Citicoline (BioDeep_00000000744)
Main id: BioDeep_00000859284
Secondary id: BioDeep_00000400231, BioDeep_00000400232, BioDeep_00000400312, BioDeep_00000400398
natural product human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs
代谢物信息卡片
化学式: C14H26N4O11P2 (488.1073)
中文名称: 尼可林, 脑二磷胆碱, 胞嘧啶核苷二磷酸胆碱, 胞磷胆碱, 尼古林
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 27.6%
分子结构信息
SMILES: C[N+](C)(C)CCOP(=O)(O)OP(=O)([O-])OCC1OC(n2ccc(=N)nc2O)C(O)C1O
InChI: InChI=1S/C14H26N4O11P2/c1-18(2,3)6-7-26-30(22,23)29-31(24,25)27-8-9-11(19)12(20)13(28-9)17-5-4-10(15)16-14(17)21/h4-5,9,11-13,19-20H,6-8H2,1-3H3,(H3-,15,16,21,22,23,24,25)/t9-,11-,12-,13-/m1/s1
描述信息
CDP-choline is a member of the class of phosphocholines that is the chloine ester of CDP. It is an intermediate obtained in the biosynthetic pathway of structural phospholipids in cell membranes. It has a role as a human metabolite, a psychotropic drug, a neuroprotective agent, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a member of phosphocholines and a member of nucleotide-(amino alcohol)s. It is functionally related to a CDP. It is a conjugate base of a CDP-choline(1+).
Citicoline is a donor of choline in biosynthesis of choline-containing phosphoglycerides. It has been investigated for the treatment, supportive care, and diagnosis of Mania, Stroke, Hypomania, Cocaine Abuse, and Bipolar Disorder, among others.
Citicoline is a nutritional supplement and source of choline and cytidine with potential neuroprotective and nootropic activity. Citicoline, also known as cytidine-5-diphosphocholine or CDP-choline, is hydrolyzed into cytidine and choline in the intestine. Following absorption, both cytidine and choline are dispersed, utilized in various biosynthesis pathways, and cross the blood-brain barrier for resynthesis into citicoline in the brain, which is the rate-limiting product in the synthesis of phosphatidylcholine. This agent also increases acetylcholine (Ach), norepinephrine (NE) and dopamine levels in the central nervous system (CNS). In addition, citicoline is involved in the preservation of sphingomyelin and cardiolipin and the restoration of Na+/K+-ATPase activity. Citicoline also increases glutathione synthesis and glutathione reductase activity, and exerts antiapoptotic effects.
Donor of choline in biosynthesis of choline-containing phosphoglycerides.
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics
Acquisition and generation of the data is financially supported in part by CREST/JST.
D002491 - Central Nervous System Agents > D018697 - Nootropic Agents
Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects.
Citicoline (Cytidine diphosphate-choline) is an intermediate in the synthesis of phosphatidylcholine, a component of cell membranes. Citicoline exerts neuroprotective effects.
同义名列表
84 个代谢物同义名
2-(((((((2R,3S,4R,5R)-5-(4-Amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)oxy)-N,N,N-trimethylethanaminium; {2-[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl phosphonato)oxy]ethyl}trimethylazanium; Cytidine 5-(trihydrogen diphosphate), mono(2-(trimethylammonio)ethyl) ester, hydroxide, inner salt; Cytidine 5-(trihydrogen diphosphate), P-(2-(trimethylammonio)ethyl) ester, inner salt; Cytidine 5-(trihydrogen diphosphate), P-[2-(trimethylammonio)ethyl] ester, inner salt; Cytidine 5-(trihydrogen diphosphate), P-[2-(trimethylammonio)ethyl]ester, inner salt; Choline, hydroxide, 5-ester with cytidine 5-(trihydrogen pyrophosphate), inner salt; 5-O-[(S)-hydroxy({[2-(trimethylammonio)ethoxy]phosphinato}oxy)phosphoryl]cytidine; 5-O-[hydroxy({[2-(trimethylammonio)ethoxy]phosphinato}oxy)phosphoryl]cytidine; Cytidine-5-diphosphocholine sodium salt dihydrate, from yeast, solid; Cytidine diphosphate-choline;CDP-Choline;Cytidine 5-diphosphocholine; [2-CYTIDYLATE-O-PHOSPHONYLOXYL]-ETHYL-TRIMETHYL-AMMONIUM; Cytidine, 5-pyrophosphate, ester with choline; Choline, ester with cytidine 5-pyrophosphate; Cytidine diphosphate choline (CDPcholine); Choline cytidine 5-pyrophosphate ester; Citidin difosfato de colina [Spanish]; Cytidine 5-(cholinyl pyrophosphate); Cytidine diphosphate choline ester; Cytidine diphosphate cholin ester; Cytidine 5-(choline diphosphate); Cytidindiphosphocholin [German]; Cytidine 5-diphosphoric choline; Choline 5-cytidine diphosphate; Cytidine 5-diphosphate choline; Choline, Cytidine Diphosphate; Diphosphate Choline, Cytidine; Choline cytidine diphosphate; cytidine diphosphate choline; Cytidine choline diphosphate; cytidine diphosphate-choline; Cytidine diphosphorylcholine; CDP-choline (neutral charge); 5-Diphosphocholine, Cytidine; Cytidinediphosphoric choline; Cytidine 5 Diphosphocholine; cytidine 5-diphosphocholine; Cytidine 5-diphosphocholine; RZZPDXZPRHQOCG-OJAKKHQRSA-N; citidin difosfato de colina; Cytidine diphosphocholine; Citicolina [INN-Spanish]; Citicolinum [INN-Latin]; Cytidindiphosphocholin; Citicoline (JP17/INN); Citicoline [INN:JAN]; CDP-colina [Spanish]; CDP-cholin [German]; Nicholin (TN); Choline, CDP; citicholine; cyticholine; Citicolinum; CDP-choline; CDP Choline; Citicolina; CDP-colina; Difosfocin; FT-0623951; Citidoline; CDP-cholin; Citicoline; Cytidoline; Niticolin; Startonyl; Emicholin; Suncholin; Cyscholin; Recofnan; Somazina; Haocolin; Nicholin; Recognan; Cidifos; Citifar; Rexort; Meibis; Ubelin; Ensign; Colite; Cereb; Citicoline; Cytidine 5'-diphosphocholine; CDP-choline
数据库引用编号
40 个数据库交叉引用编号
- ChEBI: CHEBI:16436
- KEGG: C00307
- KEGGdrug: D00057
- KEGGdrug: D81851
- PubChem: 3901273
- PubChem: 13804
- Metlin: METLIN3581
- DrugBank: DB04290
- DrugBank: DB12153
- Wikipedia: Citicoline
- MeSH: Cytidine Diphosphate Choline
- ChemIDplus: 0000987780
- MetaCyc: CDP-CHOLINE
- KNApSAcK: C00007231
- CAS: 987-78-0
- MoNA: PR100122
- MoNA: PS070702
- MoNA: PS019105
- MoNA: PS019101
- MoNA: PR100121
- MoNA: PR100539
- MoNA: PR100317
- MoNA: PS019104
- MoNA: PS019107
- MoNA: PS019103
- MoNA: PS070706
- MoNA: PR100751
- MoNA: PS019106
- MoNA: PS070705
- MoNA: PS070701
- MoNA: PS019108
- MoNA: PS070704
- MoNA: PS019102
- medchemexpress: HY-B0739
- PMhub: MS000007696
- PubChem: 3601
- PDB-CCD: CDC
- 3DMET: B01213
- NIKKAJI: J55.713G
- KNApSAcK: 16436
分类词条
相关代谢途径
Reactome(4)
PlantCyc(0)
代谢反应
333 个相关的代谢反应过程信息。
Reactome(90)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Phospholipid metabolism:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Phospholipid metabolism:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Phospholipid metabolism:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Glycerophospholipid biosynthesis:
1-acyl LPC + H2O ⟶ GPCho + LCFA(-)
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
ATP + Cho ⟶ ADP + PCho
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
AcCho + H2O ⟶ Cho + acetate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
BioCyc(5)
- superpathway of phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- ester phospholipid biosynthesis:
an L-1-phosphatidyl-glycerol ⟶ a cardiolipin + glycerol
- choline biosynthesis III:
H2O + a phosphatidylcholine ⟶ a 1,2-diacyl-sn-glycerol 3-phosphate + choline
- phosphatidylcholine biosynthesis I:
ATP + choline ⟶ ADP + H+ + phosphoryl-choline
- phosphatidylcholine biosynthesis II:
S-adenosyl-L-methionine + phosphoryl-ethanolamine ⟶ S-adenosyl-L-homocysteine + H+ + N-methylethanolamine phosphate
WikiPathways(7)
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- Kennedy pathway:
Choline ⟶ Phosphocholine
- Kennedy pathway from sphingolipids:
Choline ⟶ Phosphocholine
- Acetylcholine synthesis:
Glycerophosphocholine ⟶ Choline
- Glycerolipids and glycerophospholipids:
Choline ⟶ Choline-P
- Glycerolipids and glycerophospholipids:
Choline ⟶ Choline-P
- Glycerolipids and glycerophospholipids:
Etn-P ⟶ Etn
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Choline biosynthesis III:
CDP-Cho + DAG ⟶ CMP + PC
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Choline biosynthesis III:
H2O + PC ⟶ Cho + PA
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zhenhua Wang, Meng Yang, Yufan Yang, Yonglin He, Hongwu Qian. Structural basis for catalysis of human choline/ethanolamine phosphotransferase 1.
Nature communications.
2023 May; 14(1):2529. doi:
10.1038/s41467-023-38290-2
. [PMID: 37137909] - Qin Zhang, Hong Zhang, Chun-Mei Yang, Bo Wang, Chen-Yang Li, Qi Li. [Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(2):507-516. doi:
10.19540/j.cnki.cjcmm.20220913.702
. [PMID: 36725240] - Cheng Zheng, Mingjin Qu, Yingmiao Liu, Junzhi Wang, Hanjie Ying. Design and optimizing a new CDP-choline in vitro multienzyme producing process starts from d-ribose.
Biotechnology and applied biochemistry.
2022 Jun; 69(3):1029-1035. doi:
10.1002/bab.2173
. [PMID: 33885187] - Hussein M Eid, Adel A Ali, Ahmed M Abdelhaleem Ali, Essam M Eissa, Randa M Hassan, Fatma I Abo El-Ela, Amira H Hassan. Potential Use of Tailored Citicoline Chitosan-Coated Liposomes for Effective Wound Healing in Diabetic Rat Model.
International journal of nanomedicine.
2022; 17(?):555-575. doi:
10.2147/ijn.s342504
. [PMID: 35153481] - Amin Osman Elzupir. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment.
Molecules (Basel, Switzerland).
2021 Dec; 26(24):. doi:
10.3390/molecules26247458
. [PMID: 34946540] - Meric Kocaturk, Zeki Yilmaz, Mehmet Cansev, Yesim Ozarda, Jose Joaquin Ceron, Ali Buturak, Ismail H Ulus. Choline or CDP-choline restores hypotension and improves myocardial and respiratory functions in dogs with experimentally - Induced endotoxic shock.
Research in veterinary science.
2021 Dec; 141(?):116-128. doi:
10.1016/j.rvsc.2021.10.010
. [PMID: 34715589] - Hyeonseok Jeong, Sujung Yoon, Young-Hoon Sung, Jungyoon Kim, In Kyoon Lyoo, Deborah A Yurgelun-Todd, Perry F Renshaw. Effects of cytidine-5'-diphosphate choline on gray matter volumes in methamphetamine-dependent patients: A randomized, double-blind, placebo-controlled study.
Journal of psychiatric research.
2021 11; 143(?):215-221. doi:
10.1016/j.jpsychires.2021.09.006
. [PMID: 34507102] - Cheng Zheng, Rongxin Miao, Yingmiao Liu, Yang Cao, Dong Liu, Junzhi Wang, Hanjie Ying. A Procedure to Design One-Pot Multi-enzyme System for Industrial CDP-Choline Production.
Applied biochemistry and biotechnology.
2021 Sep; 193(9):2769-2780. doi:
10.1007/s12010-021-03564-2
. [PMID: 34117628] - Lucia E Rosas, Lauren M Doolittle, Lisa M Joseph, Hasan El-Musa, Michael V Novotny, Judy M Hickman-Davis, R Duncan Hite, Ian C Davis. Postexposure Liponucleotide Prophylaxis and Treatment Attenuates Acute Respiratory Distress Syndrome in Influenza-infected Mice.
American journal of respiratory cell and molecular biology.
2021 06; 64(6):677-686. doi:
10.1165/rcmb.2020-0465oc
. [PMID: 33606602] - Abeer Salamah, Mostafa Mehrez, Amany Faheem, Doaa El Amrousy. Efficacy of Citicoline as a Neuroprotector in children with post cardiac arrest: a randomized controlled clinical trial.
European journal of pediatrics.
2021 Apr; 180(4):1249-1255. doi:
10.1007/s00431-020-03871-6
. [PMID: 33169240] - Nahed Abdel-Aziz, Enas M Moustafa, Helen N Saada. The impact of citicoline on brain injury in rats subjected to head irradiation.
Environmental science and pollution research international.
2021 Feb; 28(8):9742-9752. doi:
10.1007/s11356-020-11101-7
. [PMID: 33155111] - O A Gromova, I Yu Torshin, T R Grishina, V I Demidov, T E Bogacheva. [Molecular and clinical aspects of the effect of cytidyndiphosphocholine on cognitive functions].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2021; 121(5):88-97. doi:
10.17116/jnevro202112105188
. [PMID: 34184483] - Annagrazia Adornetto, Laura Rombolà, Luigi Antonio Morrone, Carlo Nucci, Maria Tiziana Corasaniti, Giacinto Bagetta, Rossella Russo. Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma.
Nutrients.
2020 Oct; 12(10):. doi:
10.3390/nu12103158
. [PMID: 33081127] - Jing Xie, Ming-Qing Tang, Jia Chen, Ya-Han Zhu, Chao-Bo Lei, Hong-Wei He, Xiao-Hong Xu. A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme.
Talanta.
2020 Sep; 217(?):121070. doi:
10.1016/j.talanta.2020.121070
. [PMID: 32498852] - Xiguang Feng, Yi Chen, Min Zhang, Miaojie Fang, Cuimei Xiao, Junzhu Chen. Protective effect of citicoline on random flap survival in a rat mode.
International immunopharmacology.
2020 Jun; 83(?):106448. doi:
10.1016/j.intimp.2020.106448
. [PMID: 32247268] - Hadi Samadian, Arian Ehterami, Arash Sarrafzadeh, Hossein Khastar, Mohammad Nikbakht, Aram Rezaei, Leila Chegini, Majid Salehi. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: In vitro and in vivo study.
International journal of biological macromolecules.
2020 May; 150(?):380-388. doi:
10.1016/j.ijbiomac.2020.02.102
. [PMID: 32057876] - Azadeh Aminzadeh, Ayda Salarinejad. Citicoline protects against lead-induced oxidative injury in neuronal PC12 cells.
Biochemistry and cell biology = Biochimie et biologie cellulaire.
2019 12; 97(6):715-721. doi:
10.1139/bcb-2018-0218
. [PMID: 30925221] - Shaiba Sana Qureshi, Jeetendra Kumar Gupta, Ahsas Goyal, Harlokesh Narayan Yadav. A novel approach in the management of hyperhomocysteinemia.
Medical hypotheses.
2019 Aug; 129(?):109245. doi:
10.1016/j.mehy.2019.109245
. [PMID: 31371071] - Kamil Synoradzki, Paweł Grieb. Citicoline: A Superior Form of Choline?.
Nutrients.
2019 Jul; 11(7):. doi:
10.3390/nu11071569
. [PMID: 31336819] - Mark B Plotnikov, Galina A Chernysheva, Oleg I Aliev, Vera I Smol'iakova, Tatiana I Fomina, Anton N Osipenko, Victoria S Rydchenko, Yana J Anfinogenova, Andrei I Khlebnikov, Igor A Schepetkin, Dmitriy N Atochin. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats.
Molecules (Basel, Switzerland).
2019 May; 24(9):. doi:
10.3390/molecules24091722
. [PMID: 31058815] - Jing-Wen Yang, Guang-Xia Shi, Shuai Zhang, Jian-Feng Tu, Li-Qiong Wang, Chao-Qun Yan, Lu-Lu Lin, Bao-Zhen Liu, Jun Wang, San-Feng Sun, Bo-Feng Yang, Li-Yu Wu, Cheng Tan, Sheng Chen, Zhang-Jin Zhang, Marc Fisher, Cun-Zhi Liu. Effectiveness of acupuncture for vascular cognitive impairment no dementia: a randomized controlled trial.
Clinical rehabilitation.
2019 Apr; 33(4):642-652. doi:
10.1177/0269215518819050
. [PMID: 30672317] - Shi-Peng Liang, Qian Chen, Yi-Bing Cheng, Ying-Ying Xue, Hai-Jun Wang. Comparative Effects of Monosialoganglioside versus Citicoline on Apoptotic Factor, Neurological Function and Oxidative Stress in Newborns with Hypoxic-Ischemic Encephalopathy.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2019 Apr; 29(4):324-327. doi:
10.29271/jcpsp.2019.04.324
. [PMID: 30925953] - Su Myat Phyu, Chih-Chung Tseng, Tim Andrew Davies Smith. CDP-choline accumulation in breast and colorectal cancer cells treated with a GSK-3-targeting inhibitor.
Magma (New York, N.Y.).
2019 Apr; 32(2):227-235. doi:
10.1007/s10334-018-0719-3
. [PMID: 30446846] - Cheng Zheng, Zhenjian Li, Haifeng Yang, Tianyi Zhang, Huanqing Niu, Dong Liu, Junzhi Wang, Hanjie Ying. Computation-aided rational design of a halophilic choline kinase for cytidine diphosphate choline production in high-salt condition.
Journal of biotechnology.
2019 Jan; 290(?):59-66. doi:
10.1016/j.jbiotec.2018.11.008
. [PMID: 30445133] - Cecilia Zazueta, Mabel Buelna-Chontal, Arturo Macías-López, Nadia G Román-Anguiano, Héctor González-Pacheco, Natalia Pavón, Rashidi Springall, Alberto Aranda-Frausto, Rafael Bojalil, Alejandro Silva-Palacios, Rodrigo Velázquez-Espejel, Sonia Galvan Arzate, Francisco Correa. Cytidine-5'-Diphosphocholine Protects the Liver From Ischemia/Reperfusion Injury Preserving Mitochondrial Function and Reducing Oxidative Stress.
Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.
2018 08; 24(8):1070-1083. doi:
10.1002/lt.25179
. [PMID: 29679463] - M Castro-Gago, D Dacruz, C Gomez-Lado, J Eiris-Punal. [Treatment of choline kinase beta deficiency with citicoline].
Revista de neurologia.
2018 07; 67(1):40. doi:
. [PMID: 29923598]
- Sapto Yuliani, Mustofa, Ginus Partadiredja. Turmeric (Curcuma longa L.) extract may prevent the deterioration of spatial memory and the deficit of estimated total number of hippocampal pyramidal cells of trimethyltin-exposed rats.
Drug and chemical toxicology.
2018 Jan; 41(1):62-71. doi:
10.1080/01480545.2017.1293087
. [PMID: 28440093] - J H Kim, B Y Choi, A R Kho, S H Lee, J H Jeong, D K Hong, S H Lee, M Sohn, O H Ryu, M-G Choi, S W Suh. Acetylcholine precursor, citicoline (cytidine 5'-diphosphocholine), reduces hypoglycaemia-induced neuronal death in rats.
Journal of neuroendocrinology.
2018 01; 30(1):. doi:
10.1111/jne.12567
. [PMID: 29247563] - Yixiong Chen, Bing Li, Kai Cen, Yuzhen Lu, Siwei Zhang, Chengshu Wang. Diverse effect of phosphatidylcholine biosynthetic genes on phospholipid homeostasis, cell autophagy and fungal developments in Metarhizium robertsii.
Environmental microbiology.
2018 01; 20(1):293-304. doi:
10.1111/1462-2920.13998
. [PMID: 29159973] - E Yu Solovyeva, A N Karneev, A V Chekanov, O A Baranova, V A Shchelkonogov, A M Sinebryukhova, K I Farakhova, G M Sorokoumova. [The study of the membrane-protective potential of the combination of 2-ethyl-6-methyl-3-hydroxypyridine-succinate and citicoline].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2018 ; 118(1):18-22. doi:
10.17116/jnevro20181181118-22
. [PMID: 29460900] - Mabel Buelna-Chontal, Martha Franco, Luz Hernández-Esquivel, Natalia Pavón, José S Rodríguez-Zavala, Francisco Correa, Ricardo Jasso, Gregorio Pichardo-Ramos, José Santamaría, Héctor González-Pacheco, Virgilia Soto, Jorge L Díaz-Ruíz, Edmundo Chávez. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction.
Cell biology international.
2017 Dec; 41(12):1356-1366. doi:
10.1002/cbin.10871
. [PMID: 28884894] - Ahmed O Abdel-Zaher, Mostafa M Hamdy, Mahran S Abdel-Rahman, Doaa H Abd El-Hamid. Protective effect of citicoline against aluminum-induced cognitive impairments in rats.
Toxicology and industrial health.
2017 Apr; 33(4):308-317. doi:
10.1177/0748233716641869
. [PMID: 27178312] - Yingmiao Liu, Junzhi Wang, Chongmao Xu, Yong Chen, Junjie Yang, Dong Liu, Huanqing Niu, Yu Jiang, Sheng Yang, Hanjie Ying. Efficient multi-enzyme-catalyzed CDP-choline production driven by an ATP donor module.
Applied microbiology and biotechnology.
2017 Feb; 101(4):1409-1417. doi:
10.1007/s00253-016-7874-0
. [PMID: 27738720] - Tanya Bogoslovsky, David Wilson, Yao Chen, David Hanlon, Jessica Gill, Andreas Jeromin, Linan Song, Carol Moore, Yunhua Gong, Kimbra Kenney, Ramon Diaz-Arrastia. Increases of Plasma Levels of Glial Fibrillary Acidic Protein, Tau, and Amyloid β up to 90 Days after Traumatic Brain Injury.
Journal of neurotrauma.
2017 01; 34(1):66-73. doi:
10.1089/neu.2015.4333
. [PMID: 27312416] - Guzel Bikbova, Toshiyuki Oshitari, Takayuki Baba, Shuichi Yamamoto. Combination of Neuroprotective and Regenerative Agents for AGE-Induced Retinal Degeneration: In Vitro Study.
BioMed research international.
2017; 2017(?):8604723. doi:
10.1155/2017/8604723
. [PMID: 28573143] - Parker S Woods, Lauren M Doolittle, Lucia E Rosas, Lisa M Joseph, Edward P Calomeni, Ian C Davis. Lethal H1N1 influenza A virus infection alters the murine alveolar type II cell surfactant lipidome.
American journal of physiology. Lung cellular and molecular physiology.
2016 12; 311(6):L1160-L1169. doi:
10.1152/ajplung.00339.2016
. [PMID: 27836900] - L V Kuznetsova, M N Karpova, K A Zinkovski, N Yu Klishina. Аnticonvulsant effects of citicoline and diazepam at their combined application on model of the acute generalized convulsions induced by pentylenetetrazole in Wistar rats.
Patologicheskaia fiziologiia i eksperimental'naia terapiia.
2016 Oct; 60(4):20-3. doi:
"
. [PMID: 29244918] - E Yu Solovyeva, A N Karneev, A V Chekanov, O A Baranova. [The individual and combined antioxidant effects of citicoline and ethylmethylhydroxypyridini succinas].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2016 ; 116(11):78-85. doi:
10.17116/jnevro201611611178-85
. [PMID: 28091505] - E Yu Solovieva, K I Farrahova, A N Karneev, D T Chipova. [Phospholipids metabolism disorders in acute stroke].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2016; 116(1):104-112. doi:
10.17116/jnevro201611611104-112
. [PMID: 27045147] - Sinem Kiyici, Nesrin Filiz Basaran, Sinan Cavun, Vahide Savci. Central injection of CDP-choline suppresses serum ghrelin levels while increasing serum leptin levels in rats.
European journal of pharmacology.
2015 Oct; 764(?):264-270. doi:
10.1016/j.ejphar.2015.07.014
. [PMID: 26162700] - E Sherwood Brown, Jackie Peterson Todd, Lisa T Hu, Joy M Schmitz, Thomas J Carmody, Alyson Nakamura, Prabha Sunderajan, A John Rush, Bryon Adinoff, Mary Ellen Bret, Traci Holmes, Alexander Lo. A Randomized, Double-Blind, Placebo-Controlled Trial of Citicoline for Cocaine Dependence in Bipolar I Disorder.
The American journal of psychiatry.
2015 Oct; 172(10):1014-21. doi:
10.1176/appi.ajp.2015.14070857
. [PMID: 25998279] - Jochen Frederick Hernekamp, Sissi Xi Hu, Volker Jürgen Schmidt, Julian Vogelpohl, Ulrich Kneser, Thomas Kremer. Influence of Cdp-Choline Administration on Early Burn Edema in Rats.
Annals of plastic surgery.
2015 Oct; 75(4):388-92. doi:
10.1097/sap.0000000000000605
. [PMID: 26360650] - Alicia Contet, Emilie Pihan, Marina Lavigne, Kai Wengelnik, Sweta Maheshwari, Henri Vial, Dominique Douguet, Rachel Cerdan. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase possesses two functional catalytic domains and is inhibited by a CDP-choline analog selected from a virtual screening.
FEBS letters.
2015 Apr; 589(9):992-1000. doi:
10.1016/j.febslet.2015.03.003
. [PMID: 25771858] - Betul Cam, Engin Sagdilek, Nalan Yildirim, Vahide Savci. Cytidine 5'-diphosphocholine differentially affects hemostatic parameters in diverse conditions in rats: an investigation via thromboelastography.
Shock (Augusta, Ga.).
2015 Apr; 43(4):387-94. doi:
10.1097/shk.0000000000000301
. [PMID: 25394251] - I А Zhuravin, N N Nalivaeva, D I Kozlova, E G Kochkina, Ya B Fedorova, S I Gavrilova. [The activity of blood serum cholinesterases and neprilysin as potential biomarkers of mild-cognitive impairment and Alzheimer's disease].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2015; 115(12):110-117. doi:
10.17116/jnevro2015115112110-117
. [PMID: 26978503] - Martina Gsell, Ariane Fankl, Lisa Klug, Gerald Mascher, Claudia Schmidt, Claudia Hrastnik, Günther Zellnig, Günther Daum. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.
PloS one.
2015; 10(9):e0136957. doi:
10.1371/journal.pone.0136957
. [PMID: 26327557] - Vid V Flis, Ariane Fankl, Claudia Ramprecht, Günther Zellnig, Erich Leitner, Albin Hermetter, Günther Daum. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.
PloS one.
2015; 10(8):e0135084. doi:
10.1371/journal.pone.0135084
. [PMID: 26241051] - C Coskun, B Avci, M Yalcin, A Yermezler, M S Yilmaz, V Savci. Protective effect of CDP-choline on ischemia-reperfusion-induced myocardial tissue injury in rats.
Irish journal of medical science.
2014 Dec; 183(4):539-48. doi:
10.1007/s11845-013-1046-3
. [PMID: 24293295] - Ghaffar Shokouhi, Amir Ghorbani Haghjoo, Neda Sattarnezhad, Mohammad Asghari, Aida Sattarnezhad, Ali Asghari, Arastoo Pezeshki. Effects of citicoline on level of consciousness, serum level of fetuin-A and matrix Gla-protein (MGP) in trauma patients with diffuse axonal injury (DAI) and GCS≤8.
Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES.
2014 Nov; 20(6):410-6. doi:
10.5505/tjtes.2014.05769
. [PMID: 25541919] - Craig C Morton, Adam J Aitchison, Karsten Gehrig, Neale D Ridgway. A mechanism for suppression of the CDP-choline pathway during apoptosis.
Journal of lipid research.
2013 Dec; 54(12):3373-84. doi:
10.1194/jlr.m041434
. [PMID: 24136823] - Gergely N Nagy, Lívia Marton, Balázs Krámos, Julianna Oláh, Ágnes Révész, Károly Vékey, Frédéric Delsuc, Éva Hunyadi-Gulyás, Katalin F Medzihradszky, Marina Lavigne, Henri Vial, Rachel Cerdan, Beáta G Vértessy. Evolutionary and mechanistic insights into substrate and product accommodation of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum.
The FEBS journal.
2013 Jul; 280(13):3132-48. doi:
10.1111/febs.12282
. [PMID: 23578277] - Paolo Fagone, Suzanne Jackowski. Phosphatidylcholine and the CDP-choline cycle.
Biochimica et biophysica acta.
2013 Mar; 1831(3):523-32. doi:
10.1016/j.bbalip.2012.09.009
. [PMID: 23010477] - Seyed Khosrow Tayebati, Daniele Tomassoni, Innocent Ejike Nwankwo, Antonio Di Stefano, Piera Sozio, Laura Serafina Cerasa, Francesco Amenta. Modulation of monoaminergic transporters by choline-containing phospholipids in rat brain.
CNS & neurological disorders drug targets.
2013 Feb; 12(1):94-103. doi:
10.2174/1871527311312010015
. [PMID: 23244432] - Antonino Maria Cotroneo, Alberto Castagna, Salvatore Putignano, Roberto Lacava, Fausto Fantò, Francesco Monteleone, Filomena Rocca, Alba Malara, Pietro Gareri. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study.
Clinical interventions in aging.
2013; 8(?):131-7. doi:
10.2147/cia.s38420
. [PMID: 23403474] - E Sherwood Brown, Barry Gabrielson. A randomized, double-blind, placebo-controlled trial of citicoline for bipolar and unipolar depression and methamphetamine dependence.
Journal of affective disorders.
2012 Dec; 143(1-3):257-60. doi:
10.1016/j.jad.2012.05.006
. [PMID: 22974472] - Amlan Kanti Sarkar, Debotri Ghosh, Dhiman Haldar, Pradipta Sarkar, Bhaswati Gupta, Sujata Ghosh Dastidar, Tapan Kumar Pal. A rapid LC-ESI-MS/MS method for the quantitation of choline, an active metabolite of citicoline: Application to in vivo pharmacokinetic and bioequivalence study in Indian healthy male volunteers.
Journal of pharmaceutical and biomedical analysis.
2012 Dec; 71(?):144-7. doi:
10.1016/j.jpba.2012.07.003
. [PMID: 22951317] - María Gutiérrez-Fernández, María Alonso de Leciñana, Berta Rodríguez-Frutos, Jaime Ramos-Cejudo, José María Roda, Exuperio Díez-Tejedor. CDP-choline at high doses is as effective as i.v. thrombolysis in experimental animal stroke.
Neurological research.
2012 Sep; 34(7):649-56. doi:
10.1179/1743132812y.0000000058
. [PMID: 22732142] - O S Slepova, M A Frolov, N S Morozova, A M Frolov, Dzh N Lovpache. [Markers of Fas-mediated apoptosis in primary open-angle glaucoma and opportunities of their pharmacological correction].
Vestnik oftalmologii.
2012 Jul; 128(4):27-31. doi:
NULL
. [PMID: 22994104] - Ozhan Eyigor, Cenk Coskun, Sinan Cavun, Vahide Savci. Intravenous CDP-choline activates neurons in supraoptic and paraventricular nuclei and induces hormone secretion.
Brain research bulletin.
2012 Feb; 87(2-3):286-94. doi:
10.1016/j.brainresbull.2011.11.013
. [PMID: 22138197] - Lorissa J Niebergall, René L Jacobs, Todd Chaba, Dennis E Vance. Phosphatidylcholine protects against steatosis in mice but not non-alcoholic steatohepatitis.
Biochimica et biophysica acta.
2011 Dec; 1811(12):1177-85. doi:
10.1016/j.bbalip.2011.06.021
. [PMID: 21745592] - Ozge Guldali, Vahide Savci, Kansu Buyukafsar. CDP-choline-induced contractions in the mouse gastric fundus through purinoceptors and Rho/Rho-kinase signalling.
Life sciences.
2011 Mar; 88(11-12):473-9. doi:
10.1016/j.lfs.2011.01.002
. [PMID: 21219915] - Stephanie C Licata, David M Penetar, Caitlin Ravichandran, John Rodolico, Christopher Palmer, Jeff Berko, Thomas Geaghan, Alison Looby, Erica Peters, Elizabeth Ryan, Perry F Renshaw, Scott E Lukas. Effects of daily treatment with citicoline: a double-blind, placebo-controlled study in cocaine-dependent volunteers.
Journal of addiction medicine.
2011 Mar; 5(1):57-64. doi:
10.1097/adm.0b013e3181d80c93
. [PMID: 21769048] - Christopher J Pynn, Neil G Henderson, Howard Clark, Grielof Koster, Wolfgang Bernhard, Anthony D Postle. Specificity and rate of human and mouse liver and plasma phosphatidylcholine synthesis analyzed in vivo.
Journal of lipid research.
2011 Feb; 52(2):399-407. doi:
10.1194/jlr.d011916
. [PMID: 21068006] - S Ghosh, N Das, A K Mandal, S R Dungdung, S Sarkar. Mannosylated liposomal cytidine 5' diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain.
Neuroscience.
2010 Dec; 171(4):1287-99. doi:
10.1016/j.neuroscience.2010.09.049
. [PMID: 20883746] - Zeki Yilmaz, Yesim Ozarda, Mehmet Cansev, Oya Eralp, Meric Kocaturk, Ismail H Ulus. Choline or CDP-choline attenuates coagulation abnormalities and prevents the development of acute disseminated intravascular coagulation in dogs during endotoxemia.
Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.
2010 Jun; 21(4):339-48. doi:
10.1097/mbc.0b013e328338ce31
. [PMID: 20410813] - Cenk Coskun, Berrin Avci, Nihal Ocak, Murat Yalcin, Melahat Dirican, Vahide Savci. Effect of repeatedly given CDP-choline on cardiovascular and tissue injury in spinal shock conditions: investigation of the acute phase.
The Journal of pharmacy and pharmacology.
2010 Apr; 62(4):497-506. doi:
10.1211/jpp.62.04.0013
. [PMID: 20604840] - Sujung J Yoon, In Kyoon Lyoo, Hengjun J Kim, Tae-Suk Kim, Young Hoon Sung, Namkug Kim, Scott E Lukas, Perry F Renshaw. Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5'-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.
2010 Apr; 35(5):1165-73. doi:
10.1038/npp.2009.221
. [PMID: 20043005] - Ahmet Menku, Mustafa Ogden, Recep Saraymen. The protective effects of propofol and citicoline combination in experimental head injury in rats.
Turkish neurosurgery.
2010 Jan; 20(1):57-62. doi:
. [PMID: 20066623]
- Xiao-xing Bian, Xue-song Yuan, Chuan-ping Qi. Effect of recombinant human erythropoietin on serum S100B protein and interleukin-6 levels after traumatic brain injury in the rat.
Neurologia medico-chirurgica.
2010; 50(5):361-6. doi:
10.2176/nmc.50.361
. [PMID: 20505289] - A G Schauss, S Somfai-Relle, I Financsek, R Glavits, S C Parent, J R Endres, T Varga, Z Szücs, A Clewell. Single- and repeated-dose oral toxicity studies of citicoline free-base (choline cytidine 5'-pyrophosphate) in Sprague-Dawley rats.
International journal of toxicology.
2009 Nov; 28(6):479-87. doi:
10.1177/1091581809349452
. [PMID: 19966140] - Yesim Ozarda Ilcol, Zeki Yilmaz, Mehmet Cansev, Ismail H Ulus. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: involvement of the peripheral nicotinic acetylcholine receptors.
Shock (Augusta, Ga.).
2009 Sep; 32(3):286-94. doi:
10.1097/shk.0b013e3181971b02
. [PMID: 19060783] - Hemamalini Bommiasamy, Sung Hoon Back, Paolo Fagone, Kyungho Lee, Sasha Meshinchi, Elizabeth Vink, Rungtawan Sriburi, Matthew Frank, Suzanne Jackowski, Randal J Kaufman, Joseph W Brewer. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum.
Journal of cell science.
2009 May; 122(Pt 10):1626-36. doi:
10.1242/jcs.045625
. [PMID: 19420237] - Gengshu Wu, Roger B Sher, Gregory A Cox, Dennis E Vance. Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice.
Biochimica et biophysica acta.
2009 May; 1791(5):347-56. doi:
10.1016/j.bbalip.2009.02.006
. [PMID: 19236939] - Jens Minnerup, Wolf-Rüdiger Schäbitz. Multifunctional actions of approved and candidate stroke drugs.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2009 Jan; 6(1):43-52. doi:
10.1016/j.nurt.2008.10.032
. [PMID: 19110198] - Naciye Isbil-Buyukcoskun, Yesim O Ilcol, Mehmet Cansev, Emre Hamurtekin, Kasim Ozluk, Ismail H Ulus. Central choline suppresses plasma renin response to graded haemorrhage in rats.
Clinical and experimental pharmacology & physiology.
2008 Sep; 35(9):1023-31. doi:
10.1111/j.1440-1681.2008.04978.x
. [PMID: 18518880] - Mehmet Cansev, Yesim Ozarda Ilcol, Mustafa Sertac Yilmaz, Emre Hamurtekin, Ismail H Ulus. Choline, CDP-choline or phosphocholine increases plasma glucagon in rats: involvement of the peripheral autonomic nervous system.
European journal of pharmacology.
2008 Jul; 589(1-3):315-22. doi:
10.1016/j.ejphar.2008.05.017
. [PMID: 18561911] - Ya Liu, Ning Li, Xing-Wu Ran. [Clinical effect of ligustrazine combined with citicoline for treatment of diabetic peripheral neuropathy].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2008 Jul; 28(7):606-9. doi:
"
. [PMID: 18822909] - Daniel K Nomura, Kazutoshi Fujioka, Roger S Issa, Anna M Ward, Benjamin F Cravatt, John E Casida. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification.
Toxicology and applied pharmacology.
2008 Apr; 228(1):42-8. doi:
10.1016/j.taap.2007.11.021
. [PMID: 18164358] - Yesim Ozarda Ilcol, Mehmet Cansev, Mustafa Sertac Yilmaz, Emre Hamurtekin, Ismail H Ulus. Peripheral administration of CDP-choline and its cholinergic metabolites increases serum insulin: muscarinic and nicotinic acetylcholine receptors are both involved in their actions.
Neuroscience letters.
2008 Jan; 431(1):71-6. doi:
10.1016/j.neulet.2007.11.024
. [PMID: 18162319] - O Hurtado, J M Pradillo, D Fernández-López, J R Morales, T Sobrino, J Castillo, E Alborch, M A Moro, I Lizasoain. Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke.
Neurobiology of disease.
2008 Jan; 29(1):123-31. doi:
10.1016/j.nbd.2007.08.004
. [PMID: 17884513] - M Cansev, Y O Ilcol, M S Yilmaz, E Hamurtekin, I H Ulus. Peripheral administration of CDP-choline, phosphocholine or choline increases plasma adrenaline and noradrenaline concentrations.
Autonomic & autacoid pharmacology.
2008 Jan; 28(1):41-58. doi:
10.1111/j.1474-8673.2007.00416.x
. [PMID: 18257750] - Mehmet Cansev, Mustafa Sertac Yilmaz, Yesim Ozarda Ilcol, Emre Hamurtekin, Ismail Hakki Ulus. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system.
European journal of pharmacology.
2007 Dec; 577(1-3):129-42. doi:
10.1016/j.ejphar.2007.08.029
. [PMID: 17884041] - Y O Ilcol, M Cansev, M S Yilmaz, E Hamurtekin, I H Ulus. Intraperitoneal administration of CDP-choline and its cholinergic and pyrimidinergic metabolites induce hyperglycemia in rats: involvement of the sympathoadrenal system.
Archives of physiology and biochemistry.
2007 Oct; 113(4-5):186-201. doi:
10.1080/13813450701531243
. [PMID: 17917852] - E Sherwood Brown, April R Gorman, Linda S Hynan. A randomized, placebo-controlled trial of citicoline add-on therapy in outpatients with bipolar disorder and cocaine dependence.
Journal of clinical psychopharmacology.
2007 Oct; 27(5):498-502. doi:
10.1097/jcp.0b013e31814db4c4
. [PMID: 17873684] - William Harold Witola, Choukri Ben Mamoun. Choline induces transcriptional repression and proteasomal degradation of the malarial phosphoethanolamine methyltransferase.
Eukaryotic cell.
2007 Sep; 6(9):1618-24. doi:
10.1128/ec.00229-07
. [PMID: 17644653] - María Alonso de Leciñana, María Gutiérrez, Jose María Roda, Fernando Carceller, Exuperio Díez-Tejedor. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke.
Journal of the neurological sciences.
2006 Sep; 247(2):121-9. doi:
10.1016/j.jns.2006.03.022
. [PMID: 16797595] - William H Witola, Gabriella Pessi, Kamal El Bissati, Jennifer M Reynolds, Choukri Ben Mamoun. Localization of the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum to the Golgi apparatus.
The Journal of biological chemistry.
2006 Jul; 281(30):21305-21311. doi:
10.1074/jbc.m603260200
. [PMID: 16704982] - Neslihan Yücel, Süleyman R Cayli, Ozkan Ateş, Neşe Karadağ, Serpil Firat, Yusuf Turköz. Evaluation of the neuroprotective effects of citicoline after experimental spinal cord injury: improved behavioral and neuroanatomical recovery.
Neurochemical research.
2006 Jun; 31(6):767-75. doi:
10.1007/s11064-006-9075-1
. [PMID: 16794862] - Maria José Caballero, Germán Gallardo, Lidia Robaina, Daniel Montero, Antonio Fernández, Marisol Izquierdo. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata).
The British journal of nutrition.
2006 Mar; 95(3):448-54. doi:
10.1079/bjn20051529
. [PMID: 16512929] - Jannapally Suresh Reddy, Vobalaboina Venkateswarlu, Gerben A Koning. Radioprotective effect of transferrin targeted citicoline liposomes.
Journal of drug targeting.
2006 Jan; 14(1):13-9. doi:
10.1080/10611860600613241
. [PMID: 16603447] - Mario Fioravanti, Ann E Buckley. Citicoline (Cognizin) in the treatment of cognitive impairment.
Clinical interventions in aging.
2006; 1(3):247-51. doi:
10.2147/ciia.2006.1.3.247
. [PMID: 18046877] - I Lizasoain, A Cárdenas, O Hurtado, C Romera, J Mallolas, P Lorenzo, J Castillo, M A Moro. Targets of cytoprotection in acute ischemic stroke: present and future.
Cerebrovascular diseases (Basel, Switzerland).
2006; 21 Suppl 2(?):1-8. doi:
10.1159/000091698
. [PMID: 16651809] - Ertugrul Cakir, Haydar Usul, Bekircan Peksoylu, Ozgur C Sayin, Ahmet Alver, Murat Topbas, Suleyman Baykal, Kayhan Kuzeyli. Effects of citicoline on experimental spinal cord injury.
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia.
2005 Nov; 12(8):923-6. doi:
10.1016/j.jocn.2005.03.013
. [PMID: 16257217] - Mehmet Cansev, Carol J Watkins, Eline M van der Beek, Richard J Wurtman. Oral uridine-5'-monophosphate (UMP) increases brain CDP-choline levels in gerbils.
Brain research.
2005 Oct; 1058(1-2):101-8. doi:
10.1016/j.brainres.2005.07.054
. [PMID: 16126180] - René L Jacobs, Lori M Stead, Cecilia Devlin, Ira Tabas, Margaret E Brosnan, John T Brosnan, Dennis E Vance. Physiological regulation of phospholipid methylation alters plasma homocysteine in mice.
The Journal of biological chemistry.
2005 Aug; 280(31):28299-305. doi:
10.1074/jbc.m501971200
. [PMID: 15958390] - J Krupinski, M Slevin, L Badimon. Citicoline inhibits MAP kinase signalling pathways after focal cerebral ischaemia.
Neurochemical research.
2005 Aug; 30(8):1067-73. doi:
10.1007/s11064-005-7201-0
. [PMID: 16258856] - Shang-qian Zhong, Li-jing Sun, Yu-zhen Yan, Yan-qin Sun, Yin-yuan Zhong. Effect of Xuesaitong soft capsule on hemorrheology and in auxiliarily treating patients with acute cerebral infarction.
Chinese journal of integrative medicine.
2005 Jun; 11(2):128-31. doi:
10.1007/bf02836469
. [PMID: 16150200] - Olivia Hurtado, María A Moro, Antonio Cárdenas, Verónica Sánchez, Paz Fernández-Tomé, Juan C Leza, Pedro Lorenzo, Julio J Secades, Rafael Lozano, Antoni Dávalos, José Castillo, Ignacio Lizasoain. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport.
Neurobiology of disease.
2005 Mar; 18(2):336-45. doi:
10.1016/j.nbd.2004.10.006
. [PMID: 15686962] - Howard M Jernigan, Penny S Blum, Ipsit Chakrabarti, Yin Su, J Samuel Zigler. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs.
Ophthalmic research.
2005 Jan; 37(1):7-12. doi:
10.1159/000082764
. [PMID: 15604593]