Stevioside (BioDeep_00000000005)
human metabolite PANOMIX_OTCML-2023 Endogenous Antitumor activity natural product
代谢物信息卡片
化学式: C38H60O18 (804.3779)
中文名称: 甜菊糖, 甜菊苷
谱图信息:
最多检出来源 Viridiplantae(plant) 71.55%
Last reviewed on 2024-08-26.
Cite this Page
Stevioside. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/stevioside (retrieved
2024-12-21) (BioDeep RN: BioDeep_00000000005). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C=C1CC23CCC4C(C)(C(=O)OC5OC(CO)C(O)C(O)C5O)CCCC4(C)C2CCC1(OC1OC(CO)C(O)C(O)C1OC1OC(CO)C(O)C(O)C1O)C3
InChI: InChI=1S/C38H60O18/c1-16-11-37-9-5-20-35(2,7-4-8-36(20,3)34(50)55-32-29(49)26(46)23(43)18(13-40)52-32)21(37)6-10-38(16,15-37)56-33-30(27(47)24(44)19(14-41)53-33)54-31-28(48)25(45)22(42)17(12-39)51-31/h17-33,39-49H,1,4-15H2,2-3H3/t17-,18-,19-,20+,21+,22-,23-,24-,25+,26+,27+,28-,29-,30-,31+,32+,33+,35-,36-,37-,38+/m1/s1
描述信息
Stevioside is a diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America. It has a role as a sweetening agent, an antioxidant, an antineoplastic agent, a hypoglycemic agent, an anti-inflammatory agent and a plant metabolite. It is a diterpene glycoside, an ent-kaurane diterpenoid, a beta-D-glucoside, a tetracyclic diterpenoid and a bridged compound. It is functionally related to a steviol and a rubusoside.
Stevioside is a natural product found in Asteraceae, Stevia rebaudiana, and Bos taurus with data available.
See also: Stevia rebaudiuna Leaf (part of).
Stevioside is a constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931
A diterpene glycoside that is rubusoside in which the hydroxy group at position 2 of the allylic beta-D-glucoside has been converted to the corresponding beta-D-glucoside. It is a natural herbal sweetener that is 250-300 times sweeter than sucrose (though with a bitter aftertaste), extracted from the Stevia rebaudiana plant native to South America.
Constituent of Stevia rebaudiana (stevia). Sweetening agent which is 300 times sweeter than sucrose. Stevia rebaudiana is extensively cultivated in Japan, and Stevioside is a permitted sweetener in that country
D000074385 - Food Ingredients > D005503 - Food Additives
D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents
Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1].
Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana, with anticancer activity[1].
Stevioside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57817-89-7 (retrieved 2024-08-26) (CAS RN: 57817-89-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
46 个代谢物同义名
(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1R,4S,5R,9S,10R,13S)-13-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylate; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] [(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-dimethyl-methylene-[?]carboxylate; 1-O-{(5beta,8alpha,9beta,10alpha,13alpha)-13-[(2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]-18-oxokaur-16-en-18-yl}-beta-D-glucopyranose; 1-O-{13alpha-[(2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]-18-oxo-5beta,8alpha,9beta,10alpha-kaur-16-en-18-yl}-beta-D-glucopyranose; 1-O-(13alpha-((2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy)-18-oxo-5beta,8alpha,9beta,10alpha-kaur-16-en-18-yl)-beta-D-glucopyranose; KAUR-16-EN-18-OIC ACID, 13-((2-O-.BETA.-D-GLUCOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-, .BETA.-D-GLUCOPYRANOSYL ESTER, (4.ALPHA.)-; (4.ALPHA.)-13-((2-O-.BETA.-D-GLUCOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)KAUR-16-EN-18-OIC ACID .BETA.-D-GLUCOPYRANOSYL ESTER; KAUR-16-EN-18-OIC ACID, 13-((2-O-beta-D-GLUCOPYRANOSYL-beta-D-GLUCOPYRANOSYL)OXY)-, beta-D-GLUCOPYRANOSYL ESTER, (4alpha)-; 13-[(2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]-kaur-16-en-18-oic acid, (4alpha)-beta-D-glucopyranosyl ester; (4alpha)-13-((2-O-beta-D-GLUCOPYRANOSYL-beta-D-GLUCOPYRANOSYL)OXY)KAUR-16-EN-18-OIC ACID beta-D-GLUCOPYRANOSYL ESTER; 13-[(2-O-.beta.-D-Glucopyranosyl-.alpha.-D-glucopyranosyl)oxy]kaur-16-en-18-oic acid .beta.-D-glucopyranosyl ester; 13-((2-O-.beta.-D-Glucopyranosyl-.alpha.-D-glucopyranosyl)oxy)kaur-16-en-18-oic acid .beta.-D-glucopyranosyl ester; Kaur-16-en-18-oic acid, 13-((2-O-beta-D-glucopyranosyl-alpha-D-glucopyranosyl)oxy)-, beta-D-glucopyranosyl ester; 13-((2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy)kaur-16-en-18-oic acid beta-D-glucopyranosyl ester; 13-[(2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]kaur-16-en-18-oic acid beta-D-glucopyranosyl ester; Kaur-16-en-18-oic acid,13-[(2-O-b-D-glucopyranosyl-b-D-glucopyranosyl)oxy]-,b-D-glucopyranosyl ester, (4a)-; (4alpha)-beta-D-Glucopyranosyl 13-((2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy)kaur-16-en-18-oate; 13-[(2-O-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)oxy]kaur-16-en-18-Oate beta-D-glucopyranosyl ester; 13-[(2-O-Β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]kaur-16-en-18-Oic acid β-D-glucopyranosyl ester; 13-[(2-O-b-D-Glucopyranosyl-b-D-glucopyranosyl)oxy]kaur-16-en-18-Oic acid b-D-glucopyranosyl ester; 13-[(2-O-Β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]kaur-16-en-18-Oate β-D-glucopyranosyl ester; 13-[(2-O-b-D-Glucopyranosyl-b-D-glucopyranosyl)oxy]kaur-16-en-18-Oate b-D-glucopyranosyl ester; 4-17-00-03618 (Beilstein Handbook Reference); UEDUENGHJMELGK-HYDKPPNVSA-N; STEVIOSIDE (USP-RS); Diterpene glycoside; STEVIOSIDE [USP-RS]; STEVIOSIDE (MART.); STEVIOSIDE [MART.]; steviol glycoside; STEVIOSIDE [INCI]; UNII-0YON5MXJ9P; STEVIOSIDE [MI]; .ALPHA.-G-SWEET; (-)-STEVIOSIDE; 1,2-Stevioside; alpha-G-SWEET; STEVIBIOSIDE; 0YON5MXJ9P; STEVIAN 50; Stevioside; Eupatorin?; Steviosin; Rebaudin; Stevin?; Stevioside
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:9271
- KEGG: C09189
- PubChem: 442089
- PubChem: 548198
- HMDB: HMDB0034945
- Metlin: METLIN67500
- DrugBank: DB16882
- ChEMBL: CHEMBL444122
- Wikipedia: Stevioside
- LipidMAPS: LMPR01040119
- MeSH: stevioside
- ChemIDplus: 0057817897
- MetaCyc: CPD-14504
- KNApSAcK: C00003485
- foodb: FDB013538
- chemspider: 390625
- CAS: 57817-89-7
- medchemexpress: HY-N0669
- PMhub: MS000002828
- MetaboLights: MTBLC9271
- 3DMET: B02755
- NIKKAJI: J27.441K
- PubChem: 11381
- KNApSAcK: 9271
- LOTUS: LTS0071721
- LOTUS: LTS0176468
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
63 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(63)
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + stevioside ⟶ H+ + UDP + rebaudioside A
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + stevioside ⟶ H+ + UDP + rebaudioside A
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
19-O-β-glucopyranosyl-steviol + UDP-α-D-glucose ⟶ H+ + UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviol ⟶ H+ + UDP + steviolmonoside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + rubusoside ⟶ H+ + UDP + stevioside
- steviol glucoside biosynthesis (rebaudioside A biosynthesis):
UDP-α-D-glucose + steviolmonoside ⟶ UDP + rubusoside
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
88 个相关的物种来源信息
- 126358 - Abeliophyllum distichum: 10.1016/S0031-9422(97)01134-5
- 4217 - Arctium lappa: 10.1007/978-1-4613-1855-2_22
- 4217 - Arctium lappa: 10.1007/978-3-540-71095-0_1382
- 4217 - Arctium lappa: 10.1016/J.JPBA.2009.03.018
- 4217 - Arctium lappa: 10.1016/J.PHYMED.2009.04.005
- 4217 - Arctium lappa: 10.1016/S0031-9422(00)89550-3
- 4217 - Arctium lappa: 10.1248/BPB.19.1515
- 4217 - Arctium lappa: 10.1248/CPB.44.2300
- 35608 - Artemisia Annua L.: -
- 4210 - Asteraceae: 10.1002/JSFA.6287
- 4210 - Asteraceae: LTS0071721
- 4210 - Asteraceae: LTS0176468
- 1486496 - Centaurea arenaria: 10.1002/PTR.3187
- 363423 - Centaurea deflexa: 10.1016/J.EJMECH.2011.03.011
- 75648 - Centaurea imperialis: 10.1016/0031-9422(81)85287-9
- 41536 - Centaurea melitensis: 10.1016/J.PHYTOCHEM.2006.08.012
- 41536 - Centaurea melitensis: 10.1016/S0305-1978(01)00062-X
- 75633 - Centaurea nigra: 10.1016/S0305-1978(02)00227-2
- 145513 - Centaurea raphanina: 10.1590/S0102-695X2007000200003
- 363450 - Centaurea sclerolepis: 10.1177/1934578X0600100403
- 2753873 - Daphne feddei: 10.1021/NP8004166
- 2759 - Eukaryota: LTS0071721
- 2759 - Eukaryota: LTS0176468
- 205692 - Forsythia koreana: 10.1016/S0031-9422(00)83456-1
- 205692 - Forsythia koreana: 10.1016/S0031-9422(97)01134-5
- 205694 - Forsythia ovata: 10.1248/CPB.36.3667
- 126418 - Forsythia suspensa: 10.1002/RCM.2875
- 205691 - Forsythia viridissima: 10.1016/S0031-9422(00)83456-1
- 205691 - Forsythia viridissima: 10.1016/S0031-9422(97)01134-5
- 373155 - Gaillardia aestivalis: 10.1016/S0031-9422(00)95216-6
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0071721
- 3398 - Magnoliopsida: LTS0176468
- 196747 - Onopordum acaulon: 10.1016/0031-9422(92)83742-H
- 297478 - Onopordum illyricum: 10.1021/NP990098Z
- 33090 - Plants: -
- 41506 - Plectocephalus americanus: 10.1016/J.PHYTOCHEM.2006.08.012
- 41506 - Plectocephalus americanus: 10.1016/S0305-1978(01)00062-X
- 200489 - Saussurea involucrata: 10.1080/10286020.2010.499856
- 254913 - Saussurea laniceps: 10.1002/HLCA.200790096
- 254913 - Saussurea laniceps: 10.1016/S1875-5364(11)60016-2
- 2893703 - Saussurea macrota: 10.1002/CHIN.200516160
- 137893 - Saussurea medusa: 10.1016/S0031-9422(01)00429-0
- 137893 - Saussurea medusa: 10.1016/S0304-3835(00)00499-7
- 137893 - Saussurea medusa: 10.1248/CPB.53.1416
- 446849 - Saussurea salicifolia: 10.1016/J.FCT.2010.05.056
- 55669 - Stevia: LTS0071721
- 55669 - Stevia: LTS0176468
- 55670 - Stevia rebaudiana:
- 55670 - Stevia rebaudiana: 10.1002/9781118350720
- 55670 - Stevia rebaudiana: 10.1002/ABIO.370110515
- 55670 - Stevia rebaudiana: 10.1002/ABIO.370110517
- 55670 - Stevia rebaudiana: 10.1002/ABIO.370110518
- 55670 - Stevia rebaudiana: 10.1002/PCA.2800050207
- 55670 - Stevia rebaudiana: 10.1006/JFCA.2000.0974
- 55670 - Stevia rebaudiana: 10.1007/S10600-007-0037-X
- 55670 - Stevia rebaudiana: 10.1016/0006-2952(85)90769-5
- 55670 - Stevia rebaudiana: 10.1016/0163-7258(80)90011-X
- 55670 - Stevia rebaudiana: 10.1016/0378-4274(95)03391-W
- 55670 - Stevia rebaudiana: 10.1016/S0021-9673(00)94239-0
- 55670 - Stevia rebaudiana: 10.1016/S0021-9673(01)92618-4
- 55670 - Stevia rebaudiana: 10.1016/S0031-9422(01)00416-2
- 55670 - Stevia rebaudiana: 10.1021/JF010475P
- 55670 - Stevia rebaudiana: 10.1021/JF0307200
- 55670 - Stevia rebaudiana: 10.1021/NP50076A010
- 55670 - Stevia rebaudiana: 10.1055/S-2002-33809
- 55670 - Stevia rebaudiana: 10.1093/CHROMSCI/35.9.446
- 55670 - Stevia rebaudiana: 10.1111/J.1365-2621.1990.TB03956.X
- 55670 - Stevia rebaudiana: 10.1111/J.1467-3010.1976.TB00781.X
- 55670 - Stevia rebaudiana: 10.1271/BBB1961.47.133
- 55670 - Stevia rebaudiana: 10.1584/JPESTICS.8.445
- 55670 - Stevia rebaudiana: 10.3390/MOLECULES16042937
- 55670 - Stevia rebaudiana: LTS0071721
- 55670 - Stevia rebaudiana: LTS0176468
- 35493 - Streptophyta: LTS0071721
- 35493 - Streptophyta: LTS0176468
- 50189 - Torreya nucifera: 10.1055/S-2001-15804
- 276781 - Trachelospermum asiaticum: 10.1016/0031-9422(72)80115-8
- 276781 - Trachelospermum asiaticum: 10.1248/CPB.34.4340
- 276781 - Trachelospermum asiaticum: 10.1248/YAKUSHI1947.93.4_539
- 429296 - Trachelospermum axillare: 10.1016/0031-9422(93)85183-R
- 947960 - Trachelospermum gracilipes: 10.1016/0031-9422(72)80115-8
- 69389 - Trachelospermum jasminoides: 10.1248/YAKUSHI1947.93.4_539
- 58023 - Tracheophyta: LTS0071721
- 58023 - Tracheophyta: LTS0176468
- 33090 - Viridiplantae: LTS0071721
- 33090 - Viridiplantae: LTS0176468
- 55670 - 甜叶菊: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Joanna Śniegowska, Anita Biesiada, Alan Gasiński. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081865
. [PMID: 38675686] - Shan Li, Shuangshuang Luo, Xingying Zhao, Song Gao, Xiaoyu Shan, Jian Lu, Jingwen Zhou. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle.
Journal of agricultural and food chemistry.
2024 Apr; 72(14):8140-8148. doi:
10.1021/acs.jafc.4c01483
. [PMID: 38563232] - Mei-Li Xu, Yuanxin Cheng, Mo Feng, Qingguo Lu, Yunhe Lian. Identifying Potential Sources of Phthalate Contamination in the Leaves of Stevia Rebaudiana (Bertoni) and the Development of Removal Technology.
Molecules (Basel, Switzerland).
2024 Apr; 29(7):. doi:
10.3390/molecules29071627
. [PMID: 38611906] - Xiuqiong Zhang, Tiantian Chen, Zaifang Li, Xinxin Wang, Han Bao, Chunxia Zhao, Xinjie Zhao, Xin Lu, Guowang Xu. Fine-Scale Characterization of Plant Diterpene Glycosides Using Energy-Resolved Untargeted LC-MS/MS Metabolomics Analysis.
Journal of the American Society for Mass Spectrometry.
2024 Mar; 35(3):603-612. doi:
10.1021/jasms.3c00420
. [PMID: 38391322] - Samuel Simoni, Alberto Vangelisti, Clarissa Clemente, Gabriele Usai, Marco Santin, Maria Ventimiglia, Flavia Mascagni, Lucia Natali, Luciana G Angelini, Andrea Cavallini, Silvia Tavarini, Tommaso Giordani. Transcriptomic Analyses Reveal Insights into the Shared Regulatory Network of Phenolic Compounds and Steviol Glycosides in Stevia rebaudiana.
International journal of molecular sciences.
2024 Feb; 25(4):. doi:
10.3390/ijms25042136
. [PMID: 38396813] - Jakub Michał Kurek, Joanna Mikołajczyk-Stecyna, Zbigniew Krejpcio. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Oct; 166(?):115424. doi:
10.1016/j.biopha.2023.115424
. [PMID: 37677968] - Agata Ptak, Agnieszka Szewczyk, Magdalena Simlat, Alicja Błażejczak, Marzena Warchoł. Meta-Topolin-induced mass shoot multiplication and biosynthesis of valuable secondary metabolites in Stevia rebaudiana Bertoni bioreactor culture.
Scientific reports.
2023 09; 13(1):15520. doi:
10.1038/s41598-023-42619-8
. [PMID: 37726319] - Pritom Biswas, Ankita Kumari, Arpan Modi, Nitish Kumar. Improvement and Regulation of Steviol Glycoside Biosynthesis in Stevia rebaudiana Bertoni.
Gene.
2023 Sep; ?(?):147809. doi:
10.1016/j.gene.2023.147809
. [PMID: 37722610] - Yu Wang, Peiyu Xu, Wenxia Wang, Xiaochen Jia, Liping Zhu, Heng Yin. Oligosaccharides increased both leaf biomass and steviol glycosides content of Stevia rebaudiana.
Plant physiology and biochemistry : PPB.
2023 Aug; 202(?):107937. doi:
10.1016/j.plaphy.2023.107937
. [PMID: 37566994] - Muhammad Arslan Ahmad, Sadaf Chaudhary, Xu Deng, Mumtaz Cheema, Rabia Javed. Nano-stevia interaction: Past, present, and future.
Plant physiology and biochemistry : PPB.
2023 Aug; 201(?):107807. doi:
10.1016/j.plaphy.2023.107807
. [PMID: 37311291] - Takehiro Watanabe, Kohki Fujikawa, Soichiro Urai, Kazunari Iwaki, Tadayoshi Hirai, Katsuro Miyagawa, Hiroshi Uratani, Tohru Yamagaki, Koji Nagao, Yoshiaki Yokoo, Keiko Shimamoto. Identification, Chemical Synthesis, and Sweetness Evaluation of Rhamnose or Xylose Containing Steviol Glycosides of Stevia (Stevia rebaudiana) Leaves.
Journal of agricultural and food chemistry.
2023 Jul; ?(?):. doi:
10.1021/acs.jafc.3c01753
. [PMID: 37432401] - Yuping Li, Yuan Qiu, Xin Xu, Ming Luo. Genome-wide identification of SrbHLH transcription factors highlights its potential role in rebaudioside A (RA) biosynthesis in Stevia rebaudiana.
BMC plant biology.
2023 Jul; 23(1):352. doi:
10.1186/s12870-023-04353-1
. [PMID: 37415121] - Krishnagowdu Saravanan, Nandakumar Vidya, Jayachandran Halka, Ravichandran Priyanka Preethi, Chinnaswamy Appunu, Ramalingam Radhakrishnan, Muthukrishnan Arun. Exogenous application of stevioside enhances root growth promotion in soybean (Glycine max (L.) Merrill).
Plant physiology and biochemistry : PPB.
2023 Jul; 201(?):107881. doi:
10.1016/j.plaphy.2023.107881
. [PMID: 37437344] - Yunxiang Bai, Beibei Liu, Jiachen Li, Minghui Li, Zheng Yao, Liangliang Dong, Dewei Rao, Peng Zhang, Xingzhong Cao, Luis Francisco Villalobos, Chunfang Zhang, Quan-Fu An, Menachem Elimelech. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration.
Science advances.
2023 May; 9(18):eadg6134. doi:
10.1126/sciadv.adg6134
. [PMID: 37146143] - Vasile Coman, Violeta-Florina Scurtu, Cristina Coman, Doina Clapa, Ștefania D Iancu, Nicolae Leopold, Loredana-Florina Leopold. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107634. doi:
10.1016/j.plaphy.2023.03.011
. [PMID: 36965317] - Alireza S Tehranian, Hossein Askari, Hassan Rezadoost. The effect of alginate as an elicitor on transcription of steviol glycosides biosynthesis pathway related key genes and sweeteners content in in vitro cultured Stevia rebaudiana.
Molecular biology reports.
2023 Mar; 50(3):2283-2291. doi:
10.1007/s11033-022-07906-z
. [PMID: 36576674] - Dariush Ramezan, Yusuf Farrokhzad, Ali Mokhtassi-Bidgoli, Mojtaba Rasouli-Alamuti. Multi-walled carbon nanotubes interact with light intensity to affect morpho-biochemical, nutrient uptake, DNA damage, and secondary metabolism of Stevia rebaudiana.
Environmental science and pollution research international.
2023 Mar; 30(13):36915-36927. doi:
10.1007/s11356-022-24757-0
. [PMID: 36550247] - Tulay Ozcan, Ezgi Eroglu. In vitro fermentation assay on the bifidogenic effect of steviol glycosides of Stevia rebaudiana plant for the development of dietetic novel products.
Preparative biochemistry & biotechnology.
2023 Jan; ?(?):1-10. doi:
10.1080/10826068.2023.2169935
. [PMID: 36709420] - Nazima Nasrullah, Javed Ahmad, Monica Saifi, Irum Gul Shah, Umara Nissar, Syed Naved Quadri, Kudsiya Ashrafi, Malik Zainul Abdin. Enhancement of diterpenoid steviol glycosides by co-overexpressing SrKO and SrUGT76G1 genes in Stevia rebaudiana Bertoni.
PloS one.
2023; 18(2):e0260085. doi:
10.1371/journal.pone.0260085
. [PMID: 36745615] - Vartika Srivastava, Rakhi Chaturvedi. An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana.
Journal of biotechnology.
2022 Nov; 358(?):76-91. doi:
10.1016/j.jbiotec.2022.08.018
. [PMID: 36075450] - Sherien H Abdallah, Nada M Mostafa, Marwa Abd El Hameed Mohamed, Ahmed S Nada, Abdel Nasser B Singab. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats.
Natural product research.
2022 Nov; 36(21):5619-5625. doi:
10.1080/14786419.2021.2015594
. [PMID: 34894905] - Ashraf Elsayed, Amal M Abdelsattar, Yasmin M Heikal, Mohamed A El-Esawi. Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana.
Plant physiology and biochemistry : PPB.
2022 Oct; 189(?):24-34. doi:
10.1016/j.plaphy.2022.08.016
. [PMID: 36041365] - Christos Velesiotis, Marinos Kanellakis, Demitrios H Vynios. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells.
IUBMB life.
2022 10; 74(10):1012-1028. doi:
10.1002/iub.2669
. [PMID: 36054915] - Muhammad Arslan Ahmad, Xu Deng, Muhammad Adeel, Muhammad Rizwan, Noman Shakoor, Yuesuo Yang, Rabia Javed. Influence of calcium and magnesium elimination on plant biomass and secondary metabolites of Stevia rebaudiana Bertoni.
Biotechnology and applied biochemistry.
2022 Oct; 69(5):2008-2016. doi:
10.1002/bab.2263
. [PMID: 34605559] - Miey Park, Hana Baek, Jin-Young Han, Hae-Jeung Lee. Stevioside Enhances the Anti-Adipogenic Effect and β-Oxidation by Activating AMPK in 3T3-L1 Cells and Epididymal Adipose Tissues of db/db Mice.
Cells.
2022 03; 11(7):. doi:
10.3390/cells11071076
. [PMID: 35406641] - Nikos Iatridis, Anastasia Kougioumtzi, Katerina Vlataki, Styliani Papadaki, Angeliki Magklara. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener.
Molecules (Basel, Switzerland).
2022 Feb; 27(4):. doi:
10.3390/molecules27041362
. [PMID: 35209150] - Karel Vives Hernández, Jordi Moreno-Romero, Martha Hernández de la Torre, Claudia Pérez Manríquez, Darcy Ríos Leal, Jaime F Martínez-Garcia. Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants.
Phytochemistry.
2022 Feb; 194(?):113027. doi:
10.1016/j.phytochem.2021.113027
. [PMID: 34861537] - Narendren Rengasamy, Rofina Y Othman, Hang S Che, Jennifer A Harikrishna. Beyond the PAR spectra: impact of light quality on the germination, flowering, and metabolite content of Stevia rebaudiana (Bertoni).
Journal of the science of food and agriculture.
2022 Jan; 102(1):299-311. doi:
10.1002/jsfa.11359
. [PMID: 34091912] - Marcela Hollá, Dalibor Šatínský, František Švec, Hana Sklenářová. UHPLC coupled with charged aerosol detector for rapid separation of steviol glycosides in commercial sweeteners and extract of Stevia rebaudiana.
Journal of pharmaceutical and biomedical analysis.
2022 Jan; 207(?):114398. doi:
10.1016/j.jpba.2021.114398
. [PMID: 34626939] - Esra Dandin, Ünsal Veli Üstündağ, İsmail Ünal, Perihan Seda Ateş-Kalkan, Derya Cansız, Merih Beler, Esin Ak, A Ata Alturfan, Ebru Emekli-Alturfan. Stevioside ameliorates hyperglycemia and glucose intolerance, in a diet-induced obese zebrafish model, through epigenetic, oxidative stress and inflammatory regulation.
Obesity research & clinical practice.
2022 Jan; 16(1):23-29. doi:
10.1016/j.orcp.2022.01.002
. [PMID: 35031270] - Jin-A Ko, So-Yeon Kim, Hye-Soo Ahn, Jae-Gyune Go, Young-Bae Ryu, Woo Song Lee, Young-Jung Wee, Jun-Seong Park, Doman Kim, Young-Min Kim. Characterization of a lactic acid bacterium-derived β-glucosidase for the production of rubusoside from stevioside.
Enzyme and microbial technology.
2022 Jan; 153(?):109939. doi:
10.1016/j.enzmictec.2021.109939
. [PMID: 34798448] - Dumas G Oviedo-Pereira, Melina López-Meyer, Silvia Evangelista-Lozano, Luis G Sarmiento-López, Gabriela Sepúlveda-Jiménez, Mario Rodríguez-Monroy. Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei.
PeerJ.
2022; 10(?):e13675. doi:
10.7717/peerj.13675
. [PMID: 35782100] - Şemsi Gül Yılmaz, Aslı Uçar, Serkan Yılmaz. Do steviol glycosides affect the oxidative and genotoxicity parameters in BALB/c mice?.
Drug and chemical toxicology.
2022 Jan; 45(1):464-469. doi:
10.1080/01480545.2020.1716000
. [PMID: 31959022] - Nisar Ahmad, Palwasha Khan, Abdullah Khan, Maliha Usman, Mohammad Ali, Hina Fazal, Durrishahwar, Muhammad Nazir Uddin, Christophe Hano, Bilal Haider Abbasi. Elicitation of Submerged Adventitious Root Cultures of Stevia rebaudiana with Cuscuta reflexa for Production of Biomass and Secondary Metabolites.
Molecules (Basel, Switzerland).
2021 Dec; 27(1):. doi:
10.3390/molecules27010014
. [PMID: 35011247] - Abilasha Deenadayalan, Vijayalakshmi Subramanian, Vijayalakshmi Paramasivan, Vishnu Priya Veeraraghavan, Gayathri Rengasamy, Janaki Coiambatore Sadagopan, Ponnulakshmi Rajagopal, Selvaraj Jayaraman. Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach.
Molecules (Basel, Switzerland).
2021 Dec; 26(24):. doi:
10.3390/molecules26247689
. [PMID: 34946771] - Jinzhu Zhang, Minghai Tang, Yujie Chen, Dan Ke, Jie Zhou, Xinyu Xu, Wenxian Yang, Jianxiong He, Haohao Dong, Yuquan Wei, James H Naismith, Yi Lin, Xiaofeng Zhu, Wei Cheng. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides.
Nature communications.
2021 12; 12(1):7030. doi:
10.1038/s41467-021-27144-4
. [PMID: 34857750] - Roberto Lemus-Mondaca, Liliana Zura-Bravo, Kong Ah-Hen, Karina Di Scala. Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves.
Journal of the science of food and agriculture.
2021 Dec; 101(15):6484-6495. doi:
10.1002/jsfa.11320
. [PMID: 34000065] - Gert Steurs, Nico Moons, Luc Van Meervelt, Boudewijn Meesschaert, Wim Michel De Borggraeve. Characterization of Microbial Degradation Products of Steviol Glycosides.
Molecules (Basel, Switzerland).
2021 Nov; 26(22):. doi:
10.3390/molecules26226916
. [PMID: 34834008] - Yuqi Li, Wanfang Zhu, Jing Cai, Wenyuan Liu, Toshihiro Akihisa, Wei Li, Takashi Kikuchi, Jian Xu, Feng Feng, Jie Zhang. The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders.
Food & function.
2021 Sep; 12(18):8248-8259. doi:
10.1039/d1fo01370j
. [PMID: 34319319] - Yuming Sun, Xiaoyang Xu, Ting Zhang, Yongheng Yang, Haiying Tong, Haiyan Yuan. Comparative transcriptome analysis provides insights into steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) leaves under nitrogen deficiency.
Plant cell reports.
2021 Sep; 40(9):1709-1722. doi:
10.1007/s00299-021-02733-1
. [PMID: 34129077] - Zhuqing Dai, Jiangfeng Song, Ye Chen, Lei Feng, Yayuan Xu, Dajing Li, Caie Wu, Zhongyuan Zhang, Jun Liu. Study on the bioavailability of stevioside-encapsulized lutein and its mechanism.
Food chemistry.
2021 Aug; 354(?):129528. doi:
10.1016/j.foodchem.2021.129528
. [PMID: 33756320] - Nazli Mert Ozupek, Levent Cavas. Modelling of multilinear gradient retention time of bio-sweetener rebaudioside A in HPLC analysis.
Analytical biochemistry.
2021 08; 627(?):114248. doi:
10.1016/j.ab.2021.114248
. [PMID: 34022188] - Yuming Sun, Ting Zhang, Xiaoyang Xu, Yongheng Yang, Haiying Tong, Luis Alejandro Jose Mur, Haiyan Yuan. Transcriptomic Characterization of Nitrate-Enhanced Stevioside Glycoside Synthesis in Stevia (Stevia rebaudiana) Bertoni.
International journal of molecular sciences.
2021 Aug; 22(16):. doi:
10.3390/ijms22168549
. [PMID: 34445254] - Yajie Zhu, Yan Ding, Dongxu Tian, Yan Li, Linwu Zhuang, Yinpeng Wang, Wei Xiao, Jingbo Zhu. Theoretical design and preparation research of molecularly imprinted polymers for steviol glycosides.
Journal of molecular modeling.
2021 Aug; 27(9):238. doi:
10.1007/s00894-021-04819-9
. [PMID: 34363125] - Jingle Jiang, Lina Qi, Quanwei Wei, Fangxiong Shi. Maternal stevioside supplementation ameliorates intestinal mucosal damage and modulates gut microbiota in chicken offspring challenged with lipopolysaccharide.
Food & function.
2021 Jul; 12(13):6014-6028. doi:
10.1039/d0fo02871a
. [PMID: 34036963] - Xuan Zhou, Mengyue Gong, Xueqin Lv, Yanfeng Liu, Jianghua Li, Guocheng Du, Long Liu. Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects.
Applied microbiology and biotechnology.
2021 Jul; 105(13):5367-5381. doi:
10.1007/s00253-021-11419-3
. [PMID: 34196745] - Yaxian Liu, Xiao Hua, Menglei Zhang, Aibin Zhou, Xiangyun Zhou, Ruijin Yang. Recovery of steviol glycosides from industrial stevia by-product via crystallization and reversed-phase chromatography.
Food chemistry.
2021 May; 344(?):128726. doi:
10.1016/j.foodchem.2020.128726
. [PMID: 33280961] - Jimena Borgo, Laura C Laurella, Florencia Martini, Cesar A N Catalán, Valeria P Sülsen. Stevia Genus: Phytochemistry and Biological Activities Update.
Molecules (Basel, Switzerland).
2021 May; 26(9):. doi:
10.3390/molecules26092733
. [PMID: 34066562] - Marta Libik-Konieczny, Ewa Capecka, Monika Tuleja, Robert Konieczny. Synthesis and production of steviol glycosides: recent research trends and perspectives.
Applied microbiology and biotechnology.
2021 May; 105(10):3883-3900. doi:
10.1007/s00253-021-11306-x
. [PMID: 33914136] - G A Chappell, M M Heintz, S J Borghoff, C L Doepker, D S Wikoff. Lack of potential carcinogenicity for steviol glycosides - Systematic evaluation and integration of mechanistic data into the totality of evidence.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Apr; 150(?):112045. doi:
10.1016/j.fct.2021.112045
. [PMID: 33587976] - Maria Margarida Ribeiro, Tatiana Diamantino, Joana Domingues, Ílio Montanari, Marcos Nopper Alves, José Carlos Gonçalves. Stevia rebaudiana germplasm characterization using microsatellite markers and steviol glycosides quantification by HPLC.
Molecular biology reports.
2021 Mar; 48(3):2573-2582. doi:
10.1007/s11033-021-06308-x
. [PMID: 33811576] - Liangliang Chen, Huayi Pan, Ruxin Cai, Yan Li, Honghua Jia, Kequan Chen, Ming Yan, Pingkai Ouyang. Bioconversion of Stevioside to Rebaudioside E Using Glycosyltransferase UGTSL2.
Applied biochemistry and biotechnology.
2021 Mar; 193(3):637-649. doi:
10.1007/s12010-020-03439-y
. [PMID: 33057971] - Shaoshan Zhang, Yunshu Yang, Chengcheng Lyu, Jinsong Chen, Dandan Li, Yajie Liu, Zhifeng Zhang, Yuan Liu, Wei Wu. Identification of the Key Residues of the Uridine Diphosphate Glycosyltransferase 91D2 and its Effect on the Accumulation of Steviol Glycosides in Stevia rebaudiana.
Journal of agricultural and food chemistry.
2021 Feb; 69(6):1852-1863. doi:
10.1021/acs.jafc.0c07066
. [PMID: 33550805] - Tajpreet Kaur, Damanpreet Singh, Amrit P Singh, Devendra Pathak, Saroj Arora, Brahmjot Singh, Sarabjit Kaur, Balbir Singh. Stevioside protects against rhabdomyolysis-induced acute kidney injury through PPAR-γ agonism in rats.
Drug development research.
2021 02; 82(1):59-67. doi:
10.1002/ddr.21722
. [PMID: 32737941] - Roberto Castro-Muñoz, Elsa Díaz-Montes, Alfredo Cassano, Emilia Gontarek. Membrane separation processes for the extraction and purification of steviol glycosides: an overview.
Critical reviews in food science and nutrition.
2021; 61(13):2152-2174. doi:
10.1080/10408398.2020.1772717
. [PMID: 32496876] - Muhammad Imran Khan, Muhammad Zubair Khan, Jin Hyuk Shin, Tia Sun Shin, Young Bok Lee, Min Yung Kim, Jong Deog Kim. Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways.
BioMed research international.
2021; 2021(?):2521273. doi:
10.1155/2021/2521273
. [PMID: 34812408] - Jakub Michał Kurek, Ewelina Król, Zbigniew Krejpcio. Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats.
Nutrients.
2020 Dec; 13(1):. doi:
10.3390/nu13010112
. [PMID: 33396905] - Wei Shen, Ke Fan, Ying Zhao, Junyan Zhang, Meilin Xie. Stevioside inhibits unilateral ureteral obstruction-induced kidney fibrosis and upregulates renal PPARγ expression in mice.
Journal of food biochemistry.
2020 12; 44(12):e13520. doi:
10.1111/jfbc.13520
. [PMID: 33047331] - Sateesh Alavala, Nasiruddin Nalban, Rajendra Sangaraju, Madhusudana Kuncha, Mahesh Kumar Jerald, Eswar Kumar Kilari, Ramakrishna Sistla. Anti-inflammatory effect of stevioside abates Freund's complete adjuvant (FCA)-induced adjuvant arthritis in rats.
Inflammopharmacology.
2020 Dec; 28(6):1579-1597. doi:
10.1007/s10787-020-00736-0
. [PMID: 32617791] - Gualtiero Milani, Maryline Vian, Maria Maddalena Cavalluzzi, Carlo Franchini, Filomena Corbo, Giovanni Lentini, Farid Chemat. Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction.
Ultrasonics sonochemistry.
2020 Dec; 69(?):105255. doi:
10.1016/j.ultsonch.2020.105255
. [PMID: 32682311] - Rafał Typek, Andrzej L Dawidowicz, Marek Stankevič. Stability of stevioside in food processing conditions: unexpected recombination of stevioside hydrolysis products in ESI source.
Food chemistry.
2020 Nov; 331(?):127262. doi:
10.1016/j.foodchem.2020.127262
. [PMID: 32563799] - Victor Markus, Orr Share, Kerem Teralı, Nazmi Ozer, Robert S Marks, Ariel Kushmaro, Karina Golberg. Anti-Quorum Sensing Activity of Stevia Extract, Stevioside, Rebaudioside A and Their Aglycon Steviol.
Molecules (Basel, Switzerland).
2020 Nov; 25(22):. doi:
10.3390/molecules25225480
. [PMID: 33238612] - Karley K Mahalak, Jenni Firrman, Peggy M Tomasula, Alberto Nuñez, Jung-Jin Lee, Kyle Bittinger, William Rinaldi, Lin Shu Liu. Impact of Steviol Glycosides and Erythritol on the Human and Cebus apella Gut Microbiome.
Journal of agricultural and food chemistry.
2020 Nov; 68(46):13093-13101. doi:
10.1021/acs.jafc.9b06181
. [PMID: 31869223] - Yongheng Yang, Ting Zhang, Xiaoyang Xu, Yuming Sun, Yongxia Zhang, Menglan Hou, Suzhen Huang, Haiyan Yuan, Haiying Tong. Identification of GH1 gene family fgt members in Stevia rebaudiana and their expression when grown in darkness.
Molecular biology reports.
2020 Nov; 47(11):8739-8746. doi:
10.1007/s11033-020-05920-7
. [PMID: 33099759] - Eva Petit, Monique Berger, Laurent Camborde, Veronica Vallejo, Jean Daydé, Alban Jacques. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana.
Scientific reports.
2020 09; 10(1):15137. doi:
10.1038/s41598-020-71746-9
. [PMID: 32934264] - Gertrud E Morlock, Julia Heil. HI-HPTLC-UV/Vis/FLD-HESI-HRMS and bioprofiling of steviol glycosides, steviol, and isosteviol in Stevia leaves and foods.
Analytical and bioanalytical chemistry.
2020 Sep; 412(24):6431-6448. doi:
10.1007/s00216-020-02618-4
. [PMID: 32328691] - Khaing Zar Myint, Jun-Ming Chen, Zhuo-Yu Zhou, Yong-Mei Xia, Jianguo Lin, Jue Zhang. Structural dependence of antidiabetic effect of steviol glycosides and their metabolites on streptozotocin-induced diabetic mice.
Journal of the science of food and agriculture.
2020 Aug; 100(10):3841-3849. doi:
10.1002/jsfa.10421
. [PMID: 32297310] - Rafał Typek, Andrzej L Dawidowicz, Katarzyna Bernacik. Aqueous and alcoholic adducts of steviol and steviol glycosides in food products containing stevia.
Food chemistry.
2020 Jul; 317(?):126359. doi:
10.1016/j.foodchem.2020.126359
. [PMID: 32097820] - Marta Libik-Konieczny, Żaneta Michalec-Warzecha, Michał Dziurka, Olga Zastawny, Robert Konieczny, Piotr Rozpądek, Laura Pistelli. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions.
Applied microbiology and biotechnology.
2020 Jul; 104(13):5929-5941. doi:
10.1007/s00253-020-10661-5
. [PMID: 32468157] - Aušra Blinstrubienė, Natalija Burbulis, Neringa Juškevičiūtė, Nijolė Vaitkevičienė, Rasa Žūkienė. Effect of Growth Regulators on Stevia rebaudiana Bertoni Callus Genesis and Influence of Auxin and Proline to Steviol Glycosides, Phenols, Flavonoids Accumulation, and Antioxidant Activity In Vitro.
Molecules (Basel, Switzerland).
2020 Jun; 25(12):. doi:
10.3390/molecules25122759
. [PMID: 32549269] - U A Ogorodnova, A S Sapunova, O A Timofeeva, V F Mironov. Stevioside Has the Maximum Biological Activity among Natural Stevia Diterpenes.
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections.
2020 May; 492(1):79-82. doi:
10.1134/s0012496620030060
. [PMID: 32632831] - Yongheng Yang, Menglan Hou, Ting Zhang, Yuming Sun, Yongxia Zhang, Suzhen Huang, Xiaoyang Xu, Haiyan Yuan. A beta-glucosidase gene from Stevia rebaudiana may be involved in the steviol glycosides catabolic pathway.
Molecular biology reports.
2020 May; 47(5):3577-3584. doi:
10.1007/s11033-020-05450-2
. [PMID: 32314186] - Muhammad Arslan Ahmad, Rabia Javed, Muhammad Adeel, Muhammad Rizwan, Qiang Ao, Yuesuo Yang. Engineered ZnO and CuO Nanoparticles Ameliorate Morphological and Biochemical Response in Tissue Culture Regenerants of Candyleaf (Stevia rebaudiana).
Molecules (Basel, Switzerland).
2020 Mar; 25(6):. doi:
10.3390/molecules25061356
. [PMID: 32192031] - Fan Wang, Xiaonian Xiao, Yiting Yuan, Jing Liu, Yuezhen Liu, Xing Yi. Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles.
Food chemistry.
2020 Mar; 308(?):125569. doi:
10.1016/j.foodchem.2019.125569
. [PMID: 31644967] - Dandan Zhou, Yunting Xu, Yedong Wang, Jiajun Li, Chunshan Gui, Hongjian Zhang. Interaction of Organic Anion Transporter 3-Mediated Uptake of Steviol Acyl Glucuronide, a Major Metabolite of Rebaudioside A, with Selected Drugs.
Journal of agricultural and food chemistry.
2020 Feb; 68(6):1579-1587. doi:
10.1021/acs.jafc.9b05808
. [PMID: 31760750] - Vijay Bhardwaj, Rahul Singh, Pooja Singh, Rituraj Purohit, Sanjay Kumar. Elimination of bitter-off taste of stevioside through structure modification and computational interventions.
Journal of theoretical biology.
2020 02; 486(?):110094. doi:
10.1016/j.jtbi.2019.110094
. [PMID: 31783061] - Concetta Schiano, Vincenzo Grimaldi, Monica Franzese, Carmela Fiorito, Filomena De Nigris, Francesco Donatelli, Andrea Soricelli, Marco Salvatore, Claudio Napoli. Non-nutritional sweeteners effects on endothelial vascular function.
Toxicology in vitro : an international journal published in association with BIBRA.
2020 Feb; 62(?):104694. doi:
10.1016/j.tiv.2019.104694
. [PMID: 31655124] - Magdalena Simlat, Agnieszka Szewczyk, Agata Ptak. Melatonin promotes seed germination under salinity and enhances the biosynthesis of steviol glycosides in Stevia rebaudiana Bertoni leaves.
PloS one.
2020; 15(3):e0230755. doi:
10.1371/journal.pone.0230755
. [PMID: 32218594] - Jai Prakash, Naveen Kumar Arora. Development of Bacillus safensis-based liquid bioformulation to augment growth, stevioside content, and nutrient uptake in Stevia rebaudiana.
World journal of microbiology & biotechnology.
2019 Dec; 36(1):8. doi:
10.1007/s11274-019-2783-x
. [PMID: 31858273] - Limin Wang, Wenbiao Wu. Angiotensin-converting enzyme inhibiting ability of ethanol extracts, steviol glycosides and protein hydrolysates from stevia leaves.
Food & function.
2019 Dec; 10(12):7967-7972. doi:
10.1039/c9fo02127b
. [PMID: 31750488] - Bahare Salehi, Maria Dolores López, Sara Martínez-López, Montserrat Victoriano, Javad Sharifi-Rad, Miquel Martorell, Célia F Rodrigues, Natália Martins. Stevia rebaudiana Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches.
Phytotherapy research : PTR.
2019 Nov; 33(11):2904-2917. doi:
10.1002/ptr.6478
. [PMID: 31423662] - Patrick Cosson, Cécile Hastoy, Luis Ernesto Errazzu, Carlos Jorge Budeguer, Philippe Boutié, Dominique Rolin, Valérie Schurdi-Levraud. Genetic diversity and population structure of the sweet leaf herb, Stevia rebaudiana B., cultivated and landraces germplasm assessed by EST-SSRs genotyping and steviol glycosides phenotyping.
BMC plant biology.
2019 Oct; 19(1):436. doi:
10.1186/s12870-019-2061-y
. [PMID: 31638900] - Qing Lan, Tingting Tang, Yu Yin, XiaoYi Qu, Zilong Wang, Hao Pang, Ribo Huang, Liqin Du. Highly specific sophorose β-glucosidase from Sphingomonas elodea ATCC 31461 for the efficient conversion of stevioside to rubusoside.
Food chemistry.
2019 Oct; 295(?):563-568. doi:
10.1016/j.foodchem.2019.05.164
. [PMID: 31174796] - Zeng-Xu Xiang, Xing-Li Tang, Wei-Hu Liu, Chang-Nian Song. A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid.
Plant physiology and biochemistry : PPB.
2019 Oct; 143(?):154-164. doi:
10.1016/j.plaphy.2019.09.003
. [PMID: 31505448] - Allan W R Ng, K K Loh, Neeraj Gupta, Kumaran Narayanan. A polyol-stevia blended sugar replacer exhibits low glycemic response among human subjects.
Clinical nutrition ESPEN.
2019 10; 33(?):39-41. doi:
10.1016/j.clnesp.2019.07.014
. [PMID: 31451273] - Hourieh Tavakoli, Nasibeh Tavakoli, Foad Moradi. The effect of the elicitors on the steviol glycosides biosynthesis pathway in Stevia rebaudiana.
Functional plant biology : FPB.
2019 08; 46(9):787-795. doi:
10.1071/fp19014
. [PMID: 31104695] - Ting Yang, Jinzhu Zhang, Dan Ke, Wenxian Yang, Minghai Tang, Jian Jiang, Guo Cheng, Jianshu Li, Wei Cheng, Yuquan Wei, Qintong Li, James H Naismith, Xiaofeng Zhu. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations.
Nature communications.
2019 07; 10(1):3214. doi:
10.1038/s41467-019-11154-4
. [PMID: 31324778] - Monica Saifi, Sneha Yogindran, Nazima Nasrullah, Umara Nissar, Irum Gul, M Z Abdin. Co-expression of anti-miR319g and miRStv_11 lead to enhanced steviol glycosides content in Stevia rebaudiana.
BMC plant biology.
2019 Jun; 19(1):274. doi:
10.1186/s12870-019-1871-2
. [PMID: 31234787] - Sael Casas-Grajales, Diana Alvarez-Suarez, Erika Ramos-Tovar, Laura Dayana Buendía-Montaño, Karina Reyes-Gordillo, Javier Camacho, Víctor Tsutsumi, M Raj Lakshman, Pablo Muriel. Stevioside inhibits experimental fibrosis by down-regulating profibrotic Smad pathways and blocking hepatic stellate cell activation.
Basic & clinical pharmacology & toxicology.
2019 Jun; 124(6):670-680. doi:
10.1111/bcpt.13194
. [PMID: 30561898] - Mi Jung Kim, Junshi Zheng, Ming Hui Liao, In-Cheol Jang. Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality.
Plant biotechnology journal.
2019 06; 17(6):1037-1047. doi:
10.1111/pbi.13035
. [PMID: 30569490] - Xuezhuang Wu, Peilong Yang, Dai Sifa, Zhiguo Wen. Effect of dietary stevioside supplementation on growth performance, nutrient digestibility, serum parameters, and intestinal microflora in broilers.
Food & function.
2019 May; 10(5):2340-2346. doi:
10.1039/c8fo01883a
. [PMID: 31020296] - Sael Casas-Grajales, Erika Ramos-Tovar, Esmeralda Chávez-Estrada, Diana Alvarez-Suarez, Erika Hernández-Aquino, Karina Reyes-Gordillo, Carlos M Cerda-García-Rojas, Javier Camacho, Víctor Tsutsumi, M Raj Lakshman, Pablo Muriel. Antioxidant and immunomodulatory activity induced by stevioside in liver damage: In vivo, in vitro and in silico assays.
Life sciences.
2019 May; 224(?):187-196. doi:
10.1016/j.lfs.2019.03.035
. [PMID: 30890404] - Arman Pazuki, Fatemeh Aflaki, Buhara Yücesan, Songül Gürel. Effects of cytokinins, gibberellic acid 3, and gibberellic acid 4/7 on in vitro growth, morphological traits, and content of steviol glycosides in Stevia rebaudiana.
Plant physiology and biochemistry : PPB.
2019 Apr; 137(?):154-161. doi:
10.1016/j.plaphy.2019.02.009
. [PMID: 30784987] - Tâmmila V Klug, Elena Collado, Ginés B Martínez-Hernández, Francisco Artés, Francisco Artés-Hernández. Effect of stevia supplementation of kale juice spheres on their quality changes during refrigerated shelf life.
Journal of the science of food and agriculture.
2019 Mar; 99(5):2384-2392. doi:
10.1002/jsfa.9445
. [PMID: 30357844] - Jana Šic Žlabur, Nadica Dobričević, Mladen Brnčić, Francisco J Barba, Jose M Lorenzo, Daniel Franco, Atanas G Atanasov, Sandra Voća, Suzana Rimac Brnčić. Evaluation of the Behavior of Phenolic Compounds and Steviol Glycosides of Sonicated Strawberry Juice Sweetened with Stevia (Stevia rebaudiana Bertoni).
Molecules (Basel, Switzerland).
2019 Mar; 24(7):. doi:
10.3390/molecules24071202
. [PMID: 30934766] - Matin Ghaheri, Danial Kahrizi, Gholamreza Bahrami, Hamid-Reza Mohammadi-Motlagh. Study of gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni under various mannitol concentrations.
Molecular biology reports.
2019 Feb; 46(1):7-16. doi:
10.1007/s11033-018-4250-4
. [PMID: 30506508] - Tim Devlamynck, Evelien M Te Poele, Koen Quataert, Gerrit J Gerwig, Davy Van de Walle, Koen Dewettinck, Johannis P Kamerling, Wim Soetaert, Lubbert Dijkhuizen. Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile.
Food chemistry.
2019 Jan; 272(?):653-662. doi:
10.1016/j.foodchem.2018.08.025
. [PMID: 30309594] - Junshi Zheng, Yan Zhuang, Hui-Zhu Mao, In-Cheol Jang. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants.
BMC plant biology.
2019 Jan; 19(1):1. doi:
10.1186/s12870-018-1600-2
. [PMID: 30606102] - Ruby Gupta, Deepika Sharma. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications.
International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.
2019; 36(1):302-312. doi:
10.1080/02656736.2019.1565787
. [PMID: 30729822]