Chalconaringenin (BioDeep_00000000100)
Secondary id: BioDeep_00000270019
human metabolite PANOMIX_OTCML-2023 Endogenous PANOMIX-Anthocyanidin Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H12O5 (272.0684702)
中文名称: 柚皮素查尔酮, 柚皮素, 柚皮苷查尔酮
谱图信息:
最多检出来源 Viridiplantae(plant) 0.06%
Last reviewed on 2024-07-12.
Cite this Page
Chalconaringenin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/chalconaringenin (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000100). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(cc(c(c(c1)O)C(=O)/C=C/c1ccc(cc1)O)O)O
InChI: InChI=1S/C15H12O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-8,16-17,19-20H/b6-3+
描述信息
2,4,4,6-tetrahydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively. It has a role as a metabolite, an anti-allergic agent and an anti-inflammatory agent. It is a polyphenol and a member of chalcones. It is functionally related to a trans-chalcone.
Naringenin chalcone is a natural product found in Populus koreana, Populus tremula, and other organisms with data available.
Isolated from tomato fruit cuticles. Chalconaringenin is found in many foods, some of which are cherry tomato, lettuce, greenthread tea, and lemon.
A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 ,4, 4, and 6 respectively.
Chalconaringenin is found in garden tomato. Chalconaringenin is isolated from tomato fruit cuticle
Naringenin chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5071-40-9 (retrieved 2024-07-12) (CAS RN: 25515-46-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
31 个代谢物同义名
2-Propen-1-one, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-, (2E)-; (2E)- 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-2-Propen-1-one; (2E)-3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-2-propen-1-one; 3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-2-propen-1-one, 9CI; (2E)-3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one; (E)-3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one; 2-Propen-1-one, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-; 3-(4-hydroxyphemyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one; 3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-2-propen-1-one; trans-2,4,4,6-Tetrahydroxychalcone; Chalcone, 2,4,4,6-tetrahydroxy-; naringenin chalcone, (E)-isomer; trans-2464-tetrahydroxychalcone; 4,2,4,6-TETRAHYDROXYCHALCONE; 4,2,4,6-Tetrahydroxychalcone; 2,4,4,6-tetrahydroxychalcone; 2,4,6,4-tetrahydroxychalcone; YQHMWTPYORBCMF-ZZXKWVIFSA-N; 2464-Tetrahydroxychalcone; (E)-Naringenin chalcone; Naringenin chalcone; Naringenin chalcon; Chalcononaringenin; chalconaringenin; UNII-YCF6Z24AS2; MEGxp0_001759; Isosalipurpol; ACon1_001222; YCF6Z24AS2; Naringenin; Naringenin chalcone
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:15413
- KEGG: C06561
- PubChem: 5280960
- PubChem: 155802
- HMDB: HMDB0029631
- Metlin: METLIN3402
- ChEMBL: CHEMBL338066
- Wikipedia: Naringenin_chalcone
- Wikipedia: Naringenin chalcone
- LipidMAPS: LMPK12120264
- MeSH: naringenin chalcone
- ChemIDplus: 0073692509
- MetaCyc: CPD-20012
- KNApSAcK: C00007233
- foodb: FDB000801
- chemspider: 4444447
- CAS: 25515-46-2
- CAS: 5071-40-9
- MoNA: PB002406
- MoNA: PB000126
- MoNA: PB002405
- MoNA: PB000129
- MoNA: PB002408
- MoNA: PB000128
- MoNA: PB000127
- MoNA: PB002407
- medchemexpress: HY-N3007A
- medchemexpress: HY-N3007
- PMhub: MS000002798
- MetaboLights: MTBLC15413
- 3DMET: B00973
- NIKKAJI: J16.987K
- PubChem: 8790
- KNApSAcK: 15413
分类词条
相关代谢途径
Reactome(0)
代谢反应
322 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(10)
- aurone biosynthesis:
2',3,4,4',6'-pentahydroxychalcone 4'-O-β-D-glucoside + O2 ⟶ H2O + bracteatin 6-O-glucoside
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid di-C-glucosylation:
UDP-α-D-glucose + nothofagin ⟶ 3',5'-di-C-glucosylphloretin + H+ + UDP
- naringenin biosynthesis (engineered):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
(+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
- xanthohumol biosynthesis:
DMAPP + naringenin chalcone ⟶ H+ + desmethylxanthohumol + diphosphate
- aromatic polyketides biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- chalcone 2'-O-glucoside biosynthesis:
UDP-α-D-glucose + naringenin chalcone ⟶ H+ + UDP + chalcone 2'-O-glucoside
- flavonoid biosynthesis (in equisetum):
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
Plant Reactome(0)
INOH(0)
PlantCyc(309)
- aurone biosynthesis:
2',3,4,4',6'-pentahydroxychalcone 4'-O-β-D-glucoside + O2 ⟶ H2O + aureusidin 6-O-glucoside
- aurone biosynthesis:
O2 + butein 4'-β-D-glucoside ⟶ H2O + aureusidin 6-O-glucoside
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid di-C-glucosylation:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- flavonoid biosynthesis (in equisetum):
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis (in equisetum):
(2S)-eriodictyol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-dihydrotricetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- chalcone 2'-O-glucoside biosynthesis:
UDP-α-D-glucose + naringenin chalcone ⟶ H+ + UDP + chalcone 2'-O-glucoside
- flavonoid biosynthesis (in equisetum):
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- naringenin biosynthesis (engineered):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- aromatic polyketides biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-eriodictyol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- xanthohumol biosynthesis:
DMAPP + naringenin chalcone ⟶ H+ + desmethylxanthohumol + diphosphate
- chalcone 2'-O-glucoside biosynthesis:
UDP-α-D-glucose + naringenin chalcone ⟶ H+ + UDP + chalcone 2'-O-glucoside
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- xanthohumol biosynthesis:
DMAPP + naringenin chalcone ⟶ H+ + desmethylxanthohumol + diphosphate
COVID-19 Disease Map(0)
PathBank(2)
- Flavanone Biosynthesis:
4-Hydroxycinnamic acid + Adenosine triphosphate + Coenzyme A ⟶ 4-Coumaroyl-CoA + Adenosine monophosphate + Pyrophosphate
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
PharmGKB(0)
26 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01834.X
- 4686 - Asparagus officinalis: 10.1371/JOURNAL.PONE.0219973
- 38851 - Gentiana lutea: 10.1371/JOURNAL.PONE.0212062
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 9606 - Homo sapiens: -
- 3486 - Humulus lupulus: 10.1021/JF1049084
- 35883 - Ipomoea nil: 10.1016/S0031-9422(00)90588-0
- 85856 - Magnolia denudata: 10.3390/MOLECULES23071558
- 3403 - Magnolia liliiflora: 10.3390/MOLECULES23071558
- 3724 - Matthiola incana: 10.1515/ZNC-1983-7-810
- 3673 - Momordica charantia: 10.3390/MOLECULES23020469
- 28933 - Nothofagus antarctica: 10.1515/ZNC-1979-1240
- 688333 - Populus cathayana: 10.1515/ZNC-1992-3-423
- 1085088 - Populus koreana: 10.1515/ZNC-1992-3-424
- 75703 - Populus maximowiczii: 10.1515/ZNC-1992-3-424
- 245546 - Populus suaveolens: 10.1515/ZNC-1992-3-424
- 179740 - Populus szechuanica: 10.1515/ZNC-1992-3-423
- 118781 - Populus tomentosa: 10.1016/0305-1978(91)90071-7
- 113636 - Populus tremula: 10.1016/0305-1978(91)90071-7
- 2900717 - Populus tremula var. sieboldii: 10.1016/0305-1978(91)90071-7
- 3693 - Populus tremuloides: 10.1016/0305-1978(91)90071-7
- 22663 - Punica granatum: 10.1371/JOURNAL.PONE.0142777
- 933138 - Salvia leucantha: 10.1016/S0040-4020(01)85654-4
- 2039553 - Salvia xalapensis: 10.1021/NP050041E
- 33090 - 枳实: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ju Huang, Xin Zhao, Yan Zhang, Yao Chen, Ximin Zhang, Yin Yi, Zhigang Ju, Wei Sun. Chalcone-Synthase-Encoding RdCHS1 Is Involved in Flavonoid Biosynthesis in Rhododendron delavayi.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081822
. [PMID: 38675642] - Yao Zhao, Jitao Hu, Yilin Zhang, Han Tao, Linying Li, Yuqing He, Xueying Zhang, Chi Zhang, Gaojie Hong. Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging.
Food research international (Ottawa, Ont.).
2023 Dec; 174(Pt 1):113578. doi:
10.1016/j.foodres.2023.113578
. [PMID: 37986446] - Xin-Bo Cai, Nan Liu, Jia Li, Rong Liu, Yun-Feng Luo, Yi-Feng Zhang, Jia-Dian Wang, Xiao-Yi Wu, Lu-Qi Huang. [Functional characterization and enzymatic properties of flavonoid glycosyltransferase gene CtUGT49 in Carthamus tinctorius].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Dec; 48(24):6624-6634. doi:
10.19540/j.cnki.cjcmm.20230809.101
. [PMID: 38212022] - Emma R Wolf-Saxon, Chad C Moorman, Anthony Castro, Alfredo Ruiz, Jeremy P Mallari, Jason R Burke. Regulatory ligand binding in plant chalcone isomerase-like (CHIL) proteins.
The Journal of biological chemistry.
2023 May; ?(?):104804. doi:
10.1016/j.jbc.2023.104804
. [PMID: 37172720] - Ana González Moreno, Jack M Woolley, Eva Domínguez, Abel de Cózar, Antonio Heredia, Vasilios G Stavros. Synergic photoprotection of phenolic compounds present in tomato fruit cuticle: a spectroscopic investigation in solution.
Physical chemistry chemical physics : PCCP.
2023 May; ?(?):. doi:
10.1039/d3cp00630a
. [PMID: 37129056] - Hiraku Furudate, Misaki Manabe, Haruka Oshikiri, Ayako Matsushita, Bunta Watanabe, Toshiyuki Waki, Toru Nakayama, Hiroyoshi Kubo, Kojiro Takanashi. A Polyphenol Oxidase Catalyzes Aurone Synthesis in Marchantia polymorpha.
Plant & cell physiology.
2023 Mar; ?(?):. doi:
10.1093/pcp/pcad024
. [PMID: 36947436] - Ana González Moreno, Eva Domínguez, Konrad Mayer, Nannan Xiao, Peter Bock, Antonio Heredia, Notburga Gierlinger. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development.
Plant physiology.
2023 01; 191(1):219-232. doi:
10.1093/plphys/kiac369
. [PMID: 35972400] - Mengdi Zhang, Zhaoxin Wang, Siyu Hao, Lei Hao, Xinying Zhang, Peng Yu, Hua Sun. Synthesis of natural 3'-Prenylchalconaringenin and biological evaluation of ameliorating non-alcoholic fatty liver disease and metabolic syndrome.
European journal of medicinal chemistry.
2020 Nov; 205(?):112649. doi:
10.1016/j.ejmech.2020.112649
. [PMID: 32791402] - Deze Kong, Sijin Li, Christina D Smolke. Discovery of a previously unknown biosynthetic capacity of naringenin chalcone synthase by heterologous expression of a tomato gene cluster in yeast.
Science advances.
2020 10; 6(44):. doi:
10.1126/sciadv.abd1143
. [PMID: 33127687] - Carina Kolot, Ana Rodriguez-Mateos, Rodrigo Feliciano, Katharina Bottermann, Wilhelm Stahl. Bioavailability of naringenin chalcone in humans after ingestion of cherry tomatoes.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2020 Oct; 90(5-6):411-416. doi:
10.1024/0300-9831/a000574
. [PMID: 30961461] - Johann E Kufs, Sandra Hoefgen, Julia Rautschek, Alexander U Bissell, Carola Graf, Jonas Fiedler, Daniel Braga, Lars Regestein, Miriam A Rosenbaum, Julian Thiele, Vito Valiante. Rational Design of Flavonoid Production Routes Using Combinatorial and Precursor-Directed Biosynthesis.
ACS synthetic biology.
2020 07; 9(7):1823-1832. doi:
10.1021/acssynbio.0c00172
. [PMID: 32525654] - Elvira Escribano-Ferrer, Josep Queralt Regué, Xavier Garcia-Sala, Antoni Boix Montañés, Rosa M Lamuela-Raventos. In Vivo Anti-inflammatory and Antiallergic Activity of Pure Naringenin, Naringenin Chalcone, and Quercetin in Mice.
Journal of natural products.
2019 02; 82(2):177-182. doi:
10.1021/acs.jnatprod.8b00366
. [PMID: 30688453] - Miriam Kaltenbach, Jason R Burke, Mirco Dindo, Anna Pabis, Fabian S Munsberg, Avigayel Rabin, Shina C L Kamerlin, Joseph P Noel, Dan S Tawfik. Evolution of chalcone isomerase from a noncatalytic ancestor.
Nature chemical biology.
2018 06; 14(6):548-555. doi:
10.1038/s41589-018-0042-3
. [PMID: 29686356] - Mosaab Yahyaa, Samah Ali, Rachel Davidovich-Rikanati, Muhammad Ibdah, Alona Shachtier, Yoram Eyal, Efraim Lewinsohn, Mwafaq Ibdah. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).
Phytochemistry.
2017 Aug; 140(?):125-133. doi:
10.1016/j.phytochem.2017.04.022
. [PMID: 28482241] - Merve Tomas, Jules Beekwilder, Robert D Hall, Osman Sagdic, Dilek Boyacioglu, Esra Capanoglu. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants.
Food chemistry.
2017 Apr; 220(?):51-58. doi:
10.1016/j.foodchem.2016.09.201
. [PMID: 27855932] - Hua Sun, Dong Wang, Xiaotong Song, Yazhou Zhang, Weina Ding, Xiaolin Peng, Xiaoting Zhang, Yashan Li, Ying Ma, Runling Wang, Peng Yu. Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects.
Journal of agricultural and food chemistry.
2017 Mar; 65(8):1574-1581. doi:
10.1021/acs.jafc.6b05445
. [PMID: 28132506] - Ari Feder, Joseph Burger, Shan Gao, Efraim Lewinsohn, Nurit Katzir, Arthur A Schaffer, Ayala Meir, Rachel Davidovich-Rikanati, Vitaly Portnoy, Amit Gal-On, Zhangjun Fei, Yechezkel Kashi, Yaakov Tadmor. A Kelch Domain-Containing F-Box Coding Gene Negatively Regulates Flavonoid Accumulation in Muskmelon.
Plant physiology.
2015 Nov; 169(3):1714-26. doi:
10.1104/pp.15.01008
. [PMID: 26358418] - Ping Song, Qiang Wang, Jing-Nan Lv, Chan Xu, Qin-Xiong Lin, Xin-Hua Ma, Mi Huang, Xin-Zhou Yang. HPLC-based activity profiling of anti-hepatocellular carcinoma constituents from the Tibetan medicine, Caragana tibetica.
Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban.
2015 Jun; 35(3):450-455. doi:
10.1007/s11596-015-1452-z
. [PMID: 26072088] - Hai-Na Yu, Lei Wang, Bin Sun, Shuai Gao, Ai-Xia Cheng, Hong-Xiang Lou. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum.
Plant cell reports.
2015 Feb; 34(2):233-45. doi:
10.1007/s00299-014-1702-8
. [PMID: 25404490] - Mohankumar Saraladevi Resmi, Priyanka Verma, Rajesh S Gokhale, Eppurathu Vasudevan Soniya. Identification and characterization of a type III polyketide synthase involved in quinolone alkaloid biosynthesis from Aegle marmelos Correa.
The Journal of biological chemistry.
2013 Mar; 288(10):7271-81. doi:
10.1074/jbc.m112.429886
. [PMID: 23329842] - Linda Gijsbers, Henriëtte D L M van Eekelen, Thuy H Nguyen, Laura H J de Haan, Bart van der Burg, Jac M M J G Aarts, Ivonne M C M Rietjens, Arnaud G Bovy. Induction of electrophile-responsive element (EpRE)-mediated gene expression by tomato extracts in vitro.
Food chemistry.
2012 Dec; 135(3):1166-72. doi:
10.1016/j.foodchem.2012.05.073
. [PMID: 22953839] - Yung-Fen Huang, Agnès Doligez, Alexandre Fournier-Level, Loïc Le Cunff, Yves Bertrand, Aurélie Canaguier, Cécile Morel, Valérie Miralles, Frédéric Veran, Jean-Marc Souquet, Véronique Cheynier, Nancy Terrier, Patrice This. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping.
BMC plant biology.
2012 Feb; 12(?):30. doi:
10.1186/1471-2229-12-30
. [PMID: 22369244] - Jaroslav Matoušek, Tomáš Kocábek, Josef Patzak, Zoltán Füssy, Jitka Procházková, Arne Heyerick. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.).
BMC plant biology.
2012 Feb; 12(?):27. doi:
10.1186/1471-2229-12-27
. [PMID: 22340661] - Yusuke Tsurumaru, Kanako Sasaki, Tatsuya Miyawaki, Yoshihiro Uto, Takayuki Momma, Naoyuki Umemoto, Masaki Momose, Kazufumi Yazaki. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops.
Biochemical and biophysical research communications.
2012 Jan; 417(1):393-8. doi:
10.1016/j.bbrc.2011.11.125
. [PMID: 22166201] - Yoshihiko Shimokawa, Hiroyuki Morita, Ikuro Abe. Benzalacetone synthase.
Frontiers in plant science.
2012; 3(?):57. doi:
10.3389/fpls.2012.00057
. [PMID: 22645592] - Raja Noor Zaliha Raja Abdul Rahman, Iffah Izzati Zakaria, Abu Bakar Salleh, Mahiran Basri. Enzymatic properties and mutational studies of chalcone synthase from Physcomitrella patens.
International journal of molecular sciences.
2012; 13(8):9673-9691. doi:
10.3390/ijms13089673
. [PMID: 22949824] - Nur Diyana Roslan, Jastina Mat Yusop, Syarul Nataqain Baharum, Roohaida Othman, Zeti-Azura Mohamed-Hussein, Ismanizan Ismail, Normah Mohd Noor, Zamri Zainal. Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via Expressed Sequences Tag (EST) analysis.
International journal of molecular sciences.
2012; 13(3):2692-2706. doi:
10.3390/ijms13032692
. [PMID: 22489118] - Erin E Mulvihill, Murray W Huff. Protection from Metabolic Dysregulation, Obesity, and Atherosclerosis by Citrus Flavonoids: Activation of Hepatic PGC1α-Mediated Fatty Acid Oxidation.
PPAR research.
2012; 2012(?):857142. doi:
10.1155/2012/857142
. [PMID: 22701469] - Mohammad Alimohammadi, Kanishka de Silva, Clarisse Ballu, Nawab Ali, Mariya V Khodakovskaya. Reduction of inositol (1,4,5)-trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants.
Journal of experimental botany.
2012 Jan; 63(2):825-35. doi:
10.1093/jxb/err306
. [PMID: 21994174] - Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway.
BMC genomics.
2011 Dec; 12(?):608. doi:
10.1186/1471-2164-12-608
. [PMID: 22177423] - Sho Ohno, Munetaka Hosokawa, Atsushi Hoshino, Yoshikuni Kitamura, Yasumasa Morita, Kyeung-Ii Park, Akiko Nakashima, Ayumi Deguchi, Fumi Tatsuzawa, Motoaki Doi, Shigeru Iida, Susumu Yazawa. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis).
Journal of experimental botany.
2011 Oct; 62(14):5105-16. doi:
10.1093/jxb/err216
. [PMID: 21765172] - Fang Xia, Houhua Li, Chunxiang Fu, Zhenzhen Yu, Yanjun Xu, Dexiu Zhao. [Cloning, expression and charaterization of chalcone synthase from Saussurea medusa].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2011 Sep; 27(9):1363-70. doi:
"
. [PMID: 22117520] - Inge M Hanssen, H Peter van Esse, Ana-Rosa Ballester, Sander W Hogewoning, Nelia Ortega Parra, Anneleen Paeleman, Bart Lievens, Arnaud G Bovy, Bart P H J Thomma. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness.
Plant physiology.
2011 May; 156(1):301-18. doi:
10.1104/pp.111.173906
. [PMID: 21427280] - Nam Il Park, Xiaohua Li, Tatsuro Suzuki, Sun-Ju Kim, Sun-Hee Woo, Cheol Ho Park, Sang Un Park. Differential expression of anthocyanin biosynthetic genes and anthocyanin accumulation in tartary buckwheat cultivars 'Hokkai t8' and 'Hokkai t10'.
Journal of agricultural and food chemistry.
2011 Mar; 59(6):2356-61. doi:
10.1021/jf200020b
. [PMID: 21366292] - Marek Mutwil, Sebastian Klie, Takayuki Tohge, Federico M Giorgi, Olivia Wilkins, Malcolm M Campbell, Alisdair R Fernie, Björn Usadel, Zoran Nikoloski, Staffan Persson. PlaNet: combined sequence and expression comparisons across plant networks derived from seven species.
The Plant cell.
2011 Mar; 23(3):895-910. doi:
10.1105/tpc.111.083667
. [PMID: 21441431] - Magdalena Zuk, Anna Kulma, Lucyna Dymińska, Katarzyna Szołtysek, Anna Prescha, Jerzy Hanuza, Jan Szopa. Flavonoid engineering of flax potentiate its biotechnological application.
BMC biotechnology.
2011 Jan; 11(?):10. doi:
10.1186/1472-6750-11-10
. [PMID: 21276227] - Rong Tsao. Chemistry and biochemistry of dietary polyphenols.
Nutrients.
2010 12; 2(12):1231-46. doi:
10.3390/nu2121231
. [PMID: 22254006] - Christiane Katja Kleindt, Ralf Stracke, Frank Mehrtens, Bernd Weisshaar. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway.
BMC research notes.
2010 Oct; 3(?):255. doi:
10.1186/1756-0500-3-255
. [PMID: 20929528] - Juan J Gutierrez-Gonzalez, Xiaolei Wu, Jason D Gillman, Jeong-Dong Lee, Rui Zhong, Oliver Yu, Grover Shannon, Mark Ellersieck, Henry T Nguyen, David A Sleper. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds.
BMC plant biology.
2010 Jun; 10(?):105. doi:
10.1186/1471-2229-10-105
. [PMID: 20540761] - Yuepeng Han, Sornkanok Vimolmangkang, Ruth Elena Soria-Guerra, Sergio Rosales-Mendoza, Danman Zheng, Anatoli V Lygin, Schuyler S Korban. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress.
Plant physiology.
2010 Jun; 153(2):806-20. doi:
10.1104/pp.109.152801
. [PMID: 20357139] - Daniel Cook, Agnes M Rimando, Thomas E Clemente, Joachim Schröder, Franck E Dayan, N P Dhammika Nanayakkara, Zhiqiang Pan, Brice P Noonan, Mark Fishbein, Ikuro Abe, Stephen O Duke, Scott R Baerson. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone.
The Plant cell.
2010 Mar; 22(3):867-87. doi:
10.1105/tpc.109.072397
. [PMID: 20348430] - Mahmoud Najafian, Azadeh Ebrahim-Habibi, Parichehreh Yaghmaei, Kazem Parivar, Bagher Larijani. Core structure of flavonoids precursor as an antihyperglycemic and antihyperlipidemic agent: an in vivo study in rats.
Acta biochimica Polonica.
2010; 57(4):553-60. doi:
. [PMID: 21060897]
- Shizuka Hirai, Nobuyuki Takahashi, Tsuyoshi Goto, Shan Lin, Taku Uemura, Rina Yu, Teruo Kawada. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies.
Mediators of inflammation.
2010; 2010(?):367838. doi:
10.1155/2010/367838
. [PMID: 20508825] - Ana-Rosa Ballester, Jos Molthoff, Ric de Vos, Bas te Lintel Hekkert, Diego Orzaez, Josefina-Patricia Fernández-Moreno, Pasquale Tripodi, Silvana Grandillo, Cathie Martin, Jos Heldens, Marieke Ykema, Antonio Granell, Arnaud Bovy. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.
Plant physiology.
2010 Jan; 152(1):71-84. doi:
10.1104/pp.109.147322
. [PMID: 19906891] - Maxim Itkin, Heike Seybold, Dario Breitel, Ilana Rogachev, Sagit Meir, Asaph Aharoni. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network.
The Plant journal : for cell and molecular biology.
2009 Dec; 60(6):1081-95. doi:
10.1111/j.1365-313x.2009.04064.x
. [PMID: 19891701] - Avital Adato, Tali Mandel, Shira Mintz-Oron, Ilya Venger, Dorit Levy, Merav Yativ, Eva Domínguez, Zhonghua Wang, Ric C H De Vos, Reinhard Jetter, Lukas Schreiber, Antonio Heredia, Ilana Rogachev, Asaph Aharoni. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.
PLoS genetics.
2009 Dec; 5(12):e1000777. doi:
10.1371/journal.pgen.1000777
. [PMID: 20019811] - Eva Miadoková. Isoflavonoids - an overview of their biological activities and potential health benefits.
Interdisciplinary toxicology.
2009 Dec; 2(4):211-8. doi:
10.2478/v10102-009-0021-3
. [PMID: 21217857] - Anna A Dobritsa, Shuh-Ichi Nishikawa, Daphne Preuss, Ewa Urbanczyk-Wochniak, Lloyd W Sumner, Adam Hammond, Ann L Carlson, Robert J Swanson. LAP3, a novel plant protein required for pollen development, is essential for proper exine formation.
Sexual plant reproduction.
2009 Sep; 22(3):167-77. doi:
10.1007/s00497-009-0101-8
. [PMID: 20033437] - Angela Rubio Moraga, Almudena Trapero Mozos, Oussama Ahrazem, Lourdes Gómez-Gómez. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation.
BMC plant biology.
2009 Aug; 9(?):109. doi:
10.1186/1471-2229-9-109
. [PMID: 19695093] - Mineka Yoshimura, Atsushi Sano, Jun-Ichi Kamei, Akio Obata. Identification and quantification of metabolites of orally administered naringenin chalcone in rats.
Journal of agricultural and food chemistry.
2009 Jul; 57(14):6432-7. doi:
10.1021/jf901137x
. [PMID: 19558184] - Anna Lytovchenko, Romina Beleggia, Nicolas Schauer, Tal Isaacson, Jan E Leuendorf, Hanjo Hellmann, Jocelyn Kc Rose, Alisdair R Fernie. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues.
Plant methods.
2009 Apr; 5(?):4. doi:
10.1186/1746-4811-5-4
. [PMID: 19393072] - Lan-Qing Ma, Xiao-Bin Pang, Hai-Yan Shen, Gao-Bin Pu, Hua-Hong Wang, Cai-Yan Lei, Hong Wang, Guo-Feng Li, Ben-Ye Liu, He-Chun Ye. A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum.
Planta.
2009 Feb; 229(3):457-69. doi:
10.1007/s00425-008-0845-7
. [PMID: 18998157] - Kati Hanhineva, Harri Kokko, Henri Siljanen, Ilana Rogachev, Asaph Aharoni, Sirpa O Kärenlampi. Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa).
Journal of experimental botany.
2009; 60(7):2093-106. doi:
10.1093/jxb/erp085
. [PMID: 19443619] - Charles S Buer, Michael A Djordjevic. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana.
Journal of experimental botany.
2009; 60(3):751-63. doi:
10.1093/jxb/ern323
. [PMID: 19129166] - Christoph Böttcher, Edda von Roepenack-Lahaye, Jürgen Schmidt, Constanze Schmotz, Steffen Neumann, Dierk Scheel, Stephan Clemens. Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis.
Plant physiology.
2008 Aug; 147(4):2107-20. doi:
10.1104/pp.108.117754
. [PMID: 18552234] - Chun-Hat Shih, Yuanling Chen, Mingfu Wang, Ivan K Chu, Clive Lo. Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene.
Journal of agricultural and food chemistry.
2008 Jul; 56(14):5655-61. doi:
10.1021/jf800423u
. [PMID: 18540614] - Mami Yamazaki, Masahisa Shibata, Yasutaka Nishiyama, Karin Springob, Masahiko Kitayama, Norimoto Shimada, Toshio Aoki, Shin-Ichi Ayabe, Kazuki Saito. Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes.
The FEBS journal.
2008 Jul; 275(13):3494-502. doi:
10.1111/j.1742-4658.2008.06496.x
. [PMID: 18513325] - Yoko Iijima, Yukiko Nakamura, Yoshiyuki Ogata, Ken'ichi Tanaka, Nozomu Sakurai, Kunihiro Suda, Tatsuya Suzuki, Hideyuki Suzuki, Koei Okazaki, Masahiko Kitayama, Shigehiko Kanaya, Koh Aoki, Daisuke Shibata. Metabolite annotations based on the integration of mass spectral information.
The Plant journal : for cell and molecular biology.
2008 Jun; 54(5):949-62. doi:
10.1111/j.1365-313x.2008.03434.x
. [PMID: 18266924] - Toru Yagura, Tomoko Motomiya, Michiho Ito, Gisho Honda, Akira Iida, Fumiyuki Kiuchi, Harukuni Tokuda, Hoyoku Nishino. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum.
Journal of natural medicines.
2008 Apr; 62(2):174-8. doi:
10.1007/s11418-007-0223-y
. [PMID: 18404319] - Desen Zheng, Geza Hrazdina. Molecular and biochemical characterization of benzalacetone synthase and chalcone synthase genes and their proteins from raspberry (Rubus idaeus L.).
Archives of biochemistry and biophysics.
2008 Feb; 470(2):139-45. doi:
10.1016/j.abb.2007.11.013
. [PMID: 18068110] - Roosa A E Laitinen, Miia Ainasoja, Suvi K Broholm, Teemu H Teeri, Paula Elomaa. Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida.
Journal of experimental botany.
2008; 59(13):3691-703. doi:
10.1093/jxb/ern216
. [PMID: 18725377] - Mineka Yoshimura, Tadao Enomoto, Yoshihiro Dake, Yoshiaki Okuno, Hiroki Ikeda, Lei Cheng, Akio Obata. An evaluation of the clinical efficacy of tomato extract for perennial allergic rhinitis.
Allergology international : official journal of the Japanese Society of Allergology.
2007 Sep; 56(3):225-30. doi:
10.2332/allergolint.o-06-443
. [PMID: 17519582] - Axel Schwekendiek, Otmar Spring, Arne Heyerick, Benjamin Pickel, Nicola T Pitsch, Florian Peschke, Denis de Keukeleire, Gerd Weber. Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities.
Journal of agricultural and food chemistry.
2007 Aug; 55(17):7002-9. doi:
10.1021/jf070509e
. [PMID: 17655245] - Ho Bang Kim, Ju Hee Bae, Jung Dae Lim, Chang Yeon Yu, Chung Sun An. Expression of a functional type-I chalcone isomerase gene is localized to the infected cells of root nodules of Elaeagnus umbellata.
Molecules and cells.
2007 Jun; 23(3):405-9. doi:
"
. [PMID: 17646716] - Chenguang Jiang, Clark K Schommer, Sun Young Kim, Dae-Yeon Suh. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens.
Phytochemistry.
2006 Dec; 67(23):2531-40. doi:
10.1016/j.phytochem.2006.09.030
. [PMID: 17083952] - Gracia Zabala, Jijun Zou, Jigyasa Tuteja, Delkin O Gonzalez, Steven J Clough, Lila O Vodkin. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection.
BMC plant biology.
2006 Nov; 6(?):26. doi:
10.1186/1471-2229-6-26
. [PMID: 17083738] - Feng-Xia Li, Zhi-Ping Jin, De-Xiu Zhao, Li-Qin Cheng, Chun-Xiang Fu, Fengshan Ma. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin.
Phytochemistry.
2006 Mar; 67(6):553-60. doi:
10.1016/j.phytochem.2005.12.004
. [PMID: 16427667] - Jeremy P E Spencer, Gunter G C Kuhnle, Mohamad Hajirezaei, Hans-Peter Mock, Uwe Sonnewald, Catherine Rice-Evans. The genotypic variation of the antioxidant potential of different tomato varieties.
Free radical research.
2005 Sep; 39(9):1005-16. doi:
10.1080/10715760400022293
. [PMID: 16087482] - Rune Slimestad, Michèl J Verheul. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes.
Journal of agricultural and food chemistry.
2005 Apr; 53(8):3114-9. doi:
10.1021/jf047864e
. [PMID: 15826067] - Lyle Ralston, Senthil Subramanian, Michiyo Matsuno, Oliver Yu. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases.
Plant physiology.
2005 Apr; 137(4):1375-88. doi:
10.1104/pp.104.054502
. [PMID: 15778463] - Jan F Stevens, Jonathan E Page. Xanthohumol and related prenylflavonoids from hops and beer: to your good health!.
Phytochemistry.
2004 May; 65(10):1317-30. doi:
10.1016/j.phytochem.2004.04.025
. [PMID: 15231405] - Gwénaëlle Le Gall, M Susan DuPont, Fred A Mellon, Adrienne L Davis, Geoff J Collins, Martine E Verhoeyen, Ian J Colquhoun. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits.
Journal of agricultural and food chemistry.
2003 Apr; 51(9):2438-46. doi:
10.1021/jf025995e
. [PMID: 12696918] - Arnaud Bovy, Ric de Vos, Mark Kemper, Elio Schijlen, Maria Almenar Pertejo, Shelagh Muir, Geoff Collins, Sue Robinson, Martine Verhoeyen, Steve Hughes, Celestino Santos-Buelga, Arjen van Tunen. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1.
The Plant cell.
2002 Oct; 14(10):2509-26. doi:
10.1105/tpc.004218
. [PMID: 12368501] - M E Verhoeyen, A Bovy, G Collins, S Muir, S Robinson, C H R de Vos, S Colliver. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway.
Journal of experimental botany.
2002 Oct; 53(377):2099-106. doi:
10.1093/jxb/erf044
. [PMID: 12324533] - Joseph M Jez, Joseph P Noel. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences.
The Journal of biological chemistry.
2002 Jan; 277(2):1361-9. doi:
10.1074/jbc.m109224200
. [PMID: 11698411] - S Sogawa, Y Nihro, H Ueda, A Izumi, T Miki, H Matsumoto, T Satoh. 3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors.
Journal of medicinal chemistry.
1993 Nov; 36(24):3904-9. doi:
10.1021/jm00076a019
. [PMID: 8254620] - W Heller, K Hahlbrock. Highly purified "flavanone synthase" from parsley catalyzes the formation of naringenin chalcone.
Archives of biochemistry and biophysics.
1980 Apr; 200(2):617-9. doi:
10.1016/0003-9861(80)90395-1
. [PMID: 7436427] - . .
.
. doi:
. [PMID: 12620343]
- . .
.
. doi:
. [PMID: 15821144]
- . .
.
. doi:
. [PMID: 11418122]