3-Hydroxyisobutyric acid (BioDeep_00000004608)
Secondary id: BioDeep_00000014319
PANOMIX_OTCML-2023 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C4H8O3 (104.0473418)
中文名称: 3-羟基异丁酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.29%
Last reviewed on 2024-07-19.
Cite this Page
3-Hydroxyisobutyric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/3-hydroxyisobutyric_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000004608). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(CO)C(=O)O
InChI: InChI=1S/C4H8O3/c1-3(2-5)4(6)7/h3,5H,2H2,1H3,(H,6,7)
描述信息
A 4-carbon, branched hydroxy fatty acid and intermediate in the metabolism of valine.
3-Hydroxyisobutyric acid is an important interorgan metabolite, an intermediate in the pathways of l-valine and thymine and a good gluconeogenic substrate.
同义名列表
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:18064
- KEGG: C01188
- PubChem: 87
- Metlin: METLIN483
- MetaCyc: CPD-12175
- KNApSAcK: C00052144
- CAS: 2068-83-9
- MoNA: MoNA038367
- PMhub: MS000017143
- MetaboLights: MTBLC18064
- ChEBI: CHEBI:11805
- NIKKAJI: J740.168J
- RefMet: 3-Hydroxyisobutyric acid
- HMDB: HMDB0000023
- medchemexpress: HY-113126
- PubChem: 4414
- KNApSAcK: 11805
- LOTUS: LTS0255225
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
284 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(284)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
17 个相关的物种来源信息
- 4890 - Ascomycota: LTS0255225
- 2 - Bacteria: LTS0255225
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0255225
- 2759 - Eukaryota: LTS0255225
- 4751 - Fungi: LTS0255225
- 1236 - Gammaproteobacteria: LTS0255225
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 474942 - Ophiocordycipitaceae: LTS0255225
- 590 - Salmonella: LTS0255225
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0255225
- 147550 - Sordariomycetes: LTS0255225
- 29909 - Tolypocladium: LTS0255225
- 38005 - Tolypocladium cylindrosporum: 10.1002/ANIE.200603821
- 38005 - Tolypocladium cylindrosporum: LTS0255225
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Florin Sasarman, Sacha Ferdinandusse, David S Sinasac, Ernest Fung, Rebecca Sparkes, Melanie Reeves, Catherine Rombough, Jörn Oliver Sass, Renate Voit, Jos P N Ruiter, Janet Koster, Hans R Waterham, Elisabetta Pasquini, Maria A Donati, Thorsten Marquardt, Ronald J A Wanders, Walla Al-Hertani. 3-Hydroxyisobutyric acid dehydrogenase deficiency: Expanding the clinical spectrum and quantitation of D- and L-3-Hydroxyisobutyric acid by an LC-MS/MS method.
Journal of inherited metabolic disease.
2022 05; 45(3):445-455. doi:
10.1002/jimd.12486
. [PMID: 35174513] - Elisa Biliotti, Ottavia Giampaoli, Fabio Sciubba, Federico Marini, Alberta Tomassini, Donatella Palazzo, Giorgio Capuani, Rozenn Esvan, Martina Spaziante, Gloria Taliani, Alfredo Miccheli. Urinary metabolomics of HCV patients with severe liver fibrosis before and during the sustained virologic response achieved by direct acting antiviral treatment.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112217. doi:
10.1016/j.biopha.2021.112217
. [PMID: 34560544] - Melanie Meyer, Jana C Hollenbeck, Janine Reunert, Anja Seelhöfer, Stephan Rust, Manfred Fobker, Saskia Biskup, Ulrike Och, Mechthild Linden, Jörn Oliver Sass, Thorsten Marquardt. 3-Hydroxyisobutyrate dehydrogenase (HIBADH) deficiency-A novel disorder of valine metabolism.
Journal of inherited metabolic disease.
2021 11; 44(6):1323-1329. doi:
10.1002/jimd.12410
. [PMID: 34176136] - Mona Synnøve Bjune, Carine Lindquist, Marit Hallvardsdotter Stafsnes, Bodil Bjørndal, Per Bruheim, Thomas A Aloysius, Ottar Nygård, Jon Skorve, Lise Madsen, Simon N Dankel, Rolf Kristian Berge. Plasma 3-hydroxyisobutyrate (3-HIB) and methylmalonic acid (MMA) are markers of hepatic mitochondrial fatty acid oxidation in male Wistar rats.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2021 04; 1866(4):158887. doi:
10.1016/j.bbalip.2021.158887
. [PMID: 33454435] - Mona S Nilsen, Regine Å Jersin, Arve Ulvik, André Madsen, Adrian McCann, Per-Arne Svensson, Maria K Svensson, Bjørn G Nedrebø, Oddrun A Gudbrandsen, Grethe S Tell, C R Kahn, Per M Ueland, Gunnar Mellgren, Simon N Dankel. 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism.
Diabetes.
2020 09; 69(9):1903-1916. doi:
10.2337/db19-1174
. [PMID: 32586980] - Emily S Lyon, Madison E Rivera, Michele A Johnson, Kyle L Sunderland, Roger A Vaughan. Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes.
Nutrition research (New York, N.Y.).
2019 06; 66(?):22-31. doi:
10.1016/j.nutres.2019.03.012
. [PMID: 31051319] - Ana M Gil, Daniela Duarte, Joana Pinto, António S Barros. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort.
Journal of proteome research.
2018 03; 17(3):1278-1289. doi:
10.1021/acs.jproteome.7b00878
. [PMID: 29424227] - Adil Mardinoglu, Silvia Gogg, Luca A Lotta, Alena Stančáková, Annika Nerstedt, Jan Boren, Matthias Blüher, Ele Ferrannini, Claudia Langenberg, Nicholas J Wareham, Markku Laakso, Ulf Smith. Elevated Plasma Levels of 3-Hydroxyisobutyric Acid Are Associated With Incident Type 2 Diabetes.
EBioMedicine.
2018 Jan; 27(?):151-155. doi:
10.1016/j.ebiom.2017.12.008
. [PMID: 29246479] - Ulrika Andersson-Hall, Carolina Gustavsson, Anders Pedersen, Daniel Malmodin, Louise Joelsson, Agneta Holmäng. Higher Concentrations of BCAAs and 3-HIB Are Associated with Insulin Resistance in the Transition from Gestational Diabetes to Type 2 Diabetes.
Journal of diabetes research.
2018; 2018(?):4207067. doi:
10.1155/2018/4207067
. [PMID: 29967793] - S Haufe, S Engeli, J Kaminski, H Witt, D Rein, B Kamlage, W Utz, J C Fuhrmann, V Haas, A Mähler, J Schulz-Menger, F C Luft, M Boschmann, J Jordan. Branched-chain amino acid catabolism rather than amino acids plasma concentrations is associated with diet-induced changes in insulin resistance in overweight to obese individuals.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2017 Oct; 27(10):858-864. doi:
10.1016/j.numecd.2017.07.001
. [PMID: 28958691] - Lydia-Ann L S Harris, Gordon I Smith, Bruce W Patterson, Raja S Ramaswamy, Adewole L Okunade, Shannon C Kelly, Lane C Porter, Samuel Klein, Jun Yoshino, Bettina Mittendorfer. Alterations in 3-Hydroxyisobutyrate and FGF21 Metabolism Are Associated With Protein Ingestion-Induced Insulin Resistance.
Diabetes.
2017 07; 66(7):1871-1878. doi:
10.2337/db16-1475
. [PMID: 28473464] - Jana Konkoľová, Ján Chandoga, Juraj Kováčik, Marcel Repiský, Veronika Kramarová, Ivana Paučinová, Daniel Böhmer. Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism.
BMC medical genetics.
2017 05; 18(1):59. doi:
10.1186/s12881-017-0421-8
. [PMID: 28569194] - Jörn Oliver Sass, Melanie Walter, Julian P H Shield, Andrea M Atherton, Uttam Garg, David Scott, C Geoffrey Woods, Laurie D Smith. 3-Hydroxyisobutyrate aciduria and mutations in the ALDH6A1 gene coding for methylmalonate semialdehyde dehydrogenase.
Journal of inherited metabolic disease.
2012 May; 35(3):437-42. doi:
10.1007/s10545-011-9381-x
. [PMID: 21863277] - Yong Nie, Yue-Qin Tang, Yan Li, Chang-Qiao Chi, Man Cai, Xiao-Lei Wu. The genome sequence of Polymorphum gilvum SL003B-26A1(T) reveals its genetic basis for crude oil degradation and adaptation to the saline soil.
PloS one.
2012; 7(2):e31261. doi:
10.1371/journal.pone.0031261
. [PMID: 22359583] - Klaudia Michalska, Edward Szneler, Wanda Kisiel. Complete NMR spectral assignments of two lactucin-type sesquiterpene lactone glycosides from Picris conyzoides.
Magnetic resonance in chemistry : MRC.
2011 Nov; 49(11):753-6. doi:
10.1002/mrc.2801
. [PMID: 22002327] - France Denoeud, Michaël Roussel, Benjamin Noel, Ivan Wawrzyniak, Corinne Da Silva, Marie Diogon, Eric Viscogliosi, Céline Brochier-Armanet, Arnaud Couloux, Julie Poulain, Béatrice Segurens, Véronique Anthouard, Catherine Texier, Nicolas Blot, Philippe Poirier, Geok Choo Ng, Kevin S W Tan, François Artiguenave, Olivier Jaillon, Jean-Marc Aury, Frédéric Delbac, Patrick Wincker, Christian P Vivarès, Hicham El Alaoui. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite.
Genome biology.
2011; 12(3):R29. doi:
10.1186/gb-2011-12-3-r29
. [PMID: 21439036] - Jia Liu, Lawrence Litt, Mark R Segal, Mark J S Kelly, Jeffrey G Pelton, Myungwon Kim. Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites.
International journal of molecular sciences.
2011; 12(10):6469-501. doi:
10.3390/ijms12106469
. [PMID: 22072900] - Luigi Atzori, Theodoros Xanthos, Luigi Barberini, Roberto Antonucci, Federica Murgia, Milena Lussu, Filippia Aroni, Marianna Varsami, Apostolos Papalois, Adolfo Lai, Ernesto D'Aloja, Nicoletta Iacovidou, Vassilios Fanos. A metabolomic approach in an experimental model of hypoxia-reoxygenation in newborn piglets: urine predicts outcome.
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2010 Oct; 23 Suppl 3(?):134-7. doi:
10.3109/14767058.2010.517033
. [PMID: 20873980] - Jelena Klawitter, Touraj Shokati, Vanessa Moll, Uwe Christians, Jost Klawitter. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study.
Breast cancer research : BCR.
2010; 12(2):R16. doi:
10.1186/bcr2485
. [PMID: 20205716] - Wendy L Allan, Shawn M Clark, Gordon J Hoover, Barry J Shelp. Role of plant glyoxylate reductases during stress: a hypothesis.
The Biochemical journal.
2009 Sep; 423(1):15-22. doi:
10.1042/bj20090826
. [PMID: 19740079] - Xianyuan Song, Virginia Anderson, Miguel Guzman, Chandrakant Rao. Neuropathology of 3-hydroxyisobutyric aciduria, an autopsy case report.
The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques.
2009 Jul; 36(4):483-6. doi:
10.1017/s0317167100007836
. [PMID: 19650361] - Hanna Amelina, Susana Cristobal. Proteomic study on gender differences in aging kidney of mice.
Proteome science.
2009 Apr; 7(?):16. doi:
10.1186/1477-5956-7-16
. [PMID: 19358702] - Cornélie M Westermann, Bert Dorland, Monique G de Sain-van der Velden, Inge D Wijnberg, Eric Van Breda, Ellen De Graaf-Roelfsema, Hans A Keizer, Johannes H Van der Kolk. Plasma acylcarnitine and fatty acid profiles during exercise and training in Standardbreds.
American journal of veterinary research.
2008 Nov; 69(11):1469-75. doi:
10.2460/ajvr.69.11.1469
. [PMID: 18980429] - Carolina Maso Viegas, Gustavo da Costa Ferreira, Patrícia Fernanda Schuck, Anelise Miotti Tonin, Angela Zanatta, Angela Terezinha de Souza Wyse, Carlos Severo Dutra-Filho, Clóvis Milton Duval Wannmacher, Moacir Wajner. Evidence that 3-hydroxyisobutyric acid inhibits key enzymes of energy metabolism in cerebral cortex of young rats.
International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience.
2008 May; 26(3-4):293-9. doi:
10.1016/j.ijdevneu.2008.01.007
. [PMID: 18329219] - Radovan Murín, Andreas Schaer, Bhavani S Kowtharapu, Stephan Verleysdonk, Bernd Hamprecht. Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cells.
Journal of neurochemistry.
2008 May; 105(4):1176-86. doi:
10.1111/j.1471-4159.2008.05298.x
. [PMID: 18284611] - Suguru Koyama, Shoji Hata, Christian C Witt, Yasuko Ono, Stefanie Lerche, Koichi Ojima, Tomoki Chiba, Naoko Doi, Fujiko Kitamura, Keiji Tanaka, Keiko Abe, Stephanie H Witt, Vladimir Rybin, Alexander Gasch, Thomas Franz, Siegfried Labeit, Hiroyuki Sorimachi. Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis.
Journal of molecular biology.
2008 Mar; 376(5):1224-36. doi:
10.1016/j.jmb.2007.11.049
. [PMID: 18222470] - Jeffrey P Simpson, Rosa Di Leo, Preetinder K Dhanoa, Wendy L Allan, Amina Makhmoudova, Shawn M Clark, Gordon J Hoover, Robert T Mullen, Barry J Shelp. Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification.
Journal of experimental botany.
2008; 59(9):2545-54. doi:
10.1093/jxb/ern123
. [PMID: 18495639] - Undurti N Das, Allam A Rao. Gene expression profile in obesity and type 2 diabetes mellitus.
Lipids in health and disease.
2007 Dec; 6(?):35. doi:
10.1186/1476-511x-6-35
. [PMID: 18078524] - Kerry A Lucas, Jessica R Filley, Jeremy M Erb, Eric R Graybill, John W Hawes. Peroxisomal metabolism of propionic acid and isobutyric acid in plants.
The Journal of biological chemistry.
2007 Aug; 282(34):24980-9. doi:
10.1074/jbc.m701028200
. [PMID: 17580301] - Masayuki Sasaki, Naoto Yamada, Michio Fukumizu, Kenji Sugai. Basal ganglia lesions in a patient with 3-hydroxyisobutyric aciduria.
Brain & development.
2006 Oct; 28(9):600-3. doi:
10.1016/j.braindev.2006.03.007
. [PMID: 16713161] - Ference J Loupatty, Annemarie van der Steen, Lodewijk Ijlst, Jos P N Ruiter, Rob Ofman, Matthias R Baumgartner, Diana Ballhausen, Seiji Yamaguchi, Marinus Duran, Ronald J A Wanders. Clinical, biochemical, and molecular findings in three patients with 3-hydroxyisobutyric aciduria.
Molecular genetics and metabolism.
2006 Mar; 87(3):243-8. doi:
10.1016/j.ymgme.2005.09.019
. [PMID: 16466957] - M Sasaki, H Iwata, K Sugai, M Fukumizu, M Kimura, S Yamaguchi. A severely brain-damaged case of 3-hydroxyisobutyric aciduria.
Brain & development.
2001 Jul; 23(4):243-5. doi:
10.1016/s0387-7604(01)00196-6
. [PMID: 11377004] - J P Shield, R Gough, J Allen, R Newbury-Ecob. 3-Hydroxyisobutyric aciduria: phenotypic heterogeneity within a single family.
Clinical dysmorphology.
2001 Jul; 10(3):189-91. doi:
10.1097/00019605-200107000-00007
. [PMID: 11446412] - F Podebrad, M Heil, T Beck, A Mosandl, A C Sewell, H Böhles. Stereodifferentiation of 3-hydroxyisobutyric- and 3-aminoisobutyric acid in human urine by enantioselective multidimensional capillary gas chromatography-mass spectrometry.
Clinica chimica acta; international journal of clinical chemistry.
2000 Feb; 292(1-2):93-105. doi:
10.1016/s0009-8981(99)00210-7
. [PMID: 10686279] - M Sasaki, M Kimura, K Sugai, T Hashimoto, S Yamaguchi. 3-Hydroxyisobutyric aciduria in two brothers.
Pediatric neurology.
1998 Mar; 18(3):253-5. doi:
10.1016/s0887-8994(97)00161-6
. [PMID: 9568924] - I Yoshida. [3-Hydroxyisobutyric aciduria (3-hydroxyisobutyric acid dehydrogenase deficiency)].
Ryoikibetsu shokogun shirizu.
1998; ?(18 Pt 1):317-9. doi:
. [PMID: 9590056]
- O Boulat, N Benador, E Girardin, C Bachmann. 3-hydroxyisobutyric aciduria with a mild clinical course.
Journal of inherited metabolic disease.
1995; 18(2):204-6. doi:
10.1007/bf00711767
. [PMID: 7564247] - D Chitayat, K Meagher-Villemure, O A Mamer, A O'Gorman, D I Hoar, K Silver, C R Scriver. Brain dysgenesis and congenital intracerebral calcification associated with 3-hydroxyisobutyric aciduria.
The Journal of pediatrics.
1992 Jul; 121(1):86-9. doi:
10.1016/s0022-3476(05)82549-1
. [PMID: 1625099] - F J Ko, W L Nyhan, J Wolff, B Barshop, L Sweetman. 3-Hydroxyisobutyric aciduria: an inborn error of valine metabolism.
Pediatric research.
1991 Oct; 30(4):322-6. doi:
10.1203/00006450-199110000-00006
. [PMID: 1956714] - P M Rougraff, R Paxton, G W Goodwin, R G Gibson, R A Harris. Spectrophotometric enzymatic assay for S-3-hydroxyisobutyrate.
Analytical biochemistry.
1990 Feb; 184(2):317-20. doi:
10.1016/0003-2697(90)90687-5
. [PMID: 2183647] - A Avogaro, D M Bier. Contribution of 3-hydroxyisobutyrate to the measurement of 3-hydroxybutyrate in human plasma: comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects.
Journal of lipid research.
1989 Nov; 30(11):1811-7. doi:
. [PMID: 2614280]
- J Letto, M E Brosnan, J T Brosnan. Valine metabolism. Gluconeogenesis from 3-hydroxyisobutyrate.
The Biochemical journal.
1986 Dec; 240(3):909-12. doi:
10.1042/bj2400909
. [PMID: 3827880] - N J Manning, R J Pollitt. Tracer studies of the interconversion of R- and S-methylmalonic semialdehydes in man.
The Biochemical journal.
1985 Oct; 231(2):481-4. doi:
10.1042/bj2310481
. [PMID: 4062908] - E Haan, G Brown, A Bankier, D Mitchell, S Hunt, J Blakey, G Barnes. Severe illness caused by the products of bacterial metabolism in a child with a short gut.
European journal of pediatrics.
1985 May; 144(1):63-5. doi:
10.1007/bf00491929
. [PMID: 4018104] - R J Pollitt, A Green, R Smith. Excessive excretion of beta-alanine and of 3-hydroxypropionic, R- and S-3-aminoisobutyric, R- and S-3-hydroxyisobutyric and S-2-(hydroxymethyl)butyric acids probably due to a defect in the metabolism of the corresponding malonic semialdehydes.
Journal of inherited metabolic disease.
1985; 8(2):75-9. doi:
10.1007/bf01801669
. [PMID: 3939535] - P J Congdon, D Haigh, R Smith, A Green, R J Pollitt. Hypermethioninaemia and 3-hydroxyisobutyric aciduria in an apparently healthy baby.
Journal of inherited metabolic disease.
1981; 4(2):79-80. doi:
10.1007/bf02263600
. [PMID: 6790857] - N Gregersen, F Rosleff, S Kølvraa, N Hobolth, K Rasmussen, R Lauritzen. Non-ketotic C6-C10-dicarboxylic aciduria: biochemical investigations of two cases.
Clinica chimica acta; international journal of clinical chemistry.
1980 Mar; 102(2-3):179-89. doi:
10.1016/0009-8981(80)90031-5
. [PMID: 6892795] - J Amster, K Tanaka. Isolation and identification of S(+)-3-hydroxyisobutyric acid in the urine of rats loaded with isobutyric acid.
Biochimica et biophysica acta.
1979 Jul; 585(4):643-4. doi:
10.1016/0304-4165(79)90196-x
. [PMID: 465545] - A Karim, J Hribar, W Aksamit, M Doherty, L J Chinn. Spironolactone metabolism in man studied by gas chromatography-mass spectrometry.
Drug metabolism and disposition: the biological fate of chemicals.
1975 Nov; 3(6):467-78. doi:
NULL
. [PMID: 1221]