Elizabeth V Menshikova, Vladimir B Ritov, Delbert G Gillespie, Zaichuan Mi. Biochemical pathways of 8-aminoguanine production in Sprague-Dawley and Dahl salt-sensitive rats.
Biochemical pharmacology.
2022 07; 201(?):115076. doi:
10.1016/j.bcp.2022.115076
. [PMID: 35551915] - Shazia Nazar, Taseer Ahmed Khan, Sitwat Zehra. Association of promoter region A-1012G polymorphism (rs4516035) of vitamin-D receptor gene with coronary artery disease.
JPMA. The Journal of the Pakistan Medical Association.
2022 Jun; 72(6):1137-1141. doi:
10.47391/jpma.3588
. [PMID: 35751324] - Juhan Lee, Jae Geun Lee, Shin Hwang, Kwang-Woong Lee, Jong Man Kim, Je Ho Ryu, Bong-Wan Kim, Dong Lak Choi, Young Kyoung You, Dong-Sik Kim, Yang Won Nah, Koo Jeong Kang, Jai Young Cho, Hee Chul Yu, Geun Hong, Dongho Choi, Ju Ik Moon, Myoung Soo Kim. Renal safety of tenofovir disoproxil fumarate and entecavir in liver transplant patients: a nationwide Korean registry study.
Hepatology international.
2022 Jun; 16(3):537-544. doi:
10.1007/s12072-022-10320-z
. [PMID: 35467324] - Po-Ke Hsu, Pei-Yuan Su, Chia-Lin Wu. Analysis of antiviral efficacy after switching from brand to generic entecavir in patients with treatment-naïve chronic hepatitis B.
BMC gastroenterology.
2022 May; 22(1):228. doi:
10.1186/s12876-022-02317-7
. [PMID: 35538425] - Xin-Fu Xie, Bing-Ying Xie, Wen-Hao Zhang, Ji-Hua Hou, Ding-Lin Liu, Li Zhang, Li-Xia Xu, Zhi-Lian Li, Rui-Zhao Li, Zhi-Ming Ye. The efficacy and safety of tacrolimus and entecavir combination therapy in the treatment of hepatitis B virus-associated glomerulonephritis: a multi-center, placebo controlled, and single-blind randomized trial.
Annals of palliative medicine.
2022 May; 11(5):1762-1773. doi:
10.21037/apm-22-328
. [PMID: 35672893] - Chan-Young Jung, Hyung Woo Kim, Sang Hoon Ahn, Seung Up Kim, Beom Seok Kim. Higher risk of kidney function decline with entecavir than tenofovir alafenamide in patients with chronic hepatitis B.
Liver international : official journal of the International Association for the Study of the Liver.
2022 05; 42(5):1017-1026. doi:
10.1111/liv.15208
. [PMID: 35220649] - Avery S Ward, Chia-Heng Hsiung, Daniel G Kesterson, Vasudeva G Kamath, Edward E McKee. Entecavir competitively inhibits deoxyguanosine and deoxyadenosine phosphorylation in isolated mitochondria and the perfused rat heart.
The Journal of biological chemistry.
2022 05; 298(5):101876. doi:
10.1016/j.jbc.2022.101876
. [PMID: 35358513] - Claudia Castillo-González, Borja Barbero Barcenilla, Pierce G Young, Emily Hall, Dorothy E Shippen. Quantification of 8-oxoG in Plant Telomeres.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094990
. [PMID: 35563379] - Young Eun Chon, Soo Young Park, Seung Up Kim, Han Pyo Hong, Jae Seung Lee, Hye Won Lee, Mi Na Kim, Jun Yong Park, Do Young Kim, Sang Hoon Ahn, Beom Kyung Kim. Long-term renal safety between patients with chronic hepatitis B receiving tenofovir vs. entecavir therapy: A multicenter study.
Journal of viral hepatitis.
2022 04; 29(4):289-296. doi:
10.1111/jvh.13656
. [PMID: 35152517] - Man-Fung Yuen, Danny Ka-Ho Wong, Thomas Schluep, Ching-Lung Lai, Carlo Ferrari, Stephen Locarnini, Regina Cheuk-Lam Lo, Robert G Gish, James Hamilton, Christine I Wooddell, Lung Yi Mak, Bruce D Given. Long-term serological, virological and histological responses to RNA inhibition by ARC-520 in Chinese chronic hepatitis B patients on entecavir treatment.
Gut.
2022 04; 71(4):789-797. doi:
10.1136/gutjnl-2020-323445
. [PMID: 33712437] - Andreas Ärlemalm, Anders Helldén, Louise Karlsson, Björn Carlsson. Rapid determination of acyclovir, its main metabolite 9-carboxymethoxymethylguanine, ganciclovir, and penciclovir in human serum using LC-MS/MS.
Biomedical chromatography : BMC.
2022 Apr; 36(4):e5315. doi:
10.1002/bmc.5315
. [PMID: 34981553] - Chan-Young Jung, Hyung Woo Kim, Sang Hoon Ahn, Seung Up Kim, Beom Seok Kim. Tenofovir is Associated With Higher Risk of Kidney Function Decline Than Entecavir in Patients With Chronic Hepatitis B.
Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.
2022 04; 20(4):956-958.e2. doi:
10.1016/j.cgh.2021.05.032
. [PMID: 34029751] - Maria Choleva, Chrysa Argyrou, Maria Detopoulou, Maria-Eleni Donta, Anastasia Gerogianni, Evanggelia Moustou, Androniki Papaemmanouil, Christina Skitsa, Genovefa Kolovou, Petros Kalogeropoulos, Elizabeth Fragopoulou. Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients.
Nutrients.
2022 Mar; 14(7):. doi:
10.3390/nu14071377
. [PMID: 35405991] - Zili Hu, Huilan Zeng, Jingyu Hou, Juncheng Wang, Li Xu, Yaojun Zhang, Minshan Chen, Zhongguo Zhou. Tenofovir vs. Entecavir on Outcomes of Hepatitis B Virus-Related Hepatocellular Carcinoma after Radiofrequency Ablation.
Viruses.
2022 03; 14(4):. doi:
10.3390/v14040656
. [PMID: 35458386] - J He, Y Q Yao, R X Xia, T J Qiu, L Long, Y Wang, Y Jiang. [Observation of PD-1+CXCR5+CD4+T lymphocyte and sPD-1 levels in HBeAg positive chronic hepatitis B virus carriers treated with entecavir].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2022 Mar; 30(3):316-322. doi:
10.3760/cma.j.cn501113-20191223-00476
. [PMID: 35462489] - Q P Wen, H Qian, S Ba, M J Lu, L D J Silang, L Shi. [Exploring the effects of entecavir treatment on the degree of liver fibrosis in patients with non-alcoholic fatty liver combined with chronic hepatitis B in Tibet region].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2022 Mar; 30(3):304-308. doi:
10.3760/cma.j.cn501113-20200628-00347
. [PMID: 35462487] - Guanghua Rong, Yongping Chen, Zujiang Yu, Qin Li, Jingfeng Bi, Lin Tan, Dedong Xiang, Qinghua Shang, Chunliang Lei, Liang Chen, Xiaoyu Hu, Jing Wang, Huabao Liu, Wei Lu, Yan Chen, Zheng Dong, Wenlin Bai, Eric M Yoshida, Nahum Mendez-Sanchez, Ke-Qin Hu, Xingshun Qi, Yongping Yang. Synergistic Effect of Biejia-Ruangan on Fibrosis Regression in Patients With Chronic Hepatitis B Treated With Entecavir: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
The Journal of infectious diseases.
2022 03; 225(6):1091-1099. doi:
10.1093/infdis/jiaa266
. [PMID: 32437567] - Chih-Lang Lin, Yi-Lan Lin, Kung-Hao Liang, Li-Wei Chen, Cheng-Hung Chien, Ching-Chih Hu, Ting-Shuo Huang, Yu-Chiau Shyu, Chau-Ting Yeh, Rong-Nan Chien. Prognosis Comparison Between Chronic Hepatitis B Patients Receiving a Finite Course of Tenofovir and Entecavir Treatment: A Nationwide Cohort Study in Taiwan.
Clinical therapeutics.
2022 03; 44(3):403-417.e6. doi:
10.1016/j.clinthera.2022.01.010
. [PMID: 35469645] - George Pappas-Gogos, Constantinos C Tellis, Kostas Tepelenis, Konstantinos Vlachos, Emmanuel Chrysos, Alexandros D Tselepis, Georgios K Glantzounis. Urine 8-Hydroxyguanine (8-OHG) in Patients Undergoing Surgery for Colorectal Cancer.
Journal of investigative surgery : the official journal of the Academy of Surgical Research.
2022 Mar; 35(3):591-597. doi:
10.1080/08941939.2021.1904466
. [PMID: 33769178] - Wenting Peng, Huimin Gu, Chuan Jiang, Jinqing Liu, Jian Zhang, Lei Fu. Comparison of tenofovir alafenamide and entecavir for hepatitis B virus-related acute-on-chronic liver failure.
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2022 Feb; 47(2):194-201. doi:
10.11817/j.issn.1672-7347.2022.210578
. [PMID: 35545409] - Johan Ringlander, Joshua Fingal, Hanna Kann, Kasthuri Prakash, Gustaf Rydell, Maria Andersson, Anna Martner, Magnus Lindh, Peter Horal, Kristoffer Hellstrand, Michael Kann. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(6):. doi:
10.1073/pnas.2112663119
. [PMID: 35064076] - Lung-Yi Mak, Joseph Hoang, Dae Won Jun, Chien-Hung Chen, Cheng-Yuan Peng, Ming-Lun Yeh, Sung Eun Kim, Daniel Q Huang, Jae Yoon Jeong, Eileen Yoon, Hyunwoo Oh, Pei-Chien Tsai, Chung-Feng Huang, Sang Bong Ahn, Huy Trinh, Qing Xie, Grace L H Wong, Masaru Enomoto, Jae-Jun Shim, Dong-Hyun Lee, Li Liu, Ritsuzo Kozuka, Yong Kyun Cho, Soung Won Jeong, Hyoung Su Kim, Lindsey Trinh, Allen Dao, Rui Huang, Rex Wan-Hin Hui, Vivien Tsui, Sabrina Quek, Htet Htet Toe Wai Khine, Eiichi Ogawa, Chia Yen Dai, Jee Fu Huang, Ramsey Cheung, Chao Wu, Wan-Long Chuang, Seng Gee Lim, Ming-Lung Yu, Man-Fung Yuen, Mindie H Nguyen. Longitudinal renal changes in chronic hepatitis B patients treated with entecavir versus TDF: a REAL-B study.
Hepatology international.
2022 Feb; 16(1):48-58. doi:
10.1007/s12072-021-10271-x
. [PMID: 34822056] - Manisha B Walunj, Seergazhi G Srivatsan. Heterocycle-modified 2'-Deoxyguanosine Nucleolipid Analogs Stabilize Guanosine Gels and Self-assemble to Form Green Fluorescent Gels.
Chemistry, an Asian journal.
2022 Jan; 17(2):e202101163. doi:
10.1002/asia.202101163
. [PMID: 34817121] - Ritsuzo Kozuka, Masaru Enomoto, Minh Phuong Dong, Hoang Hai, Le Thi Thanh Thuy, Naoshi Odagiri, Kanako Yoshida, Kohei Kotani, Hiroyuki Motoyama, Etsushi Kawamura, Atsushi Hagihara, Hideki Fujii, Sawako Uchida-Kobayashi, Akihiro Tamori, Norifumi Kawada. Soluble programmed cell death-1 predicts hepatocellular carcinoma development during nucleoside analogue treatment.
Scientific reports.
2022 01; 12(1):105. doi:
10.1038/s41598-021-03706-w
. [PMID: 34996935] - Jun Gi Hwang, Yu Kyong Kim, Young-Sim Choi, Soon Kil Kwon, Joung-Ho Han, Min Kyu Park. Influence of Renal Function on the Single-Dose Pharmacokinetics of Besifovir, a Novel Antiviral Agent for theTreatment of Hepatitis B Virus Infection.
Journal of clinical pharmacology.
2022 01; 62(1):46-54. doi:
10.1002/jcph.1945
. [PMID: 34327707] - Yoshihito Uchida, Masamitsu Nakao, Shunsuke Yamada, Shohei Tsuji, Hayato Uemura, Jun-Ichi Kouyama, Kayoko Naiki, Kayoko Sugawara, Nobuaki Nakayama, Yukinori Imai, Tomoaki Tomiya, Satoshi Mochida. Superiority of tenofovir alafenamide fumarate over entecavir for serum HBsAg level reduction in patients with chronic HBV infection: A 144-week outcome study after switching of the nucleos(t)ide analog.
PloS one.
2022; 17(2):e0262764. doi:
10.1371/journal.pone.0262764
. [PMID: 35180213] - Tetsuya Hosaka, Fumitaka Suzuki, Mariko Kobayashi, Shunichiro Fujiyama, Yusuke Kawamura, Hitomi Sezaki, Norio Akuta, Masahiro Kobayashi, Yoshiyuki Suzuki, Satoshi Saitoh, Yasuji Arase, Kenji Ikeda, Hiromitsu Kumada. Ultrasensitive Assay for Hepatitis B Core-Related Antigen Predicts Hepatocellular Carcinoma Incidences During Entecavir.
Hepatology communications.
2022 01; 6(1):36-49. doi:
10.1002/hep4.1819
. [PMID: 34532993] - Fumitaka Suzuki, Yoshiyuki Suzuki, Yoshiyasu Karino, Yasuhito Tanaka, Masayuki Kurosaki, Hiroshi Yatsuhashi, Tomofumi Atarashi, Masanori Atsukawa, Tsunamasa Watanabe, Masaru Enomoto, Masatoshi Kudo, Naoto Maeda, Hiroshi Kohno, Kouji Joko, Kojiro Michitaka, Koichiro Miki, Kazuhiro Takahashi, Tatsuya Ide, Shigetoshi Fujiyama, Tomoko Kohno, Hiroshi Itoh, Sakiyo Tsukamoto, Yuko Suzuki, Yoshiaki Kawano, Wataru Sugiura, Hiromitsu Kumada. Switching from entecavir to tenofovir disoproxil fumarate for HBeAg-positive chronic hepatitis B patients: a phase 4, prospective study.
BMC gastroenterology.
2021 Dec; 21(1):489. doi:
10.1186/s12876-021-02008-9
. [PMID: 34930140] - Kai Zhang, Zhonghui Zhuo, Guorong Fan, Zongde Wang, Shangxing Chen, Lulu Xu, Yangping Wen, Peng Wang. Nano-ZnS decorated hierarchically porous carbon electrocatalyst with multiple enzyme-like activities as a nanozyme sensing platform for simultaneous detection of dopamine, uric acid, guanine, and adenine.
Nanoscale.
2021 Dec; 13(47):20078-20090. doi:
10.1039/d1nr06017a
. [PMID: 34846060] - Yao-Chun Hsu, Ming-Lun Yeh, Grace Lai-Hung Wong, Chien-Hung Chen, Cheng-Yuan Peng, Maria Buti, Masaru Enomoto, Qing Xie, Huy Trinh, Carmen Preda, Li Liu, Ka-Shing Cheung, Yee Hui Yeo, Joseph Hoang, Chung-Feng Huang, Mar Riveiro-Barciela, Ritsuzo Kozuka, Doina Istratescu, Pei-Chien Tsai, Elena Vargas Accarino, Dong-Hyun Lee, Jia-Ling Wu, Jee Fu Huang, Chia-Yen Dai, Ramsey Cheung, Wan-Long Chuang, Man-Fung Yuen, Vincent Wai-Sun Wong, Ming-Lung Yu, Mindie H Nguyen. Incidences and Determinants of Functional Cure During Entecavir or Tenofovir Disoproxil Fumarate for Chronic Hepatitis B.
The Journal of infectious diseases.
2021 12; 224(11):1890-1899. doi:
10.1093/infdis/jiab241
. [PMID: 33999179] - Khaled M Hosny, Amal M Sindi, Hala M Alkhalidi, Mallesh Kurakula, Nabil K Alruwaili, Nabil A Alhakamy, Walaa A Abualsunun, Rana B Bakhaidar, Rahaf H Bahmdan, Waleed Y Rizg, Sarah A Ali, Wesam H Abdulaal, Majed S Nassar, Mohammed S Alsuabeyl, Adel F Alghaith, Sultan Alshehri. Oral gel loaded with penciclovir-lavender oil nanoemulsion to enhance bioavailability and alleviate pain associated with herpes labialis.
Drug delivery.
2021 Dec; 28(1):1043-1054. doi:
10.1080/10717544.2021.1931561
. [PMID: 34060397] - Meng Hsuan Kuo, Chih-Wei Tseng, Ming-Chi Lu, Chien-Hsueh Tung, Kuo-Chih Tseng, Kuang-Yung Huang, Chi-Hui Lee, Ning-Sheng Lai. Risk of Hepatitis B Virus Reactivation in Rheumatoid Arthritis Patients Undergoing Tocilizumab-Containing Treatment.
Digestive diseases and sciences.
2021 11; 66(11):4026-4034. doi:
10.1007/s10620-020-06725-1
. [PMID: 33387124] - Yongbin Wu, Jian Wen, Guifang Tang, Jing Zhang, Jie Xin. On-treatment HBV RNA dynamic predicts entecavir-induced HBeAg seroconversion in children with chronic hepatitis B.
The Journal of infection.
2021 11; 83(5):594-600. doi:
10.1016/j.jinf.2021.08.044
. [PMID: 34474058] - Fika Ayu Safitri, Anh Thi Tram Tu, Kazuaki Hoshi, Miwako Shobo, Dandan Zhao, Arief Budi Witarto, Sony Heru Sumarsono, Ernawati Arifin Giri-Rachman, Kaori Tsukakoshi, Kazunori Ikebukuro, Tomohiko Yamazaki. Enhancement of the Immunostimulatory Effect of Phosphodiester CpG Oligodeoxynucleotides by an Antiparallel Guanine-Quadruplex Structural Scaffold.
Biomolecules.
2021 11; 11(11):. doi:
10.3390/biom11111617
. [PMID: 34827615] - Xiang-An Zhao, Jian Wang, Jiacheng Liu, Guangmei Chen, Xiaomin Yan, Bei Jia, Yue Yang, Yong Liu, Da Gu, Zhaoping Zhang, Xiaoxing Xiang, Rui Huang, Chao Wu. Baseline serum hepatitis B core antibody level predicts HBeAg seroconversion in patients with HBeAg-positive chronic hepatitis B after antiviral treatment.
Antiviral research.
2021 09; 193(?):105146. doi:
10.1016/j.antiviral.2021.105146
. [PMID: 34314774] - Dallas Bednarczyk. Passive Influx and Ion Trapping Are More Relevant to the Cellular Accumulation of Highly Permeable Low-Molecular-Weight Acidic Drugs than Is Organic Anion Transporter 2.
Drug metabolism and disposition: the biological fate of chemicals.
2021 08; 49(8):648-657. doi:
10.1124/dmd.121.000425
. [PMID: 34031139] - Dong Ji, Yan Chen, Qinghua Shang, Huabao Liu, Lin Tan, Jing Wang, Yongping Chen, Qin Li, Qinghua Long, Laicheng Song, Li Jiang, Guangming Xiao, Zujiang Yu, Liang Chen, Xiaoyu Hu, Xiaodong Wang, Da Chen, Zhiqin Li, Zheng Dong, Guofeng Chen, Yongping Yang. Unreliable Estimation of Fibrosis Regression During Treatment by Liver Stiffness Measurement in Patients With Chronic Hepatitis B.
The American journal of gastroenterology.
2021 08; 116(8):1676-1685. doi:
10.14309/ajg.0000000000001239
. [PMID: 33840727] - Chandrabose Selvaraj, Dhurvas Chandrasekaran Dinesh, Umesh Panwar, Rajaram Abhirami, Evzen Boura, Sanjeev Kumar Singh. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.
Journal of biomolecular structure & dynamics.
2021 08; 39(13):4582-4593. doi:
10.1080/07391102.2020.1778535
. [PMID: 32567979] - Feng Lu, Jia-Bao Geng, Jia-Wei Zhang, Yu Dong. Effect of entecavir plus Ganshuang granule on fibrosis and cirrhosis in patients with chronic hepatitis B.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2021 08; 41(4):624-629. doi:
10.19852/j.cnki.jtcm.2021.03.015
. [PMID: 34392656] - Pao-Yuan Huang, Jing-Houng Wang, Chao-Hung Hung, Sheng-Nan Lu, Tsung-Hui Hu, Chien-Hung Chen. The role of hepatitis B virus core-related antigen in predicting hepatitis B virus relapse after cessation of entecavir in hepatitis B e antigen-negative patients.
Journal of viral hepatitis.
2021 08; 28(8):1141-1149. doi:
10.1111/jvh.13528
. [PMID: 33932245] - Romana Urinovska, Ivana Kacirova, Jiri Sagan. Determination of acyclovir and its metabolite 9-carboxymethoxymethylguanide in human serum by ultra-high-performance liquid chromatography-tandem mass spectrometry.
Journal of separation science.
2021 Aug; 44(16):3080-3088. doi:
10.1002/jssc.202100241
. [PMID: 34165890] - Daniela Martini, Raúl Domínguez-Perles, Alice Rosi, Michele Tassotti, Donato Angelino, Sonia Medina, Cristian Ricci, Alexandre Guy, Camille Oger, Letizia Gigliotti, Thierry Durand, Mirko Marino, Hans Gottfried-Genieser, Marisa Porrini, Monica Antonini, Alessandra Dei Cas, Riccardo C Bonadonna, Federico Ferreres, Francesca Scazzina, Furio Brighenti, Patrizia Riso, Cristian Del Bo', Pedro Mena, Angel Gil-Izquierdo, Daniele Del Rio. Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study.
Nutrients.
2021 Jul; 13(7):. doi:
10.3390/nu13072399
. [PMID: 34371907] - Tanmoy Mondal, Amit Nautiyal, Somiranjan Ghosh, Christopher A Loffredo, Deepanjan Mitra, Chabita Saha, Subrata Kumar Dey. An evaluation of DNA double strand break formation and excreted guanine species post whole body PET/CT procedure.
Journal of radiation research.
2021 Jul; 62(4):590-599. doi:
10.1093/jrr/rrab025
. [PMID: 34037214] - Letícia A Apolinário, Leandra N Z Ramalho, Motahareh Hashemi Moosavi, Alessandra V Jager, Marlei J Augusto, Maurício R Trotta, Tânia Petta, Amin Mousavi Khaneghah, Carlos A F Oliveira, Fernando S Ramalho. Oncogenic and tumor suppressor pathways in subchronic aflatoxicosis in rats: Association with serum and urinary aflatoxin exposure biomarkers.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Jul; 153(?):112263. doi:
10.1016/j.fct.2021.112263
. [PMID: 34015426] - Deepak S Ipe, Matthew J Sullivan, Kelvin G K Goh, Saeed M Hashimi, Alan L Munn, Glen C Ulett. Conserved bacterial de novo guanine biosynthesis pathway enables microbial survival and colonization in the environmental niche of the urinary tract.
The ISME journal.
2021 07; 15(7):2158-2162. doi:
10.1038/s41396-021-00934-w
. [PMID: 33649549] - Zheng-Xin Li, Zhi-Min Zhao, Ping Liu, Qing-Shan Zheng, Cheng-Hai Liu. Treatment of HBV Cirrhosis with Fuzheng Huayu Tablet () and Entecavir: Design of a Randomized, Double-Blind, Parallel and Multicenter Clinical Trial.
Chinese journal of integrative medicine.
2021 Jul; 27(7):509-513. doi:
10.1007/s11655-020-3257-6
. [PMID: 32572776] - Xi Zhang, Xiaocui An, Lei Shi, Xueliang Yang, Yunru Chen, Xiaojing Liu, Jianzhou Li, Feng Ye, Shumei Lin. Baseline quantitative HBcAb strongly predicts undetectable HBV DNA and RNA in chronic hepatitis B patients treated with entecavir for 10 years.
Scientific reports.
2021 06; 11(1):13389. doi:
10.1038/s41598-021-92757-0
. [PMID: 34183689] - Juan Li, Chunhua Hu, Yi Chen, Rou Zhang, Shan Fu, Mimi Zhou, Zhijie Gao, Mengjun Fu, Taotao Yan, Yuan Yang, Jianzhou Li, Jinfeng Liu, Tianyan Chen, Yingren Zhao, Yingli He. Short-term and long-term safety and efficacy of tenofovir alafenamide, tenofovir disoproxil fumarate and entecavir treatment of acute-on-chronic liver failure associated with hepatitis B.
BMC infectious diseases.
2021 Jun; 21(1):567. doi:
10.1186/s12879-021-06237-x
. [PMID: 34126939] - Puja Yadav, Nayun Kim, Monika Kumari, Shalini Verma, Tarun Kumar Sharma, Vikas Yadav, Amit Kumar. G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target.
Journal of bacteriology.
2021 06; 203(13):e0057720. doi:
10.1128/jb.00577-20
. [PMID: 33649149] - Mindie H Nguyen, Masanori Atsukawa, Toru Ishikawa, Satoshi Yasuda, Keisuke Yokohama, Huy N Trinh, Taeang Arai, Shinya Fukunishi, Eiichi Ogawa, Yao-Chun Hsu, Mayumi Maeda, Hansen Dang, Cheng-Hao Tseng, Hirokazu Takahashi, Dae Won Jun, Tsunamasa Watanabe, Makoto Chuma, Akito Nozaki, Norifumi Kawada, Ramsey Cheung, Masaru Enomoto, Koichi Takaguchi, Hidenori Toyoda. Outcomes of Sequential Therapy With Tenofovir Alafenamide After Long-term Entecavir.
The American journal of gastroenterology.
2021 06; 116(6):1264-1273. doi:
10.14309/ajg.0000000000001157
. [PMID: 34074829] - I T Gatchell, R B Huntley, N P Schultes, G S Mourad. The guanine-hypoxanthine permease GhxP of Erwinia amylovora facilitates the influx of the toxic guanine derivative 6-thioguanine.
Journal of applied microbiology.
2021 Jun; 130(6):2018-2028. doi:
10.1111/jam.14925
. [PMID: 33152175] - Lung-Yi Mak, Gavin Cloherty, Danny Ka-Ho Wong, Jeffrey Gersch, Wai-Kay Seto, James Fung, Man-Fung Yuen. HBV RNA Profiles in Patients With Chronic Hepatitis B Under Different Disease Phases and Antiviral Therapy.
Hepatology (Baltimore, Md.).
2021 06; 73(6):2167-2179. doi:
10.1002/hep.31616
. [PMID: 33159329] - Tsuneaki Kenzaka, Kazuma Sugimoto, Ken Goda, Hozuka Akita. Acute kidney injury and acyclovir-associated encephalopathy after administration of valacyclovir in an elderly person with normal renal function: A case report and literature review.
Medicine.
2021 May; 100(21):e26147. doi:
10.1097/md.0000000000026147
. [PMID: 34032768] - Rui Huang, Jiacheng Liu, Jian Wang, Chao Wu. Letter: tenofovir versus entecavir for hepatocellular carcinoma prevention in chronic hepatitis B-related compensated cirrhosis.
Alimentary pharmacology & therapeutics.
2021 05; 53(9):1040-1041. doi:
10.1111/apt.16273
. [PMID: 33831236] - Si-Qi Wang, Yue Shen, Jing Li, Yun Liu, Li-Sha Cheng, Sheng-Di Wu, Wei-Min She, Wei Jiang. Entecavir-induced interferon-λ1 suppresses type 2 innate lymphoid cells in patients with hepatitis B virus-related liver cirrhosis.
Journal of viral hepatitis.
2021 05; 28(5):795-808. doi:
10.1111/jvh.13476
. [PMID: 33482039] - Shi Liu, Yaobo Wu, Rui Deng, Sheng Shen, Rong Fan, Jie Peng, Wanying Li, Xieer Liang, Jinlin Hou, Jian Sun, Bin Zhou. Methodology-dependent performance of serum HBV RNA in predicting treatment outcomes in chronic hepatitis B patients.
Antiviral research.
2021 05; 189(?):105037. doi:
10.1016/j.antiviral.2021.105037
. [PMID: 33711337] - Xiujuan Chang, Jing Wang, Yan Chen, Qinghua Long, Laicheng Song, Qin Li, Huabao Liu, Qinghua Shang, Zujiang Yu, Li Jiang, Guangming Xiao, Li Li, Liang Chen, Xiaodong Wang, Zhiqin Li, Da Chen, Zheng Dong, Linjing An, Lin Tan, Yongping Chen, Yongping Yang. A novel nomogram to predict evident histological liver injury in patients with HBeAg-positive chronic hepatitis B virus infection.
EBioMedicine.
2021 May; 67(?):103389. doi:
10.1016/j.ebiom.2021.103389
. [PMID: 34004423] - Kyle E Korolowicz, Manasa Suresh, Bin Li, Xu Huang, Changsuek Yon, Xuebing Leng, Bhaskar V Kallakury, Robin D Tucker, Stephan Menne. Treatment with the Immunomodulator AIC649 in Combination with Entecavir Produces Antiviral Efficacy in the Woodchuck Model of Chronic Hepatitis B.
Viruses.
2021 04; 13(4):. doi:
10.3390/v13040648
. [PMID: 33918831] - Yeqiong Zhang, Wenxiong Xu, Xiang Zhu, Xuejun Li, Jianguo Li, Xin Shu, Jing Lai, Junqiang Xie, Chan Xie, Liang Peng. The 48-week safety and therapeutic effects of tenofovir alafenamide in hbv-related acute-on-chronic liver failure: A prospective cohort study.
Journal of viral hepatitis.
2021 04; 28(4):592-600. doi:
10.1111/jvh.13468
. [PMID: 33423348] - Wai-Kay Seto, Kevin Sh Liu, Lung-Yi Mak, Gavin Cloherty, Danny Ka-Ho Wong, Jeffrey Gersch, Yuk-Fai Lam, Ka-Shing Cheung, Ning Chow, Kwan-Lung Ko, Wai-Pan To, James Fung, Man-Fung Yuen. Role of serum HBV RNA and hepatitis B surface antigen levels in identifying Asian patients with chronic hepatitis B suitable for entecavir cessation.
Gut.
2021 04; 70(4):775-783. doi:
10.1136/gutjnl-2020-321116
. [PMID: 32759300] - Xueqi Li, Jianwei Li, Jiarui Xu, Kun Chen, Zhan Zhang, Jialun Duan, Qian Luo, Yafei Du, Songyue Chen, Ying Xie, Wanliang Lu. Nanostructure of Functional Larotaxel Liposomes Decorated with Guanine-Rich Quadruplex Nucleotide-Lipid Derivative for Treatment of Resistant Breast Cancer.
Small (Weinheim an der Bergstrasse, Germany).
2021 04; 17(13):e2007391. doi:
10.1002/smll.202007391
. [PMID: 33522108] - H B Ning, H M Jin, K Li, Z Peng, W Li, J Shang. [Analysis of bone mineral density and its influencing factors in 211 patients with chronic hepatitis B treated with long-term entecavir monotherapy].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2021 Mar; 29(3):234-239. doi:
10.3760/cma.j.cn501113-20191128-00436
. [PMID: 33902190] - Ming-Chao Tsai, Kuo-Chin Chang, Yi-Hao Yen, Cheng-Kun Wu, Ming-Tsung Lin, Tsung-Hui Hu. Comparison of tenofovir and entecavir in the development of acute kidney injury in cirrhotic chronic hepatitis B patients with refractory ascites.
European journal of gastroenterology & hepatology.
2021 02; 32(2):208-213. doi:
10.1097/meg.0000000000001711
. [PMID: 32371826] - Marie Roser, David Béal, Camille Eldin, Leslie Gudimard, Fanny Caffin, Fanny Gros-Désormeaux, Daniel Léonço, François Fenaille, Christophe Junot, Christophe Piérard, Thierry Douki. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog.
Analytical and bioanalytical chemistry.
2021 Feb; 413(5):1337-1351. doi:
10.1007/s00216-020-03096-4
. [PMID: 33410976] - Lihua Huang, Li Zhou, Jianhe Gan, Wenlong Yang, Yaping Dai, Tingting Su, Yuanwang Qiu. IL-21 Is Associated With Virological Relapse of HBeAg Positive Chronic Hepatitis B After Discontinuance of Entecavir.
The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology.
2021 02; 32(2):178-186. doi:
10.5152/tjg.2021.19703
. [PMID: 33960942] - Kohta Mohri, Emi Hayashi, Manato Nishino, Nao Matsushita, Sohei Tanishita, Makiya Nishikawa, Shinji Sakuma. Polypod-like structured guanine-rich oligonucleotide aptamer as a selective and cytotoxic nanostructured DNA to cancer cells.
Journal of drug targeting.
2021 02; 29(2):217-224. doi:
10.1080/1061186x.2020.1830407
. [PMID: 32997541] - Ana-Maria Chiorcea-Paquim, Ana Maria Oliveira-Brett. Nanostructured material-based electrochemical sensing of oxidative DNA damage biomarkers 8-oxoguanine and 8-oxodeoxyguanosine: a comprehensive review.
Mikrochimica acta.
2021 01; 188(2):58. doi:
10.1007/s00604-020-04689-7
. [PMID: 33507409] - Te-Sheng Chang, Yao-Hsu Yang, Wei-Ming Chen, Chien-Heng Shen, Shui-Yi Tung, Chih-Wei Yen, Yung-Yu Hsieh, Chuan-Pin Lee, Meng-Ling Tsai, Chao-Hung Hung, Sheng-Nan Lu. Long-term risk of primary liver cancers in entecavir versus tenofovir treatment for chronic hepatitis B.
Scientific reports.
2021 01; 11(1):1365. doi:
10.1038/s41598-020-80523-7
. [PMID: 33446835] - Yasmin ElMaghloob, Begoña Sot, Michael J McIlwraith, Esther Garcia, Tamas Yelland, Shehab Ismail. ARL3 activation requires the co-GEF BART and effector-mediated turnover.
eLife.
2021 01; 10(?):. doi:
10.7554/elife.64624
. [PMID: 33438581] - Alexander Simonis, Sebastian J Theobald, Gerd Fätkenheuer, Jan Rybniker, Jakob J Malin. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2.
EMBO molecular medicine.
2021 01; 13(1):e13105. doi:
10.15252/emmm.202013105
. [PMID: 33015938] - Šárka Moudříková, Ivan Nedyalkov Ivanov, Milada Vítová, Ladislav Nedbal, Vilém Zachleder, Peter Mojzeš, Kateřina Bišová. Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda.
Cells.
2021 01; 10(1):. doi:
10.3390/cells10010062
. [PMID: 33401566] - Seong Hee Kang, Dong-Hyuk Cho, Jimi Choi, Soon Koo Baik, Jun Gyo Gwon, Moon Young Kim. Association between chronic hepatitis B infection and COVID-19 outcomes: A Korean nationwide cohort study.
PloS one.
2021; 16(10):e0258229. doi:
10.1371/journal.pone.0258229
. [PMID: 34610052] - Yaxian Ma, Li Yang, Yuhan Bao, Yang Yang, Liting Chen, Miao Zheng. Case Report: Post-CAR-T Infusion HBV Reactivation in Two Lymphoma Patients Despite Entecavir Preventive Therapy.
Frontiers in immunology.
2021; 12(?):751754. doi:
10.3389/fimmu.2021.751754
. [PMID: 34691067] - Efres Belmonte-Reche, Israel Serrano-Chacón, Carlos Gonzalez, Juan Gallo, Manuel Bañobre-López. Potential G-quadruplexes and i-Motifs in the SARS-CoV-2.
PloS one.
2021; 16(6):e0250654. doi:
10.1371/journal.pone.0250654
. [PMID: 34101725] - Hideo Takayama, Takuya Komura, Takashi Kagaya, Saiho Sugimoto, Noriaki Orita, Yoshiro Asahina, Masashi Nishikawa, Hajime Ohta, Shuichi Kaneko, Masashi Unoura. Clinical Features and Resistance to Entecavir Monotherapy of Patients with Hepatitis B.
Canadian journal of gastroenterology & hepatology.
2021; 2021(?):3259833. doi:
10.1155/2021/3259833
. [PMID: 34422709]