Calenduloside E (BioDeep_00000000977)

 

Secondary id: BioDeep_00000227621, BioDeep_00001867576

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

化学式: C36H56O9 (632.3924)
中文名称: 金盏花苷E, 金盏花苷 E
谱图信息: 最多检出来源 Viridiplantae(plant) 91.43%

分子结构信息

SMILES: C1[C@@H](C([C@H]2[C@](C1)([C@@H]1[C@@](CC2)([C@]2(C(=CC1)[C@H]1[C@@](CC2)(CCC(C1)(C)C)C(=O)O)C)C)C)(C)C)O[C@@H]1[C@@H]([C@H]([C@@H]([C@H](O1)C(=O)O)O)O)O
InChI: InChI=1S/C36H56O9/c1-31(2)14-16-36(30(42)43)17-15-34(6)19(20(36)18-31)8-9-22-33(5)12-11-23(32(3,4)21(33)10-13-35(22,34)7)44-29-26(39)24(37)25(38)27(45-29)28(40)41/h8,20-27,29,37-39H,9-18H2,1-7H3,(H,40,41)(H,42,43)/t20-,21-,22+,23-,24-,25-,26+,27-,29+,33-,34+,35+,36-/m0/s1

描述信息

Oleanolic acid 3-O-beta-D-glucosiduronic acid is a beta-D-glucosiduronic acid. It is functionally related to an oleanolic acid.
Calenduloside E is a natural product found in Anredera baselloides, Polyscias scutellaria, and other organisms with data available.
See also: Calendula Officinalis Flower (part of).
Constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber). Oleanolic acid 3-glucuronide is found in common beet, green vegetables, and root vegetables.
Calenduloside E is found in common beet. Calenduloside E is a constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber).
Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].
Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].

同义名列表

36 个代谢物同义名

(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid; 6-[(8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid; 6-[(8a-Carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylate; 6-[(8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid; .BETA.-D-GLUCOPYRANOSIDURONIC ACID, (3.BETA.)-17-CARBOXY-28-NOROLEAN-12-EN-3-YL; GLUCOPYRANOSIDURONIC ACID, 3.BETA.-HYDROXYOLEAN-12-EN-28-OIC ACID, .BETA.-D-; beta-D-Glucopyranosiduronic acid, (3beta)-17-carboxy-28-norolean-12-en-3-yl; Glucopyranosiduronic acid, 3beta-hydroxyolean-12-en-28-oic acid, beta-D-; 28-hydroxy-28-oxoolean-12-en-3beta-yl beta-D-glucopyranosiduronic acid; b-D-Glucopyranosiduronic acid,(3b)-17-carboxy-28-norolean-12-en-3-yl; OLEAN-12-EN-28-OIC ACID, 3.BETA.-(.BETA.-D-GLUCOPYRANURONOSYLOXY)-; Olean-12-en-28-oic acid, 3beta-(beta-D-glucopyranuronosyloxy)-; Oleanolic acid 3-O-monoglucuronide, (beta-D)-isomer; OLEANOLIC ACID 3-O-.BETA.-D-GLUCURONOPYRANOSIDE; 3-O-(.BETA.-D-GLUCOPYRANURONOSYL)OLEANOLIC ACID; Oleanolic acid 3-O-beta-D-glucuronopyranoside; oleanolic acid 3-O-beta-D-glucosiduronic acid; 3-O-(beta-D-Glucopyranuronosyl)oleanolic acid; 28-DESGLUCOSYLCHIKUSETSUSAPONIN IVA; Oleanolic acid 3-O-monoglucuronide; Oleanolic acid 3-O-glucuronide; Oleanoic acid 3-O-glucuronide; Oleanolic acid 3-glucuronide; Oleanolate 3-glucuronide; Calendulaglycoside F; (+)-Calenduloside E; Polysciasaponin P7; Monoglucuronide F; (+)-Silphioside F; Calenduloside E; Glycoside St-E; CalendulosideE; Silphioside F; Momordin Ib; Momordin B; Oleanoic acid 3-O-glucuronide



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

  • saponin biosynthesis II: UDP-α-D-glucose + oleanolate 3-beta-D-glucuronoside-(3,1)-galactoside ⟶ UDP + oleanolate 3-beta-D-glucuronoside-(3,1)-galactoside-28-glucoside

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

27 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANXA5, APOE, BAG3, BCL2, CASP8, HSP90AA2P, HSP90AB1, JAK1, OPA1, PIK3CA, PRKAA2, PTGS2, STAT3
Peripheral membrane protein 2 ANXA5, PTGS2
Endoplasmic reticulum membrane 3 BCL2, HSP90B1, PTGS2
Nucleus 12 APOE, BAG3, BCL2, CASP8, HSP90AB1, HSP90B1, JAK1, KLF2, PARP1, PRKAA2, SIRT3, STAT3
cytosol 13 ANXA5, BAG3, BCL2, CASP8, HSP90AA2P, HSP90AB1, HSP90B1, JAK1, OPA1, PARP1, PIK3CA, PRKAA2, STAT3
dendrite 3 APOE, OPA1, PRKAA2
mitochondrial membrane 1 OPA1
nuclear body 1 PARP1
nucleoplasm 8 BAG3, CASP8, HSP90AB1, OPA1, PARP1, PRKAA2, SIRT3, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 HSP90AB1, PTPRC
lamellipodium 2 CASP8, PIK3CA
Synapse 1 PTPRC
cell surface 2 HSP90AB1, PTPRC
glutamatergic synapse 1 APOE
Golgi apparatus 2 APOE, PRKAA2
Golgi membrane 1 INS
mitochondrial inner membrane 1 OPA1
neuronal cell body 3 APOE, HSP90AB1, PRKAA2
sarcolemma 1 ANXA5
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 PARP1
endosome 1 JAK1
plasma membrane 7 APOE, HSP90AA2P, HSP90AB1, JAK1, PIK3CA, PTPRC, STAT3
Membrane 11 ANXA5, APOE, BAG3, BCL2, HSP90AB1, HSP90B1, JAK1, OPA1, PARP1, PRKAA2, PTPRC
axon 2 CCK, PRKAA2
caveola 1 PTGS2
extracellular exosome 6 ANXA5, APOE, HSP90AA2P, HSP90AB1, HSP90B1, PTPRC
endoplasmic reticulum 4 APOE, BCL2, HSP90B1, PTGS2
extracellular space 3 APOE, CCK, INS
perinuclear region of cytoplasm 4 HSP90AA2P, HSP90AB1, HSP90B1, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 6 BCL2, CASP8, HSP90AB1, OPA1, PARP1, SIRT3
protein-containing complex 8 BCL2, CASP8, HSP90AA2P, HSP90AB1, HSP90B1, PARP1, PTGS2, SIRT3
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 1 PTPRC
Secreted 4 APOE, CCK, HSP90AB1, INS
extracellular region 6 ANXA5, APOE, CCK, HSP90AB1, HSP90B1, INS
cytoplasmic side of plasma membrane 2 JAK1, PTPRC
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, OPA1
mitochondrial outer membrane 3 BCL2, CASP8, OPA1
Mitochondrion matrix 1 SIRT3
mitochondrial matrix 1 SIRT3
transcription regulator complex 2 PARP1, STAT3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, PTPRC
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
Z disc 1 BAG3
nucleolus 1 PARP1
axon cytoplasm 1 OPA1
midbody 1 HSP90B1
Early endosome 1 APOE
Cell projection, lamellipodium 1 CASP8
Mitochondrion inner membrane 1 OPA1
Membrane raft 1 PTPRC
pore complex 1 BCL2
focal adhesion 4 ANXA5, HSP90B1, JAK1, PTPRC
microtubule 1 OPA1
extracellular matrix 1 APOE
Mitochondrion intermembrane space 1 OPA1
mitochondrial intermembrane space 1 OPA1
collagen-containing extracellular matrix 3 ANXA5, APOE, HSP90B1
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 3 KLF2, PARP1, STAT3
axonal growth cone 1 HSP90AB1
Chromosome 1 PARP1
cytoskeleton 2 CASP8, JAK1
mitochondrial crista 1 OPA1
Secreted, extracellular space 1 APOE
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 APOE
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Endomembrane system 1 JAK1
endosome lumen 1 INS
aryl hydrocarbon receptor complex 1 HSP90AB1
Melanosome 3 APOE, HSP90AB1, HSP90B1
cytoplasmic stress granule 1 PRKAA2
cell body 1 CASP8
dendritic growth cone 1 HSP90AB1
myelin sheath 1 BCL2
sperm plasma membrane 1 HSP90B1
stress fiber 1 BAG3
ficolin-1-rich granule lumen 1 HSP90AB1
secretory granule lumen 2 HSP90AB1, INS
secretory granule membrane 1 PTPRC
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 APOE, HSP90B1, INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
aggresome 1 BAG3
Dynein axonemal particle 1 HSP90AB1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 APOE
Sarcoplasmic reticulum lumen 1 HSP90B1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK1
protein folding chaperone complex 2 BAG3, HSP90AB1
synaptic cleft 1 APOE
protein-DNA complex 1 PARP1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 1 CASP8
ripoptosome 1 CASP8
nucleotide-activated protein kinase complex 1 PRKAA2
[Dynamin-like GTPase OPA1, long form]: Mitochondrion inner membrane 1 OPA1
[Dynamin-like GTPase OPA1, short form]: Mitochondrion intermembrane space 1 OPA1
site of DNA damage 1 PARP1
membrane microdomain 1 PTPRC
discoidal high-density lipoprotein particle 1 APOE
bleb 1 PTPRC
endocytic vesicle lumen 2 APOE, HSP90B1
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
endoplasmic reticulum chaperone complex 1 HSP90B1
HSP90-CDC37 chaperone complex 1 HSP90AB1
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Yifei Le, Jianan Guo, Zhijun Liu, Jing Liu, Ying Liu, Hang Chen, Jiannan Qiu, Cui Wang, Xiaobing Dou, Dezhao Lu. Calenduloside E ameliorates non-alcoholic fatty liver disease via modulating a pyroptosis-dependent pathway. Journal of ethnopharmacology. 2023 Sep; 319(Pt 2):117239. doi: 10.1016/j.jep.2023.117239. [PMID: 37777027]
  • Lanfang Li, Junyu Mou, Yanwei Han, Min Wang, Shan Lu, Qiuxiao Ma, Jialu Wang, Jingxue Ye, Guibo Sun. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis. International immunopharmacology. 2023 Mar; 117(?):109730. doi: 10.1016/j.intimp.2023.109730. [PMID: 36878047]
  • Ruiying Wang, Min Wang, Bo Liu, Huibo Xu, Jingxue Ye, Xiaobo Sun, Guibo Sun. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca2+ channels through BAG3. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112432. doi: 10.1016/j.biopha.2021.112432. [PMID: 34798472]
  • Ruiying Wang, Min Wang, Jiahui Zhou, Ziru Dai, Guibo Sun, Xiaobo Sun. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. Journal of advanced research. 2021 12; 34(?):173-186. doi: 10.1016/j.jare.2020.10.005. [PMID: 35024189]
  • Liu Liu, Haobin Li, Kaiwen Hu, Qinglong Xu, Xiaoan Wen, Keguang Cheng, Caiping Chen, Haoliang Yuan, Liang Dai, Hongbin Sun. Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid. European journal of medicinal chemistry. 2021 Jan; 209(?):112932. doi: 10.1016/j.ejmech.2020.112932. [PMID: 33131725]
  • Min Wang, Rui-Ying Wang, Jia-Hui Zhou, Xue-Heng Xie, Gui-Bo Sun, Xiao-Bo Sun. Calenduloside E Ameliorates Myocardial Ischemia-Reperfusion Injury through Regulation of AMPK and Mitochondrial OPA1. Oxidative medicine and cellular longevity. 2020; 2020(?):2415269. doi: 10.1155/2020/2415269. [PMID: 32934760]
  • Yu Tian, Shan Wang, Hai Shang, Wen-Qian Wang, Bao-Qi Wang, Xi Zhang, Xu-Dong Xu, Gui-Bo Sun, Xiao-Bo Sun. The clickable activity-based probe of anti-apoptotic calenduloside E. Pharmaceutical biology. 2019 Dec; 57(1):133-139. doi: 10.1080/13880209.2018.1557699. [PMID: 30843752]
  • Si-Wen Zheng, Sheng-Yuan Xiao, Jia Wang, Wei Hou, Ying-Ping Wang. Inhibitory Effects of Ginsenoside Ro on the Growth of B16F10 Melanoma via Its Metabolites. Molecules (Basel, Switzerland). 2019 Aug; 24(16):. doi: 10.3390/molecules24162985. [PMID: 31426477]
  • Qing-Yan Tang, Geng Chen, Wan-Ling Song, Wei Fan, Kun-Hua Wei, Si-Mei He, Guang-Hui Zhang, Jun-Rong Tang, Ying Li, Yuan Lin, Sheng-Chao Yang. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. Planta. 2019 Feb; 249(2):393-406. doi: 10.1007/s00425-018-2995-6. [PMID: 30219960]
  • Russell B Williams, Vanessa L Norman, Mark O'Neil-Johnson, Scott Woodbury, Gary R Eldridge, Courtney M Starks. Digging Deep for New Compounds from the Compass Plant, Silphium laciniatum. Journal of natural products. 2015 Aug; 78(8):2074-86. doi: 10.1021/acs.jnatprod.5b00394. [PMID: 26287548]
  • Meiyun Shi, Yan Yang, Yantong Sun, Longmei Cheng, Sen Zhao, Huibo Xu, J Paul Fawcett, Xiaobo Sun, Jingkai Gu. Pharmacokinetic study of calenduloside E and its active metabolite oleanolic acid in beagle dog using liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 Mar; 951-952(?):129-34. doi: 10.1016/j.jchromb.2014.01.036. [PMID: 24556278]
  • Qing-lan Guo, Bin Li, Jian Li, Jing-jing Li, Li-ying Xia, Jun-xing Dong. [Triterpenoid saponins of Alternanthera philoxeroides (Mart.) Griseb]. Yao xue xue bao = Acta pharmaceutica Sinica. 2011 Apr; 46(4):428-31. doi: . [PMID: 21751496]
  • Nilanjana Das, Poornima Chandran, Smritinath Chakraborty. Potent spermicidal effect of oleanolic acid 3-beta-D-glucuronide, an active principle isolated from the plant Sesbania sesban Merrill. Contraception. 2011 Feb; 83(2):167-75. doi: 10.1016/j.contraception.2010.05.009. [PMID: 21237343]
  • Ariya Rattanathongkom, Jung-Bum Lee, Kyoko Hayashi, Bung-orn Sripanidkulchai, Tripetch Kanchanapoom, Toshimitsu Hayashi. Evaluation of chikusetsusaponin IVa isolated from Alternanthera philoxeroides for its potency against viral replication. Planta medica. 2009 Jun; 75(8):829-35. doi: 10.1055/s-0029-1185436. [PMID: 19277947]
  • H Matsuda, Y Dai, Y Ido, T Murakami, H Matsuda, M Yoshikawa, M Kubo. Studies on Kochiae Fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement. Biological & pharmaceutical bulletin. 1998 Nov; 21(11):1231-3. doi: 10.1248/bpb.21.1231. [PMID: 9853421]
  • H Matsuda, Y Li, T Murakami, N Matsumura, J Yamahara, M Yoshikawa. Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chemical & pharmaceutical bulletin. 1998 Sep; 46(9):1399-403. doi: 10.1248/cpb.46.1399. [PMID: 9775435]
  • H Matsuda, T Murakami, H Shimada, N Matsumura, M Yoshikawa, J Yamahara. Inhibitory mechanisms of oleanolic acid 3-O-monodesmosides on glucose absorption in rats. Biological & pharmaceutical bulletin. 1997 Jun; 20(6):717-9. doi: 10.1248/bpb.20.717. [PMID: 9213000]