Caffeine (BioDeep_00000000141)
Secondary id: BioDeep_00000229638, BioDeep_00000397991, BioDeep_00000862758
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H10N4O2 (194.080372)
中文名称: 咖啡因
谱图信息:
最多检出来源 Viridiplantae(plant) 0.11%
Last reviewed on 2024-06-29.
Cite this Page
Caffeine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/caffeine (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000141). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: Cn(c2)c(C(=O)1)c(n2)N(C)C(=O)N(C)1
InChI: InChI=1/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3
描述信息
Caffeine is a methyl xanthine alkaloid that is also classified as a purine. Formally, caffeine belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Caffeine is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America and helps to protect them against predator insects and to prevent germination of nearby seeds. The most well-known source of caffeine is the coffee bean. Caffeine is the most widely consumed psychostimulant drug in the world. 85\\\% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine is mostly is consumed in the form of coffee. Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination. Caffeine is a proven ergogenic aid in humans. Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions. Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance, cycling and running time trial performance, endurance and cycling power output (PMID: 32551869). At intake levels associated with coffee consumption, caffeine appears to exert most of its biological effects through the antagonism of the A1 and A2A subtypes of the adenosine receptor. Adenosine is an endogenous neuromodulator with mostly inhibitory effects, and adenosine antagonism by caffeine results in effects that are generally stimulatory. Some physiological effects associated with caffeine administration include central nervous system stimulation, acute elevation of blood pressure, increased metabolic rate, and diuresis. A number of in vitro and in vivo studies have demonstrated that caffeine modulates both innate and adaptive immune responses. For instance, studies indicate that caffeine and its major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and also suppress production of the pro-inflammatory cytokine tumor necrosis factor (TNF) alpha from human blood. Caffeine has also been reported to suppress human lymphocyte function as indicated by reduced T-cell proliferation and impaired production of Th1 (interleukin [IL]-2 and interferon [IFN]-gamma), Th2 (IL-4, IL-5) and Th3 (IL-10) cytokines. Studies also indicate that caffeine suppresses antibody production. The evidence suggests that at least some of the immunomodulatory actions of caffeine are mediated via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase (PDE), and consequential increase in intracellular cAMP concentrations. Overall, these studies indicate that caffeine, like other members of the methylxanthine family, is largely anti-inflammatory in nature, and based on the pharmacokinetics of caffeine, many of its immunomodulatory effects occur at concentrations that are relevant to normal human consumption. (PMID: 16540173). Caffeine is rapidly and almost completely absorbed in the stomach and small intestine and distributed to all tissues, including the brain. Caffeine metabolism occurs primarily in the liver, where the activity of the cytochrome P450 isoform CYP1A2 accounts for almost 95\\\% of the primary metabolism of caffeine. CYP1A2-catalyzed 3-demethylation of caffeine results in the formation of 1,7-dimethylxanthine (paraxanthine). Paraxanthine may be demethylated by CYP1A2 to form 1-methylxanthine, which may be oxidized to 1-methyluric acid by xanthine oxidase. Paraxanthine may also be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid, or acetylated by N-acetyltransferase 2 (NAT2) to form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be deformylated nonenzymatically to form ...
Caffeine appears as odorless white powder or white glistening needles, usually melted together. Bitter taste. Solutions in water are neutral to litmus. Odorless. (NTP, 1992)
Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. It has a role as a central nervous system stimulant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an adenosine receptor antagonist, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a ryanodine receptor agonist, a fungal metabolite, an adenosine A2A receptor antagonist, a psychotropic drug, a diuretic, a food additive, an adjuvant, a plant metabolite, an environmental contaminant, a xenobiotic, a human blood serum metabolite, a mouse metabolite, a geroprotector and a mutagen. It is a purine alkaloid and a trimethylxanthine.
Caffeine is a drug of the methylxanthine class used for a variety of purposes, including certain respiratory conditions of the premature newborn, pain relief, and to combat drowsiness. Caffeine is similar in chemical structure to [Theophylline] and [Theobromine]. It can be sourced from coffee beans, but also occurs naturally in various teas and cacao beans, which are different than coffee beans. Caffeine is also used in a variety of cosmetic products and can be administered topically, orally, by inhalation, or by injection. The caffeine citrate injection, used for apnea of the premature newborn, was initially approved by the FDA in 1999. According to an article from 2017, more than 15 million babies are born prematurely worldwide. This correlates to about 1 in 10 births. Premature birth can lead to apnea and bronchopulmonary dysplasia, a condition that interferes with lung development and may eventually cause asthma or early onset emphysema in those born prematurely. Caffeine is beneficial in preventing and treating apnea and bronchopulmonary dysplasia in newborns, improving the quality of life of premature infants.
Caffeine is a Central Nervous System Stimulant and Methylxanthine. The physiologic effect of caffeine is by means of Central Nervous System Stimulation.
Caffeine is xanthine alkaloid that occurs naturally in seeds, leaves and fruit of several plants and trees that acts as a natural pesticide. Caffeine is a major component of coffee, tea and chocolate and in humans acts as a central nervous system (CNS) stimulant. Consumption of caffeine, even in high doses, has not been associated with elevations in serum enzyme elevations or instances of clinically apparent liver injury.
Caffeine is a natural product found in Mus musculus, Herrania cuatrecasana, and other organisms with data available.
Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. This agent also promotes neurotransmitter release that further stimulates the CNS. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases (PDEs). Inhibition of PDEs raises the intracellular concentration of cyclic AMP (cAMP), activates protein kinase A, and inhibits leukotriene synthesis, which leads to reduced inflammation and innate immunity.
Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is uncle...
Component of coffee beans (Coffea arabica), many other Coffea subspecies, chocolate (Theobroma cacao), tea (Camellia thea), kolanut (Cola acuminata) and several other Cola subspecies and several other plants. It is used in many cola-type beverages as a flavour enhancer. Caffeine is found in many foods, some of which are black cabbage, canola, jerusalem artichoke, and yellow bell pepper.
A trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee.
[Raw Data] CBA01_Caffeine_pos_50eV.txt
[Raw Data] CBA01_Caffeine_pos_20eV.txt
[Raw Data] CBA01_Caffeine_pos_40eV.txt
[Raw Data] CBA01_Caffeine_pos_10eV.txt
[Raw Data] CBA01_Caffeine_pos_30eV.txt
Caffeine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-08-2 (retrieved 2024-06-29) (CAS RN: 58-08-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
309 个代谢物同义名
Caffeine Melting Point Standard, Pharmaceutical Secondary Standard; Certified Reference Material; Caffeine melting point standard, United States Pharmacopeia (USP) Reference Standard; Caffeine for system suitability, European Pharmacopoeia (EP) Reference Standard; Caffeine, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H; Caffeine, United States Pharmacopeia (USP) Reference Standard; Caffeine, European Pharmacopoeia (EP) Reference Standard; Caffeine, British Pharmacopoeia (BP) Reference Standard; 3,7-Dihydro-1,3,7-trimethyl-1H-purin-2,6-dion (coffein); 1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione; Caffeine, meets USP testing specifications, anhydrous; Caffeine, certified reference material, TraceCERT(R); 1,3,7-trimethyl-2,6-dioxo-1,2,3,6-tetrahydropurine; 1,3,7-Trimethyl-3,7-dihydro-1H-purine-2,6-dione #; THEOPHYLLINE MONOHYDRATE IMPURITY A [EP IMPURITY]; 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl-; Caffeine, anhydrous, tested according to Ph.Eur.; 1,3,7-Trimethyl-3,7-dihydro-1H-purine-2,6-dione; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione; 1,3,7-trimethyl-1,3,7-trihydropurine-2,6-dione; 3,7-Dihydro-1,3,7-trimethyl-1H-purin-2,6-dion; 5-26-13-00558 (Beilstein Handbook Reference); Caffeine, purum, anhydrous, >=99.0\\% (HPLC); 1,3,7-trimethyl-3,7-dihydropurine-2,6-dione; 3,7-dihydro-1,3,7-trimethyl-1H-purine (9CI); 1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione; 1H-Purine-2, 3,7-dihydro-1,3,7-trimethyl-; component of A.S.A. Compound (Salt/Mix); DIMENHYDRINATE IMPURITY C (EP IMPURITY); PENTOXIFYLLINE IMPURITY F [EP IMPURITY]; CAFFEINE COMPONENT OF ORPHENGESIC FORTE; DIMENHYDRINATE IMPURITY C [EP IMPURITY]; PENTOXIFYLLINE IMPURITY F (EP IMPURITY); component of P-A-C Compound (Salt/Mix); Bristol-myers squibb brand OF caffeine; CAFFEINE COMPONENT OF INVAGESIC FORTE; THEOPHYLLINE IMPURITY A [EP IMPURITY]; THEOPHYLLINE IMPURITY A (EP IMPURITY); Monomethyl derivative of Theophylline; 3,7-dihydro-1,3,7-trimethyl-1H-purine; Caffeine, SAJ special grade, >=98.5\\%; Bayer Select Headache Pain (Salt/Mix); CAFFEINE COMPONENT OF DARVON COMPOUND; Carolina Cannabis Uplifting Chewables; CAFFEINE COMPONENT OF MEDIGESIC PLUS; ORPHENGESIC FORTE COMPONENT CAFFEINE; 07E4FB58-FD79-4175-8E3D-05BF96954522; Valumeds Maximum Strength Stay Awake; Propoxyphene Compound 65 (Salt/Mix); CAFFEINE COMPONENT OF SYNALGOS-DC-A; NoDoz Alertness AidMaximum Strength; 3,3,7-trimethyl-1H-purine-2,6-dione; caffeine (1,3,7-trimethylxanthine); Topcare Stay AwakeMaximum Strength; DARVON COMPOUND COMPONENT CAFFEINE; Caffeine, anhydrous, 99\\%, FCC, FG; INVAGESIC FORTE COMPONENT CAFFEINE; NoDoz Caplets and Chewable Tablets; CAFFEINE COMPONENT OF ORPHENGESIC; MEDIGESIC PLUS COMPONENT CAFFEINE; Caffeine 10 microg/mL in Methanol; GlaxoSmithKline brand OF caffeine; CAFFEINE COMPONENT OF SYNALGOS-DC; component of Percodan (Salt/Mix); Caffeine, powder, ReagentPlus(R); SYNALGOS-DC-A COMPONENT CAFFEINE; CAFFEINE COMPONENT OF LANORINAL; 1,3,7-Trimethylpurine-2,6-dione; Berlin-chemie brand OF caffeine; Republic drug brand OF caffeine; Caffeine melting point standard; 1,3,7-Trimethyl-2,6-dioxopurine; CAFFEINE COMPONENT OF INVAGESIC; ORPHENGESIC COMPONENT CAFFEINE; CAFFEINE COMPONENT OF CAFERGOT; Caffeine 1.0 mg/ml in Methanol; Pierre fabre brand OF caffeine; CAFFEINE COMPONENT OF DHC PLUS; component of Dilone (Salt/Mix); CAFFEINE COMPONENT OF MIGERGOT; WLN: T56 BN DN FNVNVJ B1 F1 H1; CAFFEINE COMPONENT OF WIGRAINE; CAFFEINE COMPONENT OF EXCEDRIN; CAFFEINE COMPONENT OF FIORICET; CAFFEINE COMPONENT OF NORGESIC; CAFFEINE COMPONENT OF FIORINAL; SYNALGOS-DC COMPONENT CAFFEINE; CAFFEINE COMPONENT OF ANOQUAN; 1,7-Trimethyl-2,6-dioxopurine; Thompson brand 1 OF caffeine; Merck dura brand OF caffeine; Caffeine tablet, film-coated; INVAGESIC COMPONENT CAFFEINE; LANORINAL COMPONENT CAFFEINE; CAFFEINE COMPONENT OF FEMCET; Thompson brand 2 OF caffeine; Caffeine, 1mg/ml in methanol; MIGERGOT COMPONENT CAFFEINE; CAFERGOT COMPONENT CAFFEINE; Methylxanthine theophylline; DHC PLUS COMPONENT CAFFEINE; WIGRAINE COMPONENT CAFFEINE; CAFFEINE COMPONENT OF ESGIC; FIORINAL COMPONENT CAFFEINE; CAFFEINE COMPONENT OF TRIAD; CAFFEINE ANHYDROUS [WHO-IP]; EXCEDRIN COMPONENT CAFFEINE; A.S.A. and Codeine Compound; NORGESIC COMPONENT CAFFEINE; FIORICET COMPONENT CAFFEINE; Jet Alert Regular Strength; ANOQUAN COMPONENT CAFFEINE; Passauer brand OF caffeine; Stay AwakeMaximum Strength; Anhydrous caffeine (JP17); FEMCET COMPONENT CAFFEINE; DIMENHYDRINATE IMPURITY C; TREZIX COMPONENT CAFFEINE; Anhydrous caffeine (JP15); Xanthine, 1,3,7-trimethyl; Jet Alert Double Strength; 5-26-13-00558 (Beilstein); Alertness Aid Stay Awake; Propoxyphene Compound 65; COFFEINUM [WHO-IP LATIN]; CAFFEINE [USP MONOGRAPH]; TRIAD COMPONENT CAFFEINE; CAFFEINE (USP MONOGRAPH); ANHYDROUS CAFFEINE [JAN]; ESGIC COMPONENT CAFFEINE; Anhydrous caffeine (TN); P-A-C Analgesic Tablets; 1 3 7-Trimethylxanthine; 1,3,7-Trimethylxanthine; Anacin Maximum Strength; CAFFEINE (EP MONOGRAPH); CAFFEINE [EP MONOGRAPH]; CAFFEINE(3-METHYL-13C); CAFFEINE [ORANGE BOOK]; Seid brand OF caffeine; Theobromine, 1-methyl-; Xanthine,3,7-trimethyl; 1,3,7-Trimethylxantine; Caffeine (USP:BAN:JAN); 1 3 7-trimetilksantina; Theophylline, 7-methyl; Caffeine [USP:BAN:JAN]; AwakeMaximum Strength; Diurex Water PillsXPL; 7-methyl Theophylline; 1,7-Trimethylxanthine; Sohmed Alertness Aid; 7-Methyltheophylline; 1-methyl-Theobromine; Monohydrate Caffeine; Caffeine, synthetic; 1-methyltheobromine; Cafergot (Salt/Mix); Caffeine, anhydrous; NoDoz Alertness Aid; Diurex Water Pills; Topcare Stay Awake; Caffeine (natural); Caffeine [BAN:JAN]; Caffeina [Italian]; CAFFEINE ANHYDROUS; Methyltheophylline; Anhydrous caffeine; careone stay awake; Methyltheobromide; CAFFEINE [WHO-IP]; CAFFEINE [WHO-DD]; CAFFEINE [USP-RS]; Caffeine, BioXtra; CAFFEINE (USP-RS); Methyltheobromine; trimetilksantina; Percoffedrinol N; NoSnoozeCircle K; CAFFEINUM [HPUS]; Spectrum2_001261; Spectrum3_000321; Caffeine hydrous; CAFFEINE (MART.); Coffeinum Purrum; CAFFEINE [VANDF]; Spectrum5_000423; CAFFEINE [MART.]; Sprayable Energy; Coffein [German]; Spectrum4_001782; Koffein [German]; Theophylline Me; CAFFEINE [HSDB]; UNII-3G6A5W338E; CAFFEINE [INCI]; CAFFEINE [IARC]; Uplift Chewable; CAFFEINE [FHFI]; CAFFEINE (IARC); NCIOpen2_008255; metilteobromina; CAFFEINE [FCC]; SK-65 Compound; DiurexUltimate; Kofein [Czech]; Probes2_000128; Allertness Aid; Theobromine Me; SK 65 Compound; Probes1_000150; Caffeine (USP); CAFFEINE (II); Alertness Aid; CAFFEINE [II]; DivK1c_000730; CAFFEINE [MI]; Lopac0_000228; MEGxp0_001350; KBio2_001781; Tox21_300010; PDSP2_001000; KBio2_004349; ACon1_000085; KBio2_006917; PDSP1_001235; Tox21_201685; KBio3_001141; PDSP1_001016; Tox21_500228; Propoxyphene; Percutaféine; KBio1_000730; PDSP2_001219; Coffeinum N; Bio1_000962; Conrx Alert; Respia (TN); IDI1_000730; CAFFEINE-D3; CAS-58-08-2; Bio1_000473; DiurexUltra; Bio1_001451; Eldiatric C; 3G6A5W338E; Stay Awake; Caffedrine; Lanorinal; Quick Pep; Alert Aid; AI3-20154; Quick-Pep; Alert-pep; C8H10N4O2; Caffeinum; Coffeinum; Guaranine; caffenium; Durvitan; Hycomine; Tri-Aqua; Refreshn; QuickPep; Synalgos; Coffeine; NoSnooze; Caffeina; Caffeine; HSDB 36; cafeine; Vivarin; Cafeina; Mateina; Caffein; Cafecon; Cafamil; Coffein; Caffine; Phensal; Kafeina; Koffein; Cafipel; Dexitac; Organex; DHCplus; Nix Nap; Anacin; No-Doz; Nodaca; Theine; Respia; Tirend; No Doz; Kofein; Miudol; teina; Thein; Awake; 1l5q; 1l7x; Stim; 1gfz; 3g6m; 2a3b; CFF; Caffeine,Anhydrous; Caffeine; Caffeine
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:27732
- KEGG: C07481
- KEGGdrug: D00528
- PubChem: 2519
- PubChem: 9684
- HMDB: HMDB0001847
- Metlin: METLIN1455
- DrugBank: DB00201
- ChEMBL: CHEMBL113
- Wikipedia: Caffeine
- MeSH: Caffeine
- ChemIDplus: 0000058082
- MetaCyc: 1-3-7-TRIMETHYLXANTHINE
- KNApSAcK: C00001492
- foodb: FDB002100
- chemspider: 2424
- CAS: 58-08-2
- MoNA: KO002541
- MoNA: PS004504
- MoNA: FIO00568
- MoNA: FIO00570
- MoNA: FIO00572
- MoNA: FIO00569
- MoNA: PS004502
- MoNA: KO002538
- MoNA: PS004505
- MoNA: PR100025
- MoNA: FIO00571
- MoNA: KO002540
- MoNA: KO002537
- MoNA: PS004503
- MoNA: PS004506
- MoNA: PS004501
- MoNA: PR100026
- MoNA: KO002539
- PMhub: MS000000295
- MetaboLights: MTBLC27732
- PDB-CCD: CFF
- 3DMET: B02124
- NIKKAJI: J2.330B
- RefMet: Caffeine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-130
- KNApSAcK: 27732
- LOTUS: LTS0075508
分类词条
相关代谢途径
Reactome(6)
BioCyc(5)
PlantCyc(0)
代谢反应
72 个相关的代谢反应过程信息。
Reactome(51)
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
BioCyc(7)
- caffeine degradation I (main, plants):
a demethylated methyl donor + theophylline ⟶ 3-methylxanthine + a methylated methyl donor
- caffeine degradation IV (bacteria, via demethylation and oxidation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- caffeine degradation III (bacteria, via demethylation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- caffeine biosynthesis I:
SAM + theobromine ⟶ H+ + SAH + caffeine
- caffeine degradation V (bacteria, via trimethylurate):
1,6,8-trimethylallantoate + H2O ⟶ N,N'-dimethylurea + N-methylurea + glyoxylate
- caffeine biosynthesis II (via paraxanthine):
SAM + paraxanthine ⟶ H+ + SAH + caffeine
- caffeine degradation II:
caffeine ⟶ 1,3,7-trimethylurate
Plant Reactome(0)
INOH(0)
PlantCyc(9)
- caffeine degradation I (main, plants):
a demethylated methyl donor + caffeine ⟶ a methylated methyl donor + theophylline
- caffeine degradation I (main, plants):
3-methylxanthine + H+ + NAD(P)H + O2 ⟶ H2O + NAD(P)+ + formaldehyde + xanthine
- caffeine biosynthesis I:
7-methylxanthosine + H2O ⟶ 7-methylxanthine + D-ribofuranose + H+
- caffeine biosynthesis I:
SAM + theobromine ⟶ H+ + SAH + caffeine
- caffeine biosynthesis I:
7-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- caffeine biosynthesis II (via paraxanthine):
SAM + paraxanthine ⟶ H+ + SAH + caffeine
- caffeine degradation II:
1,3,7-trimethylurate + a methylated methyl donor ⟶ 1,3,7,9-tetramethylurate + a demethylated methyl donor
- caffeine biosynthesis II (via paraxanthine):
7-methylxanthosine + H2O ⟶ 7-methylxanthine + D-ribofuranose + H+
- caffeine biosynthesis II (via paraxanthine):
SAM + paraxanthine ⟶ H+ + SAH + caffeine
COVID-19 Disease Map(0)
PathBank(4)
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
PharmGKB(0)
337 个相关的物种来源信息
- 82454 - Abroma augustum: 10.1007/BF01187339
- 3808 - Acacia: LTS0075508
- 4185 - Acanthaceae: LTS0075508
- 6101 - Anthozoa: LTS0075508
- 4056 - Apocynaceae: LTS0075508
- 4294 - Aquifoliaceae: LTS0075508
- 4890 - Ascomycota: LTS0075508
- 70004 - Aspalathus: LTS0075508
- 155124 - Aspalathus linearis: 10.1007/BF02858780
- 155124 - Aspalathus linearis: LTS0075508
- 4210 - Asteraceae: LTS0075508
- 33852 - Bacillariaceae: LTS0075508
- 33849 - Bacillariophyceae: LTS0075508
- 2836 - Bacillariophyta: LTS0075508
- 42336 - Bidens: LTS0075508
- 42337 - Bidens pilosa: 10.1016/S0305-1978(99)00091-5
- 42337 - Bidens pilosa: LTS0075508
- 4441 - Camellia: 10.1016/S0021-9673(01)88752-5
- 4441 - Camellia: LTS0075508
- 153142 - Camellia irrawadiensis:
- 153142 - Camellia irrawadiensis: 10.1016/S0031-9422(00)83024-1
- 153142 - Camellia irrawadiensis: 10.1248/CPB.57.1284
- 153142 - Camellia irrawadiensis: LTS0075508
- 4443 - Camellia japonica: 10.1016/S0031-9422(00)83024-1
- 4443 - Camellia japonica: LTS0075508
- 385388 - Camellia oleifera: 10.1016/S0031-9422(00)83024-1
- 385388 - Camellia oleifera: LTS0075508
- 319931 - Camellia ptilophylla: 10.1007/BF02507798
- 319931 - Camellia ptilophylla: LTS0075508
- 182300 - Camellia sasanqua: 10.1016/S0031-9422(00)83024-1
- 182300 - Camellia sasanqua: LTS0075508
- 4442 - Camellia sinensis:
- 4442 - Camellia sinensis: 10.1002/PTR.2650050512
- 4442 - Camellia sinensis: 10.1007/978-3-540-69934-7_22
- 4442 - Camellia sinensis: 10.1007/BF00579846
- 4442 - Camellia sinensis: 10.1007/BF00580101
- 4442 - Camellia sinensis: 10.1007/PL00013902
- 4442 - Camellia sinensis: 10.1016/0021-9673(96)00456-6
- 4442 - Camellia sinensis: 10.1016/0031-9422(90)85184-H
- 4442 - Camellia sinensis: 10.1016/0031-9422(90)85266-I
- 4442 - Camellia sinensis: 10.1016/0031-9422(91)83622-R
- 4442 - Camellia sinensis: 10.1016/0308-8146(92)90033-X
- 4442 - Camellia sinensis: 10.1016/0378-8741(86)90110-8
- 4442 - Camellia sinensis: 10.1016/J.BMC.2012.02.002
- 4442 - Camellia sinensis: 10.1016/S0014-5793(01)02512-1
- 4442 - Camellia sinensis: 10.1016/S0014-5793(03)01213-4
- 4442 - Camellia sinensis: 10.1016/S0021-9673(01)01360-7
- 4442 - Camellia sinensis: 10.1016/S0021-9673(97)00906-0
- 4442 - Camellia sinensis: 10.1016/S0021-9673(97)01069-8
- 4442 - Camellia sinensis: 10.1016/S0031-9422(00)83024-1
- 4442 - Camellia sinensis: 10.1016/S0031-9422(00)89724-1
- 4442 - Camellia sinensis: 10.1016/S0031-9422(97)01087-X
- 4442 - Camellia sinensis: 10.1016/S0031-9422(98)00610-4
- 4442 - Camellia sinensis: 10.1016/S0165-1161(96)90262-9
- 4442 - Camellia sinensis: 10.1021/JF980223X
- 4442 - Camellia sinensis: 10.1034/J.1399-3054.1996.980325.X
- 4442 - Camellia sinensis: 10.1038/S41467-020-19441-1
- 4442 - Camellia sinensis: 10.1038/SCIENTIFICAMERICAN03201858-219
- 4442 - Camellia sinensis: 10.1039/A909219F
- 4442 - Camellia sinensis: 10.1081/JLC-120003036
- 4442 - Camellia sinensis: 10.1093/MUTAGE/11.1.37
- 4442 - Camellia sinensis: 10.1093/OXFORDJOURNALS.AOB.A087038
- 4442 - Camellia sinensis: 10.1093/OXFORDJOURNALS.PCP.A029184
- 4442 - Camellia sinensis: 10.1097/00001813-199606000-00011
- 4442 - Camellia sinensis: 10.1111/J.1365-2621.1983.TB14888.X
- 4442 - Camellia sinensis: 10.1177/1934578X0800300907
- 4442 - Camellia sinensis: 10.1246/CL.1988.1755
- 4442 - Camellia sinensis: 10.1248/CPB.32.2011
- 4442 - Camellia sinensis: 10.1248/CPB.40.1383
- 4442 - Camellia sinensis: 10.1248/CPB.51.343
- 4442 - Camellia sinensis: 10.1248/CPB.55.57
- 4442 - Camellia sinensis: 10.1248/CPB.55.598
- 4442 - Camellia sinensis: 10.1248/CPB.56.1297
- 4442 - Camellia sinensis: 10.1248/YAKUSHI1947.111.12_790
- 4442 - Camellia sinensis: 10.1271/BBB.56.499
- 4442 - Camellia sinensis: 10.1271/BBB.59.2134
- 4442 - Camellia sinensis: 10.1271/BBB.61.1901
- 4442 - Camellia sinensis: 10.1271/BBB1961.46.1079
- 4442 - Camellia sinensis: 10.1271/BBB1961.49.251
- 4442 - Camellia sinensis: 10.1271/BBB1961.49.2803
- 4442 - Camellia sinensis: 10.1271/BBB1961.50.1039
- 4442 - Camellia sinensis: 10.1271/NOGEIKAGAKU1924.58.1131
- 4442 - Camellia sinensis: 10.1515/ZNC-1995-9-1002
- 4442 - Camellia sinensis: 10.2741/1367
- 4442 - Camellia sinensis: LTS0075508
- 261999 - Camellia sinensis var. assamica:
- 261999 - Camellia sinensis var. assamica: 10.1016/S0031-9422(02)00086-9
- 261999 - Camellia sinensis var. assamica: LTS0075508
- 542762 - Camellia sinensis var. sinensis: 10.1016/S0031-9422(00)83024-1
- 182317 - Camellia taliensis:
- 182317 - Camellia taliensis: 10.1016/S0031-9422(00)83024-1
- 182317 - Camellia taliensis: 10.1248/CPB.57.1284
- 182317 - Camellia taliensis: LTS0075508
- 7711 - Chordata: LTS0075508
- 2706 - Citrus: LTS0075508
- 159033 - Citrus aurantiifolia: 10.1021/JF00066A035
- 43166 - Citrus aurantium: 10.1016/S0031-9422(99)00119-3
- 43166 - Citrus aurantium: 10.1021/JF00066A035
- 558547 - Citrus deliciosa: 10.1021/JF00066A035
- 76963 - Citrus glauca: 10.1016/S0031-9422(99)00119-3
- 2708 - Citrus limon: 10.1016/S0031-9422(99)00119-3
- 2708 - Citrus limon: 10.1021/JF00066A035
- 171249 - Citrus limonia: LTS0075508
- 37334 - Citrus maxima:
- 37334 - Citrus maxima: 10.1021/JF00066A035
- 37334 - Citrus maxima: LTS0075508
- 85571 - Citrus reticulata: 10.1021/JF00066A035
- 85571 - Citrus reticulata: LTS0075508
- 2711 - Citrus sinensis: 10.1021/JF00066A035
- 2711 - Citrus sinensis: LTS0075508
- 37656 - Citrus × paradisi: 10.1016/S0031-9422(99)00119-3
- 37656 - Citrus × paradisi: 10.1021/JF00066A035
- 5110 - Claviceps: LTS0075508
- 83213 - Claviceps sorghicola: 10.1016/S0031-9422(00)00169-2
- 83213 - Claviceps sorghicola: LTS0075508
- 34397 - Clavicipitaceae: LTS0075508
- 6073 - Cnidaria: LTS0075508
- 13442 - Coffea: LTS0075508
- 13443 - Coffea arabica:
- 13443 - Coffea arabica: 10.1002/ARDP.19612940503
- 13443 - Coffea arabica: 10.1002/MCS.1220060103
- 13443 - Coffea arabica: 10.1007/978-3-540-69934-7_22
- 13443 - Coffea arabica: 10.1007/BF00235351
- 13443 - Coffea arabica: 10.1007/BF02703326
- 13443 - Coffea arabica: 10.1016/0031-9422(86)88009-8
- 13443 - Coffea arabica: 10.1016/0031-9422(94)00812-8
- 13443 - Coffea arabica: 10.1016/0031-9422(95)00185-A
- 13443 - Coffea arabica: 10.1016/0031-9422(95)00586-2
- 13443 - Coffea arabica: 10.1016/0308-8146(91)90008-C
- 13443 - Coffea arabica: 10.1016/S0014-5793(03)01213-4
- 13443 - Coffea arabica: 10.1016/S0031-9422(00)83020-4
- 13443 - Coffea arabica: 10.1016/S0031-9422(00)89283-3
- 13443 - Coffea arabica: 10.1016/S0031-9422(00)89724-1
- 13443 - Coffea arabica: 10.1016/S0031-9422(97)00187-8
- 13443 - Coffea arabica: 10.1016/S0308-8146(01)00204-7
- 13443 - Coffea arabica: 10.1021/JF00043A007
- 13443 - Coffea arabica: 10.1021/JF00124A038
- 13443 - Coffea arabica: 10.1021/JF60196A035
- 13443 - Coffea arabica: 10.1021/JF60230A022
- 13443 - Coffea arabica: 10.1021/JF981209N
- 13443 - Coffea arabica: 10.1038/SCIENTIFICAMERICAN03201858-219
- 13443 - Coffea arabica: 10.1039/AI9943100261
- 13443 - Coffea arabica: 10.1080/10826079808001267
- 13443 - Coffea arabica: 10.1093/JAOAC/56.5.1126
- 13443 - Coffea arabica: 10.1093/OXFORDJOURNALS.AOB.A087038
- 13443 - Coffea arabica: 10.1104/PP.103.4.1195
- 13443 - Coffea arabica: 10.1104/PP.111.3.747
- 13443 - Coffea arabica: 10.1111/J.1365-2621.1983.TB14888.X
- 13443 - Coffea arabica: 10.1271/BBB1961.45.1255
- 13443 - Coffea arabica: 10.1271/BBB1961.49.2221
- 13443 - Coffea arabica: 10.3358/SHOKUEISHI.32.504
- 13443 - Coffea arabica: LTS0075508
- 213306 - Coffea benghalensis:
- 49390 - Coffea canephora:
- 49390 - Coffea canephora: 10.1016/S0308-8146(01)00204-7
- 49390 - Coffea canephora: 10.1080/10826079808001267
- 49390 - Coffea canephora: LTS0075508
- 49369 - Coffea eugenioides: 10.1021/JF981209N
- 49369 - Coffea eugenioides: LTS0075508
- 339902 - Coffea homollei: 10.1016/0031-9422(92)80275-J
- 339902 - Coffea homollei: LTS0075508
- 339904 - Coffea kianjavatensis:
- 339904 - Coffea kianjavatensis: 10.1016/0031-9422(91)83461-S
- 339904 - Coffea kianjavatensis: 10.1016/0031-9422(92)80275-J
- 339904 - Coffea kianjavatensis: LTS0075508
- 339910 - Coffea lancifolia: 10.1016/0031-9422(92)80275-J
- 339910 - Coffea lancifolia: LTS0075508
- 49373 - Coffea liberica: LTS0075508
- 213301 - Coffea liberica var. dewevrei: 10.1021/JF00043A007
- 213301 - Coffea liberica var. dewevrei: 10.1590/S1516-89132000000100009
- 213301 - Coffea liberica var. dewevrei: LTS0075508
- 49380 - Coffea salvatrix: 10.1021/JF981209N
- 49380 - Coffea salvatrix: LTS0075508
- 82456 - Cola: LTS0075508
- 93760 - Cola acuminata: 10.1021/JF0721038
- 93760 - Cola acuminata: LTS0075508
- 82457 - Cola nitida:
- 82457 - Cola nitida: 10.1016/0091-3057(87)90619-8
- 82457 - Cola nitida: 10.1021/JF0721038
- 82457 - Cola nitida: 10.1055/S-2007-969579
- 82457 - Cola nitida: LTS0075508
- 170017 - Corynanthe:
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 392618 - Cunila: LTS0075508
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0075508
- 3977 - Euphorbiaceae: LTS0075508
- 3803 - Fabaceae: LTS0075508
- 4605 - Festuca: LTS0075508
- 98750 - Festuca ovina: 10.1016/S0021-9673(01)83714-6
- 98750 - Festuca ovina: LTS0075508
- 4608 - Festuca pratensis: 10.1016/S0021-9673(01)83714-6
- 4608 - Festuca pratensis: LTS0075508
- 52153 - Festuca rubra: 10.1016/S0021-9673(01)83714-6
- 52153 - Festuca rubra: LTS0075508
- 4751 - Fungi: LTS0075508
- 76967 - Glycosmis pentaphylla: 10.1002/JCCS.199400032
- 108869 - Herrania: LTS0075508
- 178607 - Herrania albiflora: 10.1016/S0031-9422(00)94827-1
- 178607 - Herrania albiflora: LTS0075508
- 108870 - Herrania cuatrecasana: 10.1016/S0031-9422(00)94827-1
- 108870 - Herrania cuatrecasana: LTS0075508
- 178609 - Herrania mariae: 10.1007/BF01187339
- 178609 - Herrania mariae: LTS0075508
- 108872 - Herrania nitida: 10.1016/S0031-9422(00)94827-1
- 108872 - Herrania nitida: LTS0075508
- 108874 - Herrania purpurea: 10.1016/S0031-9422(00)94827-1
- 108874 - Herrania purpurea: LTS0075508
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1016/J.BRAINRES.2009.10.054
- 4295 - Ilex: LTS0075508
- 185491 - Ilex argentina: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 185491 - Ilex argentina: LTS0075508
- 53199 - Ilex brevicuspis: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 53199 - Ilex brevicuspis: LTS0075508
- 53202 - Ilex dumosa: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 53202 - Ilex dumosa: LTS0075508
- 185533 - Ilex microdonta: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 185533 - Ilex microdonta: LTS0075508
- 185542 - Ilex paraguariensis:
- 185542 - Ilex paraguariensis: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 185542 - Ilex paraguariensis: 10.1002/PCA.647
- 185542 - Ilex paraguariensis: 10.1016/0031-9422(91)83637-Z
- 185542 - Ilex paraguariensis: 10.1016/0031-9422(93)85103-X
- 185542 - Ilex paraguariensis: 10.1016/0308-8146(90)90126-O
- 185542 - Ilex paraguariensis: 10.1016/0378-8741(86)90005-X
- 185542 - Ilex paraguariensis: 10.1016/S0031-9422(00)00324-1
- 185542 - Ilex paraguariensis: 10.1016/S0031-9422(00)83024-1
- 185542 - Ilex paraguariensis: 10.1016/S0308-8146(96)00311-1
- 185542 - Ilex paraguariensis: 10.1021/JF020128V
- 185542 - Ilex paraguariensis: 10.1021/JF902255H
- 185542 - Ilex paraguariensis: 10.1021/JF981369Z
- 185542 - Ilex paraguariensis: 10.1248/CPB.57.257
- 185542 - Ilex paraguariensis: 10.1590/S0103-50531999000600004
- 185542 - Ilex paraguariensis: LTS0075508
- 53210 - Ilex pseudobuxus: 10.1002/(SICI)1099-1573(199803)12:2<129::AID-PTR191>3.0.CO;2-1
- 53210 - Ilex pseudobuxus: LTS0075508
- 4136 - Lamiaceae: LTS0075508
- 4447 - Liliopsida: LTS0075508
- 3963 - Loranthaceae: LTS0075508
- 3398 - Magnoliopsida: LTS0075508
- 20202 - Mallotus: LTS0075508
- 300977 - Mallotus nudiflorus: 10.1016/J.FITOTE.2010.01.016
- 300977 - Mallotus nudiflorus: LTS0075508
- 3629 - Malvaceae: LTS0075508
- 40674 - Mammalia: LTS0075508
- 1655176 - Matelea carolinensis: 10.1021/NP50042A026
- 3455 - Menispermaceae: LTS0075508
- 33208 - Metazoa: LTS0075508
- 10066 - Muridae: LTS0075508
- 43710 - Murraya: LTS0075508
- 159059 - Murraya exotica: 10.1002/JCCS.199400032
- 2901850 - Murraya exotica: 10.1002/JCCS.199400032
- 2901850 - Murraya exotica: LTS0075508
- 43711 - Murraya paniculata: 10.1002/JCCS.199400032
- 43711 - Murraya paniculata: LTS0075508
- 10088 - Mus: LTS0075508
- 10090 - Mus musculus:
- 10090 - Mus musculus: LTS0075508
- 10090 - Mus musculus: NA
- 2696291 - Ochrophyta: LTS0075508
- 44196 - Paramuricea: LTS0075508
- 317549 - Paramuricea clavata: 10.1021/NP50054A040
- 317549 - Paramuricea clavata: LTS0075508
- 290983 - Paullinia: LTS0075508
- 392747 - Paullinia cupana:
- 392747 - Paullinia cupana: 10.1002/1615-9314(20020401)25:5/6<371::AID-JSSC371>3.0.CO;2-9
- 392747 - Paullinia cupana: 10.1007/BF01027774
- 392747 - Paullinia cupana: 10.1007/BF02862148
- 392747 - Paullinia cupana: 10.1016/0031-9422(94)00141-F
- 392747 - Paullinia cupana: 10.1093/JAOAC/81.4.691
- 392747 - Paullinia cupana: 10.1111/J.2042-7158.1992.TB05517.X
- 392747 - Paullinia cupana: 10.1201/9781420050134.AX1
- 392747 - Paullinia cupana: 10.21275/ART20175623
- 392747 - Paullinia cupana: 10.3109/13880209309082937
- 392747 - Paullinia cupana: LTS0075508
- 170025 - Pausinystalia:
- 170025 - Pausinystalia: 10.1016/S0896-8446(01)00121-8
- 170025 - Pausinystalia: 10.1021/JF020128V
- 170025 - Pausinystalia: LTS0075508
- 44191 - Plexauridae: LTS0075508
- 4479 - Poaceae: LTS0075508
- 41953 - Pseudo-nitzschia: LTS0075508
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 183589 - Pseudo-nitzschia multistriata: LTS0075508
- 24966 - Rubiaceae: LTS0075508
- 23513 - Rutaceae: LTS0075508
- 23672 - Sapindaceae: LTS0075508
- 218135 - Schedonorus: LTS0075508
- 4895 - Schizosaccharomyces: LTS0075508
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 4896 - Schizosaccharomyces pombe: LTS0075508
- 4894 - Schizosaccharomycetaceae: LTS0075508
- 147554 - Schizosaccharomycetes: LTS0075508
- 227900 - Scurrula: LTS0075508
- 1146880 - Scurrula atropurpurea: 10.1248/CPB.51.343
- 1146880 - Scurrula atropurpurea: LTS0075508
- 468156 - Senegalia: LTS0075508
- 138017 - Senegalia catechu: 10.1021/JF0531499
- 875646 - Senegalia polyacantha: 10.1021/JF0531499
- 875646 - Senegalia polyacantha: LTS0075508
- 152362 - Sinomenium: LTS0075508
- 152363 - Sinomenium acutum: 10.1055/S-2006-957456
- 152363 - Sinomenium acutum: LTS0075508
- 147550 - Sordariomycetes: LTS0075508
- 35493 - Streptophyta: LTS0075508
- 24051 - Strobilanthes: LTS0075508
- 946018 - Strobilanthes crispa: 10.1016/S0955-2863(00)00108-X
- 27065 - Theaceae: LTS0075508
- 3640 - Theobroma: LTS0075508
- 108877 - Theobroma angustifolium: 10.1016/S0031-9422(00)94827-1
- 108877 - Theobroma angustifolium: LTS0075508
- 3641 - Theobroma cacao:
- 3641 - Theobroma cacao: 10.1002/PCA.2800020104
- 3641 - Theobroma cacao: 10.1007/BF01187339
- 3641 - Theobroma cacao: 10.1016/S0021-9673(01)87627-5
- 3641 - Theobroma cacao: 10.1016/S0031-9422(00)00169-2
- 3641 - Theobroma cacao: 10.1016/S0031-9422(00)94827-1
- 3641 - Theobroma cacao: 10.1021/JF980760H
- 3641 - Theobroma cacao: 10.1093/JXB/43.6.769
- 3641 - Theobroma cacao: 10.1111/J.1365-2621.1983.TB10787.X
- 3641 - Theobroma cacao: 10.1111/J.1365-2621.1983.TB14888.X
- 3641 - Theobroma cacao: 10.1111/J.1365-2621.1984.TB13737.X
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
- 3641 - Theobroma cacao: LTS0075508
- 108881 - Theobroma grandiflorum: 10.1016/S0031-9422(00)94827-1
- 108881 - Theobroma grandiflorum: LTS0075508
- 108882 - Theobroma mammosum: 10.1016/S0031-9422(00)94827-1
- 108882 - Theobroma mammosum: LTS0075508
- 108884 - Theobroma simiarum: 10.1016/S0031-9422(00)94827-1
- 108884 - Theobroma simiarum: LTS0075508
- 108885 - Theobroma speciosum: 10.1016/S0031-9422(00)94827-1
- 58023 - Tracheophyta: LTS0075508
- 52863 - Tylophora: LTS0075508
- 167779 - Vincetoxicum hirsutum: 10.1021/NP50042A026
- 33090 - Viridiplantae: LTS0075508
- 33090 - 咖啡: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ana M León-Inga, Sebastián Velásquez, Mónica Quintero, Nelson Taborda, Mónica P Cala. Effects of ultrafiltration membrane processing on the metabolic and sensory profiles of coffee extracts.
Food chemistry.
2024 Sep; 451(?):139396. doi:
10.1016/j.foodchem.2024.139396
. [PMID: 38670027] - Lin Chen, Jingyi Wang, Yijun Yang, Huajie Wang, Anan Xu, Junhui Ma, Yuefei Wang, Ping Xu. Identifying the temporal contributors and their interactions during dynamic formation of black tea cream.
Food chemistry.
2024 Aug; 448(?):139138. doi:
10.1016/j.foodchem.2024.139138
. [PMID: 38569407] - Lu Lu, Lu Wang, Ruyi Liu, Yingbin Zhang, Xinqiang Zheng, Jianliang Lu, Xinchao Wang, Jianhui Ye. An efficient artificial intelligence algorithm for predicting the sensory quality of green and black teas based on the key chemical indices.
Food chemistry.
2024 May; 441(?):138341. doi:
10.1016/j.foodchem.2023.138341
. [PMID: 38176147] - Riccardo Lorrai, Dario Cavaterra, Sara Giammaria, Diego Sbardella, Grazia Raffaella Tundo, Alessandra Boccaccini. Eye Diseases: When the Solution Comes from Plant Alkaloids.
Planta medica.
2024 May; 90(6):426-439. doi:
10.1055/a-2283-2350
. [PMID: 38452806] - Zihao Qiu, Jinmei Liao, Jiahao Chen, Ansheng Li, Minyao Lin, Hongmei Liu, Wei Huang, Binmei Sun, Jing Liu, Shaoqun Liu, Peng Zheng. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes.
Food chemistry.
2024 May; 439(?):138127. doi:
10.1016/j.foodchem.2023.138127
. [PMID: 38064834] - Nouran A I Tawfik, Zienab A El-Bakary, Khaleid F Abd El-Wakeil. Determination of caffeine in treated wastewater discharged in the Nile River with emphasis on the effect of zinc and physicochemical factors.
Environmental science and pollution research international.
2024 Apr; 31(19):28124-28138. doi:
10.1007/s11356-024-32918-6
. [PMID: 38530524] - Xuelian Dong, Qiang Chen, Wenyan Chi, Zhidong Qiu, Ye Qiu. A Metabolomics Study of the Effects of Eleutheroside B on Glucose and Lipid Metabolism in a Zebrafish Diabetes Model.
Molecules (Basel, Switzerland).
2024 Mar; 29(7):. doi:
10.3390/molecules29071545
. [PMID: 38611823] - Gina Mabrey, Majid S Koozehchian, Andrew T Newton, Alireza Naderi, Scott C Forbes, Monoem Haddad. The Effect of Creatine Nitrate and Caffeine Individually or Combined on Exercise Performance and Cognitive Function: A Randomized, Crossover, Double-Blind, Placebo-Controlled Trial.
Nutrients.
2024 Mar; 16(6):. doi:
10.3390/nu16060766
. [PMID: 38542677] - Luana L Souza, Egberto G Moura, Patricia C Lisboa. Can mothers consume caffeine? The issue of early life exposure and metabolic changes in offspring.
Toxicology letters.
2024 Mar; 393(?):96-106. doi:
10.1016/j.toxlet.2024.02.005
. [PMID: 38387763] - Sreelekshmi Sreekumar, Vinu Vijayan, Karyath Palliyath Gangaraj, Menakha Thangasornaraja, Manikantan Syamala Kiran. Caffeine-reinforced Collagen as Localized Microenvironmental Trans-Browning Bio-Matrix for Soft Tissue Repair and Regeneration in Bariatric Condition.
Advanced biology.
2024 Mar; 8(3):e2300544. doi:
10.1002/adbi.202300544
. [PMID: 38155149] - Qifang Jin, Zhong Wang, Devinder Sandhu, Lan Chen, Chenyu Shao, Siyi Xie, Fanghuizi Shang, Shuai Wen, Ting Wu, Huiying Jin, Feiyi Huang, Guizhi Liu, Jinyu Hu, Qin Su, Mengdi Huang, Qian Zhu, Biao Zhou, Lihua Zhu, Lvwen Peng, Zhonghua Liu, Jianan Huang, Na Tian, Shuoqian Liu. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis.
Journal of agricultural and food chemistry.
2024 Feb; 72(8):4464-4475. doi:
10.1021/acs.jafc.3c07736
. [PMID: 38376143] - Érica Mendes Dos Santos, Lucas Malvezzi de Macedo, Janaína Artem Ataide, Jeany Delafiori, João Paulo de Oliveira Guarnieri, Paulo César Pires Rosa, Ana Lucia Tasca Gois Ruiz, Marcelo Lancellotti, Angela Faustino Jozala, Rodrigo Ramos Catharino, Gisele Anne Camargo, Ana Cláudia Paiva-Santos, Priscila Gava Mazzola. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic.
Scientific reports.
2024 02; 14(1):4453. doi:
10.1038/s41598-024-54797-0
. [PMID: 38396007] - Tamyris de Aquino Gondim, Jhonyson Arruda Carvalho Guedes, Elenilson de Godoy Alves Filho, Gisele Silvestre da Silva, Natasha Veruska Dos Santos Nina, Firmino José do Nascimento Filho, André Luiz Atroch, Gilvan Ferreira Da Silva, Gisele Simone Lopes, Guilherme Julião Zocolo. Metabolomic approaches to explore chemodiversity in seeds of guaraná (Paullinia cupana) using UPLC-QTOF-MSE and NMR analysis.
Analytical methods : advancing methods and applications.
2024 Feb; 16(8):1158-1174. doi:
10.1039/d3ay01737k
. [PMID: 38189175] - Loukas Zagkos, Héléne T Cronjé, Benjamin Woolf, Roxane de La Harpe, Stephen Burgess, Christos S Mantzoros, Paul Elliott, Shuai Yuan, Susanna C Larsson, Ioanna Tzoulaki, Dipender Gill. Genetic investigation into the broad health implications of caffeine: evidence from phenome-wide, proteome-wide and metabolome-wide Mendelian randomization.
BMC medicine.
2024 Feb; 22(1):81. doi:
10.1186/s12916-024-03298-y
. [PMID: 38378567] - Tania Russo, Francesca Coppola, Debora Paris, Lucia De Marchi, Valentina Meucci, Andrea Motta, Marianna Carbone, Anna Di Cosmo, Amadeu M V M Soares, Carlo Pretti, Ernesto Mollo, Rosa Freitas, Gianluca Polese. Exploring toxicological interactions in a changing sea: The case of the alkaloids caffeine and caulerpin.
The Science of the total environment.
2024 Feb; 912(?):169190. doi:
10.1016/j.scitotenv.2023.169190
. [PMID: 38092204] - Yanting Wang, Guoqiang Liang, Wei Mu, Shu Sun, Xuanyi Chen, Xiaofeng Xu. Bushen Tianjing Recipe inhibits human ovarian granulosa cell line KGN apoptosis induced by miR-23a through the regulation of the sirtuin family.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 3):117201. doi:
10.1016/j.jep.2023.117201
. [PMID: 37739102] - Hong-Loan Tran, Kuei-Hung Lai, Hsun-Shuo Chang, Yi-Siao Chen, Hui-Chun Wang, Shuen-Shin Yang, Hsueh-Wei Chang, Chin-Mu Hsu, Chia-Hung Yen, Hui-Hua Hsiao. Indigofera suffruticosa aerial parts extract induce G2/M arrest and ATR/CHK1 pathway in Jurkat cells.
BMC complementary medicine and therapies.
2024 Jan; 24(1):28. doi:
10.1186/s12906-023-04325-w
. [PMID: 38195460] - Débora P DE Moraes, Daniele F Ferreira, Alexandre José Cichoski, Milene T Barcia, Juliano S Barin. Ultrasound combined with microwave hydrodiffusion and gravity for enhancement of caffeine extraction from guarana powder.
Anais da Academia Brasileira de Ciencias.
2024; 96(2):e20230840. doi:
10.1590/0001-3765202420230840
. [PMID: 38747838] - Firdous Sayeed Mohammed, Dinesh Babu, Zainab Irfan, Marwa A A Fayed. A review on the traditional uses, nutritive importance, pharmacognostic features, phytochemicals, and pharmacology of Momordica cymbalaria Hook F.
PeerJ.
2024; 12(?):e16928. doi:
10.7717/peerj.16928
. [PMID: 38436002] - Meihui Chen, Ying Zhang, Yuhua Wang, Pengyuan Cheng, Qi Zhang, Mingzhe Li, Xiaoli Jia, Yibin Pan, Shaoxiong Lin, Zhengwei Luo, Haibin Wang, Jianghua Ye. Transcriptomic analysis of the effect of shaking and tumbling degree on quality formation of Wuyi rock tea.
Journal of food science.
2024 Jan; 89(1):81-95. doi:
10.1111/1750-3841.16844
. [PMID: 37983847] - Rezvan Shaddel, Safoura Akbari-Alavijeh, Ilaria Cacciotti, Shima Yousefi, Merve Tomas, Esra Capanoglu, Ozgur Tarhan, Ali Rashidinejad, Atefe Rezaei, Mohammed Bhia, Seid Mahdi Jafari. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications.
Critical reviews in food science and nutrition.
2024; 64(15):4940-4965. doi:
10.1080/10408398.2022.2147143
. [PMID: 36412258] - Yan Yang, Juanjuan Chen, Huiyu Gao, Minglu Cui, Mingyu Zhu, Xuesong Xiang, Qi Wang. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China.
Frontiers in cellular and infection microbiology.
2024; 14(?):1374544. doi:
10.3389/fcimb.2024.1374544
. [PMID: 38585649] - Hua Zhang, Yakang Song, Zhenglei Fan, Jianyun Ruan, Jianhui Hu, Qunfeng Zhang. Aluminum Supplementation Mediates the Changes in Tea Plant Growth and Metabolism in Response to Calcium Stress.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010530
. [PMID: 38203700] - Naiyan Lu, Xue Mei, Xu Li, Xue Tang, Guofeng Yang, Wen Xiang. Preventive effects of caffeine on nicotine plus high-fat diet-induced hepatic steatosis and gain weight: a possible explanation for why obese smokers with high coffee consumption tend to be leaner.
The British journal of nutrition.
2023 Dec; ?(?):1-10. doi:
10.1017/s0007114523002969
. [PMID: 38149470] - Bailey R Meyer, Haley M White, Jared D McCormack, Emily D Niemeyer. Catechin Composition, Phenolic Content, and Antioxidant Properties of Commercially-Available Bagged, Gunpowder, and Matcha Green Teas.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Dec; 78(4):662-669. doi:
10.1007/s11130-023-01121-2
. [PMID: 37923855] - Graziela Taís Schmitt, Marcelo Oliveira Caetano, Vinícius Martins Marques, Amanda Gonçalves Kieling, Marie Launay, Lilia Itzel Acosta Muñiz, Luciana Paulo Gomes. Comparison of 17β-estradiol, bisphenol-A and caffeine concentration levels before and after the water treatment plant.
Journal of water and health.
2023 Nov; 21(11):1716-1726. doi:
10.2166/wh.2023.234
. [PMID: 38017601] - Cong Zhang, Dingmei Zhang, Hegui Huang, Xiaoqian Lu, Huasong Shi, Kexin Liu, Xiaoling Guo, Rui Zhang, Hui Wang. Cathepsin D mediates prenatal caffeine exposure-caused NAFLD susceptibility in male rat offspring by regulating autophagy.
Free radical biology & medicine.
2023 11; 208(?):684-699. doi:
10.1016/j.freeradbiomed.2023.09.026
. [PMID: 37743032] - Zhiyi Xie, Ninghua Jiang, Minqiu Lin, Xinglishang He, Bo Li, Yingjie Dong, Suhong Chen, Guiyuan Lv. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review.
Molecules (Basel, Switzerland).
2023 Oct; 28(21):. doi:
10.3390/molecules28217355
. [PMID: 37959774] - Xiang Cui, Wan Wei, Ziyi Zhang, Kun Liu, Ting Zhao, Jialin Zhang, Ani Zheng, Hanqing Xi, Xun He, Shuya Wang, Bing Zhu, Xinyan Gao. Caffeine impaired acupuncture analgesia in inflammatory pain by blocking adenosine A1 receptor.
The journal of pain.
2023 Oct; ?(?):. doi:
10.1016/j.jpain.2023.10.025
. [PMID: 37918469] - Shadia Hamoud Alshahrani, Yasir A Atia, Raheem Atiya Badir, Sami G Almalki, Nahla A Tayyib, Sana Shahab, Rosario Mireya Romero-Parra, Mohammed Kadhem Abid, Beneen M Hussien, Pushpamala Ramaiah. Dietary caffeine intake is associated with favorable metabolic profile among apparently healthy overweight and obese individuals.
BMC endocrine disorders.
2023 Oct; 23(1):227. doi:
10.1186/s12902-023-01477-1
. [PMID: 37864190] - Greggory R Davis, Arnold G Nelson. Niacin supplementation impairs exercise performance.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2023 Oct; 93(5):385-391. doi:
10.1024/0300-9831/a000736
. [PMID: 34696617] - Gouhar Jahan Ashraf, Priya Das, Ranabir Sahu, Gouranga Nandi, Paramita Paul, Tarun Kumar Dua. Impact of ultrasound-assisted extraction of polyphenols and caffeine from green tea leaves using high-performance thin-layer chromatography.
Biomedical chromatography : BMC.
2023 Oct; 37(10):e5698. doi:
10.1002/bmc.5698
. [PMID: 37403293] - Donné Minné, Juliet Stromin, Taskeen Docrat, Penelope Engel-Hills, Jeanine L Marnewick. The effects of tea polyphenols on emotional homeostasis: Understanding dementia risk through stress, mood, attention & sleep.
Clinical nutrition ESPEN.
2023 10; 57(?):77-88. doi:
10.1016/j.clnesp.2023.06.008
. [PMID: 37739736] - Saeed Arshad, Mengli Wei, Qurban Ali, Ghulam Mustafa, Zhengqiang Ma, Yuanxin Yan. Paclitaxel and Caffeine-Taurine, New Colchicine Alternatives for Chromosomes Doubling in Maize Haploid Breeding.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914659
. [PMID: 37834106] - Lidiia Samarina, Jaroslava Fedorina, Daria Kuzmina, Lyudmila Malyukova, Karina Manakhova, Tatyana Kovalenko, Alexandra Matskiv, Enhua Xia, Wei Tong, Zhaoliang Zhang, Alexey Ryndin, Yuriy L Orlov, Elena K Khlestkina. Analysis of Functional Single-Nucleotide Polymorphisms (SNPs) and Leaf Quality in Tea Collection under Nitrogen-Deficient Conditions.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914538
. [PMID: 37833988] - Wenxiang Li, Guangyi Huang, Ningning Tang, Peng Lu, Li Jiang, Jian Lv, Yuanjun Qin, Yunru Lin, Fan Xu, Daizai Lei. Identification of dietary components in association with abdominal aortic calcification.
Food & function.
2023 Sep; 14(18):8383-8395. doi:
10.1039/d3fo02920d
. [PMID: 37609915] - Dino Davosir, Ivana Šola. Membrane permeabilizers enhance biofortification of Brassica microgreens by interspecific transfer of metabolites from tea (Camellia sinensis).
Food chemistry.
2023 Sep; 420(?):136186. doi:
10.1016/j.foodchem.2023.136186
. [PMID: 37087866] - Huan Han, Lijing Ke, Wei Xu, Huiqin Wang, Jianwu Zhou, Pingfan Rao. Incidental nanoparticles in black tea alleviate DSS-induced ulcerative colitis in BALB/c mice.
Food & function.
2023 Aug; ?(?):. doi:
10.1039/d3fo00641g
. [PMID: 37615587] - Burcu Uner, Melahat Sedanur Macit Celebi. Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways.
International journal of obesity (2005).
2023 Aug; ?(?):. doi:
10.1038/s41366-023-01365-7
. [PMID: 37596386] - Mengying Hong, Yushen Du, Dongdong Chen, Yuan Shi, Menglong Hu, Kejun Tang, Zhuping Hong, Xiangzhi Meng, Wan Xu, Gaoqi Wu, Yuanyuan Yao, Liubo Chen, Wenteng Chen, Chit Ying Lau, Li Sheng, Tian-Hao Zhang, Haigen Huang, Zheyu Fang, Yong Shen, Fangfang Sun, Jing Qian, Haibin Qu, Shu Zheng, Suzhan Zhang, Kefeng Ding, Ren Sun. Martynoside rescues 5-fluorouracil-impaired ribosome biogenesis by stabilizing RPL27A.
Science bulletin.
2023 08; 68(15):1662-1677. doi:
10.1016/j.scib.2023.07.018
. [PMID: 37481436] - Jiahui Yin, Yu Ding, Feikang Xu, Leiyong Zhao, Rongpeng Gong, Jiguo Yang, Yuanxiang Liu. Does the timing of intake matter? Association between caffeine intake and depression: Evidence from the National Health and Nutrition Examination Survey.
Journal of affective disorders.
2023 Aug; ?(?):. doi:
10.1016/j.jad.2023.07.115
. [PMID: 37543113] - Roberto Tira, Giovanna Viola, Carlo Giorgio Barracchia, Francesca Parolini, Francesca Munari, Stefano Capaldi, Michael Assfalg, Mariapina D'Onofrio. Espresso Coffee Mitigates the Aggregation and Condensation of Alzheimer's Associated Tau Protein.
Journal of agricultural and food chemistry.
2023 Aug; 71(30):11429-11441. doi:
10.1021/acs.jafc.3c01072
. [PMID: 37466260] - Vinicius Diniz, Susanne Rath. Adsorption of aqueous phase contaminants of emerging concern by activated carbon: Comparative fixed-bed column study and in situ regeneration methods.
Journal of hazardous materials.
2023 Jul; 459(?):132197. doi:
10.1016/j.jhazmat.2023.132197
. [PMID: 37543021] - Tom Gurney, Naomi Bradley, Dionisio Izquierdo, Flaminia Ronca. Cognitive effects of guarana supplementation with maximal intensity cycling.
The British journal of nutrition.
2023 Jul; 130(2):253-260. doi:
10.1017/s0007114522002859
. [PMID: 36146946] - Ahmed Alaa Kassem, Marwa Hasanein Asfour, Sameh Hosam Abd El-Alim, Mohamed Abdelrazik Khattab, Abeer Salama. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 32 full factorial design optimization and in vivo evaluation in rats.
International journal of pharmaceutics.
2023 Jul; 643(?):123271. doi:
10.1016/j.ijpharm.2023.123271
. [PMID: 37499772] - David Fernando Dos Santos, Vandressa Alves, Edlaine Costa, André Martins, Alexia Flavia França Vieira, Gustavo Henrique Fidelis Dos Santos, Cátia Tavares Dos Passos Francisco, Vânia Zanella Pinto. Yerba Mate (Ilex paraguariensis) Processing and Extraction: Retention of Bioactive Compounds.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Jul; ?(?):. doi:
10.1007/s11130-023-01082-6
. [PMID: 37466823] - Sirine Atwi-Ghaddar, Lydie Zerwette, Emilie Destandau, Eric Lesellier. Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145485
. [PMID: 37513357] - Haley A Abernathy, Ross M Boyce, Michael H Reiskind. Exploring the effects of caffeine on Aedes albopictus (Diptera: Culicidae) survival and fecundity.
Journal of medical entomology.
2023 07; 60(4):837-841. doi:
10.1093/jme/tjad047
. [PMID: 37085153] - Haysem M Alhassen, Fiona J Dyer, Ross M Thompson. The photolytic breakdown of caffeine and paracetamol residues in surface water.
Water environment research : a research publication of the Water Environment Federation.
2023 Jul; ?(?):e10909. doi:
10.1002/wer.10909
. [PMID: 37429828] - Johanna C Arroyave-Ospina, Manon Buist-Homan, Martina Schmidt, Han Moshage. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jul; 165(?):114884. doi:
10.1016/j.biopha.2023.114884
. [PMID: 37423170] - Lu Zhang, Jiahui Yin, Jinling Li, Haiyang Sun, Yuanxiang Liu, Jiguo Yang. Association between dietary caffeine intake and severe headache or migraine in US adults.
Scientific reports.
2023 Jun; 13(1):10220. doi:
10.1038/s41598-023-36325-8
. [PMID: 37353507] - Idalia Casas-Hinojosa, Leobardo Manuel Gómez-Oliván, Veronica Margarita Gutierrez-Noya, Sandra Gracía-Medina, Karina Elisa Rosales-Pérez, José Manuel Orozco-Hernández, Gustavo Axel Elizalde-Velázquez, Marcela Galar-Martínez, Octavio Dublán-García, María Dolores Hernández-Navarro, Hariz Islas-Flores. Integrative approach to elucidate the embryological effects of caffeine in Cyprinus carpio: Bioconcentration and alteration of oxidative stress-related gene expression patterns.
The Science of the total environment.
2023 Jun; 894(?):165016. doi:
10.1016/j.scitotenv.2023.165016
. [PMID: 37348709] - Erick V S Motta, Ryan L W Arnott, Nancy A Moran. Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen.
Microbiology spectrum.
2023 06; 11(3):e0052023. doi:
10.1128/spectrum.00520-23
. [PMID: 37212661] - Sumit Bansal, C Austin Zamarripa, Tory R Spindle, Elise M Weerts, Kenneth E Thummel, Ryan Vandrey, Mary F Paine, Jashvant D Unadkat. Evaluation of Cytochrome P450-Mediated Cannabinoid-Drug Interactions in Healthy Adult Participants.
Clinical pharmacology and therapeutics.
2023 Jun; ?(?):. doi:
10.1002/cpt.2973
. [PMID: 37313955] - Lukas Babylon, Julia Meißner, Gunter P Eckert. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210029
. [PMID: 37373177] - Javier Gallardo-Ignacio, Anislada Santibáñez, Octavio Oropeza-Mariano, Ricardo Salazar, Rosa Mariana Montiel-Ruiz, Sandra Cabrera-Hilerio, Manasés Gonzáles-Cortazar, Francisco Cruz-Sosa, Pilar Nicasio-Torres. Chemical and Biological Characterization of Green and Processed Coffee Beans from Coffea arabica Varieties.
Molecules (Basel, Switzerland).
2023 Jun; 28(12):. doi:
10.3390/molecules28124685
. [PMID: 37375240] - Marco Carnevale Miino, Tomáš Macsek, Taťána Halešová, Tomáš Chorazy, Petr Hlavínek. Pharmaceutical and narcotics monitoring in Brno wastewater system and estimation of seasonal effect on the abuse of illicit drugs by a wastewater-based epidemiology approach.
The Science of the total environment.
2023 May; ?(?):164386. doi:
10.1016/j.scitotenv.2023.164386
. [PMID: 37263433] - Elisa Bernklau, H S Arathi. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries.
Journal of economic entomology.
2023 May; ?(?):. doi:
10.1093/jee/toad096
. [PMID: 37247384] - Philippa A Jackson, Charlotte Kenney, Joanne Forster, Ellen F Smith, Rian Elcoate, Bethany Spittlehouse, Jodee Johnson, David O Kennedy. Acute Cognitive Performance and Mood Effects of Coffeeberry Extract: A Randomized, Double Blind, Placebo-Controlled Crossover Study in Healthy Humans.
Nutrients.
2023 May; 15(11):. doi:
10.3390/nu15112418
. [PMID: 37299382] - F Impellitteri, K Yunko, V Martyniuk, T Matskiv, S Lechachenko, V Khoma, A Mudra, G Piccione, O Stoliar, C Faggio. Physiological and biochemical responses to caffeine and microplastics in Mytilus galloprovincialis.
The Science of the total environment.
2023 May; ?(?):164075. doi:
10.1016/j.scitotenv.2023.164075
. [PMID: 37230349] - Maria de Fátima C Santos, Katlin S Rech, Lívia M Dutra, Leociley R A Menezes, Alan D da C Santos, Noemi Nagata, Maria Élida A Stefanello, Andersson Barison. 1H HR-MAS NMR chemical profile and chemometric analysis as a tool for quality control of different cultivars of green tea (Camellia sinensis).
Food chemistry.
2023 May; 408(?):135016. doi:
10.1016/j.foodchem.2022.135016
. [PMID: 36525726] - Miroslav Gancar, Elena Kurin, Zuzana Bednarikova, Jozef Marek, Pavel Mucaji, Milan Nagy, Zuzana Gazova. Green tea leaf constituents inhibit the formation of lysozyme amyloid aggregates: An effect of mutual interactions.
International journal of biological macromolecules.
2023 May; 242(Pt 2):124856. doi:
10.1016/j.ijbiomac.2023.124856
. [PMID: 37178892] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Yejin Ahn, Hee Hwan Lee, Byung-Hak Kim, Sang Jae Park, Young Suk Kim, Hyung Joo Suh, Kyungae Jo. Heukharang lettuce (Lactuca sativa L.) leaf extract displays sleep-promoting effects through GABAA receptor.
Journal of ethnopharmacology.
2023 May; ?(?):116602. doi:
10.1016/j.jep.2023.116602
. [PMID: 37149068] - Ruihong Dong, Mengting Zhu, You Long, Qiang Yu, Chang Li, Jianhua Xie, Yousheng Huang, Yi Chen. Exploring correlations between green coffee bean components and thermal contaminants in roasted coffee beans.
Food research international (Ottawa, Ont.).
2023 05; 167(?):112700. doi:
10.1016/j.foodres.2023.112700
. [PMID: 37087268] - Oliver J Perkin, Yung-Chih Chen, Drusus A Johnson, Joel E Thomas, Greg Atkinson, James A Betts, Javier T Gonzalez. Postprandial metabolic responses to high-fat feeding in healthy adults following ingestion of oolong tea-derived polymerized polyphenols: a randomized, double-blinded, placebo-controlled crossover study.
The American journal of clinical nutrition.
2023 Apr; ?(?):. doi:
10.1016/j.ajcnut.2023.04.020
. [PMID: 37080462] - Xiaozeng Mi, Chun Yang, Dahe Qiao, Mengsha Tang, Yan Guo, Sihui Liang, Yan Li, Zhengwu Chen, Juan Chen. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation.
Scientific reports.
2023 04; 13(1):6015. doi:
10.1038/s41598-023-32435-5
. [PMID: 37045909] - Minghui Hu, Muxuan Han, Hao Zhang, Zifa Li, Kaiyong Xu, Huaixing Kang, Jiancheng Zong, Feng Zhao, Yuanxiang Liu, Wei Liu. Curcumin (CUMINUP60®) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice.
Aging.
2023 Mar; 15(6):2308-2320. doi:
10.18632/aging.204614
. [PMID: 36988546] - Yan Cheng, Fumin Xue, Yu Yang. Hot Water Extraction of Antioxidants from Tea Leaves-Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks.
Molecules (Basel, Switzerland).
2023 Mar; 28(7):. doi:
10.3390/molecules28073030
. [PMID: 37049793] - Liang Zhang, Yongquan Xu, Zhonghua Liu. Tea: From Historical Documents to Modern Technology.
Molecules (Basel, Switzerland).
2023 Mar; 28(7):. doi:
10.3390/molecules28072992
. [PMID: 37049755] - Jing-Jing Zhang, Qi-Jie Xu, Claudia Schmidt, Mohamed A Abu El Maaty, Jinglin Song, Chunqiu Yu, Jun Zhou, Kang Han, Hao Sun, Angela Casini, Ingo Ott, Stefan Wölfl. Elucidating the Multimodal Anticancer Mechanism of an Organometallic Terpyridine Platinum(II) N-Heterocyclic Carbene Complex against Triple-Negative Breast Cancer In Vitro and In Vivo.
Journal of medicinal chemistry.
2023 03; 66(6):3995-4008. doi:
10.1021/acs.jmedchem.2c01925
. [PMID: 36898000] - Heider Carreño, Elena E Stashenko, Patricia Escobar. Essential Oils Distilled from Colombian Aromatic Plants and Their Constituents as Penetration Enhancers for Transdermal Drug Delivery.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062872
. [PMID: 36985843] - Thirakorn Mokkawes, Samuel P de Visser. Caffeine biodegradation by cytochrome P450 1A2. What determines the product distributions?.
Chemistry (Weinheim an der Bergstrasse, Germany).
2023 Mar; ?(?):e202203875. doi:
10.1002/chem.202203875
. [PMID: 36929809] - Gaber El-Saber Batiha, Ali Esmail Al-Snafi, Mahdi M Thuwaini, John Oluwafemi Teibo, Hazem M Shaheen, Ayomide Peter Akomolafe, Titilade Kehinde Ayandeyi Teibo, Hayder M Al-Kuraishy, Ali I Al-Garbeeb, Athanasios Alexiou, Marios Papadakis. Morus alba: a comprehensive phytochemical and pharmacological review.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Mar; ?(?):. doi:
10.1007/s00210-023-02434-4
. [PMID: 36877269] - Jessica Virgili, Petros Motitis, Gabrielle Julal, Yiannis Mavrommatis, Leta Pilic. The impact of genetic variability on the relationship between caffeine and cardiometabolic outcomes: A systematic review.
Nutrition bulletin.
2023 Mar; 48(1):28-42. doi:
10.1111/nbu.12606
. [PMID: 36842137] - Scott A Conger, Lara M Tuthill, Mindy L Millard-Stafford. Does Caffeine Increase Fat Metabolism? A Systematic Review and Meta-Analysis.
International journal of sport nutrition and exercise metabolism.
2023 Mar; 33(2):112-120. doi:
10.1123/ijsnem.2022-0131
. [PMID: 36495873] - Nuria Alcubierre, Minerva Granado-Casas, Patricia Bogdanov, Cristina Hernández, Hugo Ramos, Esmeralda Castelblanco, Jordi Real, Esther Rubinat-Arnaldo, Alicia Traveset, Marta Hernández, Carmen Jurjo, Jesús Vioque, Eva Maria Navarrete-Muñoz, Rafael Simó, Didac Mauricio. Caffeine and the Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus: Findings from Clinical and Experimental Studies.
Nutrients.
2023 Feb; 15(5):. doi:
10.3390/nu15051169
. [PMID: 36904168] - Duhyeon Kim, Seonghui Kim, Minseok Yoon, Min Young Um, Suengmok Cho. Effects of Chronic Administration of Green Tea Ethanol Extract on Sleep Architecture in Mice: A Comparative Study with a Representative Stimulant Caffeine.
Nutrients.
2023 Feb; 15(4):. doi:
10.3390/nu15041042
. [PMID: 36839400] - Yue Xu, Li Ma, Fei Liu, Lei Yao, Wencui Wang, Suzhen Yang, Tingting Han. Lavender essential oil fractions alleviate sleep disorders induced by the combination of anxiety and caffeine in mice.
Journal of ethnopharmacology.
2023 Feb; 302(Pt A):115868. doi:
10.1016/j.jep.2022.115868
. [PMID: 36309115] - Zhimin Wu, Wenxin Yu, Weiju Ni, Cuiqin Teng, Weile Ye, Cuiping Yu, Yu Zeng. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Feb; 110(?):154633. doi:
10.1016/j.phymed.2022.154633
. [PMID: 36628832] - Arleta Sierakowska, Beata Jasiewicz, Łukasz Piosik, Lucyna Mrówczyńska. New C8-substituted caffeine derivatives as promising antioxidants and cytoprotective agents in human erythrocytes.
Scientific reports.
2023 01; 13(1):1785. doi:
10.1038/s41598-022-27205-8
. [PMID: 36720903] - Chang Liu, Haotian Zhao, Yi Yan, Weijun Yang, Songyue Chen, Ge Song, Xuehan Li, Yujia Gu, Hezhang Yun, Yi Li. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers.
Nutrients.
2023 Jan; 15(3):. doi:
10.3390/nu15030582
. [PMID: 36771289] - Brian Hack, Eduardo Macedo Penna, Tyler Talik, Rohan Chandrashekhar, Mindy Millard-Stafford. Effect of Guarana (Paullinia cupana) on Cognitive Performance: A Systematic Review and Meta-Analysis.
Nutrients.
2023 Jan; 15(2):. doi:
10.3390/nu15020434
. [PMID: 36678305] - Javier Palacios, Adrián Paredes, Fredi Cifuentes, Marcelo A Catalán, Angel Luis García-Villalón, Jorge Borquez, Mario J Simirgiotis, Matthew Jones, Amy Foster, David J Greensmith. A hydroalcoholic extract of Senecio nutans SCh. Bip (Asteraceae); its effects on cardiac function and chemical characterization.
Journal of ethnopharmacology.
2023 Jan; 300(?):115747. doi:
10.1016/j.jep.2022.115747
. [PMID: 36152785] - Géssica Aline Nogueira Dos Santos, Celso Scherer Filho, Flávia Camila Schimpl, Sarah Caroline Ribeiro de Souza, Adamir da Rocha Nina Junior, Rebeca Patrícia Omena Garcia, José Ferreira da Silva. Metabolism of guarana (Paullinia cupana Kunth var. sorbilis) plants and fruit production subjected to glyphosate doses.
Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.
2023; 58(1):69-79. doi:
10.1080/03601234.2023.2172275
. [PMID: 36747348] - Shiqi Zhao, Haiyan Cheng, Ping Xu, Yuefei Wang. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant (Camellia sinensis): A review.
Critical reviews in food science and nutrition.
2023; 63(30):10520-10535. doi:
10.1080/10408398.2022.2078787
. [PMID: 35608014] - Matthew A Pronschinske, Steven R Corsi, Celeste Hockings. Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques.
PloS one.
2023; 18(6):e0286571. doi:
10.1371/journal.pone.0286571
. [PMID: 37267346] - Hangxiu Che, Yaqun Wang, Jinhui Lao, Yixin Deng, Chirui Xu, Hanxiao Yin, Zheng Tang, Yonghong Huang, Hong Xu. Role of purinergic signalling in obesity-associated end-organ damage: focus on the effects of natural plant extracts.
Frontiers in endocrinology.
2023; 14(?):1181948. doi:
10.3389/fendo.2023.1181948
. [PMID: 37476493] - Majid Bagheri, Xiaolong He, Mariam K Al-Lami, Nadege Oustriere, Wenyan Liu, Matt A Limmer, Honglan Shi, Joel G Burken. Assessing plant uptake of organic contaminants by food crops tomato, wheat, and corn through sap concentration factor.
International journal of phytoremediation.
2023; 25(9):1215-1224. doi:
10.1080/15226514.2022.2144797
. [PMID: 36356305] - Hao Zuo, Xiongyuan Si, Ping Li, Juan Li, Zhihui Chen, Penghui Li, Changsong Chen, Zhonghua Liu, Jian Zhao. Dynamic change of tea (Camellia sinensis) leaf cuticular wax in white tea processing for contribution to tea flavor formation.
Food research international (Ottawa, Ont.).
2023 01; 163(?):112182. doi:
10.1016/j.foodres.2022.112182
. [PMID: 36596123] - Preeti Dali, Pravin Shende. Self-Assembled Lipid Polymer Hybrid Nanoparticles Using Combinational Drugs for Migraine Via Intranasal Route.
AAPS PharmSciTech.
2022 Dec; 24(1):20. doi:
10.1208/s12249-022-02479-3
. [PMID: 36526821] - Fei Ye, Xinbo Guo, Bo Li, Haiqiang Chen, Xiaoyan Qiao. Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of 'Yinghong 9' and 'Huangyu' Large-Leaf-Variety Black Tea.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248720
. [PMID: 36557856] - Vita Paramita, Nanang Masruchin, Yohanes Widodo Wirohadidjojo, Buwono Puruhito, Hermawan Dwi Ariyanto, Mohamad Endy Yulianto, Indah Hartati, Eflita Yohana, Furqon Hidayatulloh, Tris Sutrisno, Bagus Wijayanto. Multiple response optimizations on the leached-spray-dried bancha green tea towards healthy ageing.
Scientific reports.
2022 12; 12(1):21347. doi:
10.1038/s41598-022-25644-x
. [PMID: 36494428] - Francesca Paola Luongo, Sofia Passaponti, Alesandro Haxhiu, Maryam Raeispour, Giuseppe Belmonte, Laura Governini, Livio Casarini, Paola Piomboni, Alice Luddi. Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415540
. [PMID: 36555195] - Mai M Anwar, Ibrahim M Ibrahim Laila. Mitigative effect of caffeine against diclofenac-induced hepato-renal damage and chromosomal aberrations in male albino rats.
BMC complementary medicine and therapies.
2022 Dec; 22(1):327. doi:
10.1186/s12906-022-03802-y
. [PMID: 36482339] - Hui-Lin Yang, Ying Li, Yi Chen, Si-Ying Chen, Yue-Ting Li, Yong Huang, Lin Zheng, Jing Huang, Yong-Lin Wang, Zi-Peng Gong. [Effect of Laportea bulbifera extract on CYP450 enzyme activities in rats by Cocktail probe drug method].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Dec; 47(23):6320-6332. doi:
10.19540/j.cnki.cjcmm.20220623.204
. [PMID: 36604876] - Juan Cruz Carrizo, Sung Vo Duy, Gabriel Munoz, Guido Marconi, María Valeria Amé, Sébastien Sauvé. Suspect screening of pharmaceuticals, illicit drugs, pesticides, and other emerging contaminants in Argentinean Piaractus mesopotamicus, a fish species used for local consumption and export.
Chemosphere.
2022 Dec; 309(Pt 1):136769. doi:
10.1016/j.chemosphere.2022.136769
. [PMID: 36209849] - David O Kennedy, Emma L Wightman. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients.
Sports medicine (Auckland, N.Z.).
2022 Dec; 52(Suppl 1):69-90. doi:
10.1007/s40279-022-01796-8
. [PMID: 36447122] - Misato Ota, Yasuhito Maki, Ling-Yu Xu, Toshiaki Makino. Prolonging effects of Valeriana fauriei root extract on pentobarbital-induced sleep in caffeine-induced insomnia model mice and the pharmacokinetics of its active ingredients under conditions of glycerol fatty acid ester as emulsifiers.
Journal of ethnopharmacology.
2022 Nov; 298(?):115625. doi:
10.1016/j.jep.2022.115625
. [PMID: 35970315]