NCBI Taxonomy: 32008
Burkholderia (ncbi_taxid: 32008)
found 200 associated metabolites at genus taxonomy rank level.
Ancestor: Burkholderiaceae
Child Taxonomies: Burkholderia glumae, Burkholderia gladioli, Burkholderia alba, Burkholderia plantarii, pseudomallei group, Burkholderia reimsis, [Pseudomonas] jianii, environmental samples, Burkholderia australis, Burkholderia rinojensis, Burkholderia perseverans, unclassified Burkholderia, Burkholderia guangdongensis, Burkholderia cepacia complex, Candidatus Burkholderia pumila, Candidatus Burkholderia virens, Candidatus Burkholderia crenata, Candidatus Burkholderia humilis, Candidatus Burkholderia mamillata, Candidatus Burkholderia verschuerenii, Candidatus Burkholderia brachyanthoides, 'Burkholderia humi' Srinivasan et al. 2013
Gluconic acid
Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031
Pyochelin
A member of the class of thiazolidines that is (4R)-3-methyl-1,3-thiazolidine-4-carboxylic acid which is substituted at position 2 by a (4R)-2-(2-hydroxyphenyl)-4,5-dihydro-1,3-thiazol-4-yl group. A siderophore that is produced by Pseudomonas aeruginosa (via condensation of salicylic acid and two molecules of cysteine) as a mixture of two easily interconvertible diastereoisomers, pyochelin I (major) and pyochelin II (minor). The enantiomeric compounds, enant-pyochelin, are produced by Pseudomonas fluorescens. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
Pyrrolnitrin
A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094
Toxoflavin
A pyrimidotriazine that is 1,6-dimethyl-1,5,6,7-tetrahydropyrimido[5,4-e][1,2,4]triazine with oxo groups at positions 5 and 7.
aminopyrrolnitrin
A member of the class of pyrroles carrying chloro and 2-amino-3-chlorophenyl substituents at positions 3 and 4 respectively.
monodechloroaminopyrrolnitrin
A member of the class of pyrroles carrying a 2-amino-3-chlorophenyl substituent at position 3.
Nonane
Nonane is found in common oregano. Nonane is present in numerous plant oils including olive oils.Nonane is a linear alkane hydrocarbon with the chemical formula C9H20. Nonane has 35 structural isomers. (Wikipedia Present in numerous plant oils including olive oils
Pyochelin
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
2-amino-4-(2-amino-3-hydroxypropoxy)but-3-enoic acid
Rhizoxin
An macrolide antibiotic isolated from the pathogenic plant fungus Rhizopus microsporus. It also exhibits antitumour and antimitotic activity. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
(-)-α-Pinene
alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].