NCBI Taxonomy: 1095358

Ceratocapnos (ncbi_taxid: 1095358)

found 81 associated metabolites at genus taxonomy rank level.

Ancestor: Fumarioideae

Child Taxonomies: Ceratocapnos heterocarpa, Ceratocapnos claviculata

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.0^{4,12}.0^{6,10}.0^{18,22}]tetracosa-1(24),4(12),5,10,17,22-hexaen-3-one

C20H19NO5 (353.1263)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.1783)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

Dihydrosanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaene

C20H15NO4 (333.1001)


Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine. Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3]. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].

   

Corydalis L

(13aS)-3,9,10-trimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinolin-2-ol

C20H23NO4 (341.1627)


(S)-tetrahydrocolumbamine is a berberine alkaloid consisting of columbamine having four extra hydrogens at positions 5, 8, 13 and 13a and (S)-configuration. It is a berberine alkaloid and an organic heterotetracyclic compound. It is functionally related to a columbamine. (S)-Tetrahydrocolumbamine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid consisting of columbamine having four extra hydrogens at positions 5, 8, 13 and 13a and (S)-configuration. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2].

   

Glaucine

(6aS,11aM)-1,2,9,10-tetramethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline

C21H25NO4 (355.1783)


(S)-glaucine is an aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. It has a role as a platelet aggregation inhibitor, a NF-kappaB inhibitor, an antitussive, an antibacterial agent, a muscle relaxant, an antineoplastic agent, a plant metabolite and a rat metabolite. It is an aporphine alkaloid, a polyether, an organic heterotetracyclic compound and a tertiary amino compound. It is a conjugate base of a (S)-glaucine(1+). Glaucine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. An aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D019141 - Respiratory System Agents > D000996 - Antitussive Agents D020011 - Protective Agents > D000975 - Antioxidants D002491 - Central Nervous System Agents Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Aporphine alkaloids Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3].

   

Cheilanthifoline

(13S)-16-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-3(11),4(8),9,14,16,18-hexaen-17-ol

C19H19NO4 (325.1314)


Cheilanthifoline is a natural product found in Fumaria densiflora, Fumaria judaica, and other organisms with data available.

   

stylopine

6,7,12b,13e-Tetrahydro-4H-bis[1,3]benzodioxolo[5,6-a:4,5- g]quinolizine

C19H17NO4 (323.1158)


   
   
   

Cularidine

5,6-Dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.03,8.014,18]octadeca-1(17),3,5,7,14(18),15-hexaen-17-ol

C19H21NO4 (327.1471)


   
   

(R)-Juziphine

1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-8-ol

C18H21NO3 (299.1521)


(R)-Juziphine is found in fruits. (R)-Juziphine is an alkaloid from the leaves of Zizyphus jujuba (Chinese date). Alkaloid from the leaves of Zizyphus jujuba (Chinese date). (R)-Juziphine is found in fruits.

   

8-Oxycoptisine

5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]tetracosa-1(24),2,4(8),9,15,20,22-heptaen-14-one

C19H13NO5 (335.0794)


   

Glaziovine

11-hydroxy-10-methoxy-5-methyl-5-azaspiro[cyclohexane-1,2-tricyclo[6.3.1.0⁴,¹²]dodecane]-1(11),2,5,8(12),9-pentaen-4-one

C18H19NO3 (297.1365)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent

   

Glaziovine

L-(-)-N-Methylcrotsparine

C18H19NO3 (297.1365)


   

(?)-Clavizepine

(?)-Clavizepine

C19H21NO4 (327.1471)


   

Scoulerine

6H-Dibenzo[a,g]quinolizine-2,9-diol, 5,8,13,13a-tetrahydro-3,10-dimethoxy-, (.+/-.)-

C19H21NO4 (327.1471)


(R,S)-Scoulerine is an alkaloid. Scoulerine is a natural product found in Sarcocapnos saetabensis, Corydalis bungeana, and other organisms with data available.

   

Protopine

Protopine

C20H19NO5 (353.1263)


Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Juziphine

1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-8-ol

C18H21NO3 (299.1521)


   

483-34-1

(13aS)-3,9,10-trimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinolin-2-ol

C20H23NO4 (341.1627)


(-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2].

   

Hyndarin

InChI=1\C21H25NO4\c1-23-18-6-5-13-9-17-15-11-20(25-3)19(24-2)10-14(15)7-8-22(17)12-16(13)21(18)26-4\h5-6,10-11,17H,7-9,12H2,1-4H3\t17-\m0\s

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.

   

(S)-Cheilanthifoline

(S)-Cheilanthifoline

C19H19NO4 (325.1314)


   

(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-6,17-diol

(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-6,17-diol

C18H19NO4 (313.1314)


   

(13s)-16-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14(19),15,17-hexaen-17-ol

(13s)-16-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14(19),15,17-hexaen-17-ol

C19H19NO4 (325.1314)


   

(10s)-5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-11-ium-11-olate

(10s)-5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-11-ium-11-olate

C20H23NO5 (357.1576)


   

(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

(10s)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

C18H19NO4 (313.1314)


   

(10s)-5,6,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

(10s)-5,6,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

C19H21NO4 (327.1471)


   

5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

C20H23NO4 (341.1627)


   

7-[2-(dimethylamino)ethyl]-13,14-dimethoxy-2-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,9,12,14-heptaen-4-ol

7-[2-(dimethylamino)ethyl]-13,14-dimethoxy-2-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,9,12,14-heptaen-4-ol

C20H23NO4 (341.1627)


   

12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

C20H23NO5 (357.1576)


   

13,14-dimethoxy-8-methyl-17-oxa-8-azatetracyclo[8.7.1.0⁵,¹⁸.0¹¹,¹⁶]octadeca-1(18),2,4,11(16),12,14-hexaen-2-ol

13,14-dimethoxy-8-methyl-17-oxa-8-azatetracyclo[8.7.1.0⁵,¹⁸.0¹¹,¹⁶]octadeca-1(18),2,4,11(16),12,14-hexaen-2-ol

C19H21NO4 (327.1471)


   

3-[2-(dimethylamino)ethyl]-2-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-6-methoxyphenol

3-[2-(dimethylamino)ethyl]-2-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-6-methoxyphenol

C20H25NO4 (343.1783)


   

20-hydroxy-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(20),3,5(9),10,13(21),14,16,18-octaen-12-one

20-hydroxy-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(20),3,5(9),10,13(21),14,16,18-octaen-12-one

C17H9NO5 (307.0481)


   

(10s)-4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene

(10s)-4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene

C19H21NO4 (327.1471)


   

5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,9,14(18),15-heptaene-12,13-dione

5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,9,14(18),15-heptaene-12,13-dione

C20H17NO6 (367.1056)


   

4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,10(18),11,13,15-octaen-9-one

4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,10(18),11,13,15-octaen-9-one

C19H15NO5 (337.095)


   

5,6-dimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

5,6-dimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

C18H19NO4 (313.1314)


   

(r)-stylopine

(r)-stylopine

C19H17NO4 (323.1158)


   

7-(benzyloxy)-2-{[3-(benzyloxy)-4-methoxyphenyl]methyl}-6-methoxy-3,4-dihydro-1h-isoquinoline

7-(benzyloxy)-2-{[3-(benzyloxy)-4-methoxyphenyl]methyl}-6-methoxy-3,4-dihydro-1h-isoquinoline

C32H33NO4 (495.2409)


   

13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaene

13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaene

C20H17NO5 (351.1107)


   

(1s,12r,14s)-13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaen-24-ol

(1s,12r,14s)-13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaen-24-ol

C20H17NO6 (367.1056)


   

(1r)-2-[(3-hydroxy-4-methoxyphenyl)methyl]-1-(hydroxymethyl)-6-methoxy-3,4-dihydro-1h-isoquinolin-7-ol

(1r)-2-[(3-hydroxy-4-methoxyphenyl)methyl]-1-(hydroxymethyl)-6-methoxy-3,4-dihydro-1h-isoquinolin-7-ol

C19H23NO5 (345.1576)


   

(10s)-5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

(10s)-5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

C19H21NO4 (327.1471)


   

6-[(4-methoxyphenyl)methyl]-2h,5h,7h,8h-[1,3]dioxolo[4,5-g]isoquinoline

6-[(4-methoxyphenyl)methyl]-2h,5h,7h,8h-[1,3]dioxolo[4,5-g]isoquinoline

C18H19NO3 (297.1365)


   

5,6,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(18),3(8),4,6,10,12,14,16-octaen-9-one

5,6,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(18),3(8),4,6,10,12,14,16-octaen-9-one

C19H15NO5 (337.095)


   

14-methyl-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaene-16,20-diol

14-methyl-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaene-16,20-diol

C18H17NO5 (327.1107)


   

(12bs)-2,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-3,12-diol

(12bs)-2,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-3,12-diol

C19H21NO4 (327.1471)


   

(10s)-5,17-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-6-ol

(10s)-5,17-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-6-ol

C19H21NO4 (327.1471)


   

(5s,12bs)-5-(hydroxymethyl)-3,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,12-diol

(5s,12bs)-5-(hydroxymethyl)-3,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,12-diol

C20H23NO5 (357.1576)


   

5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-13,17-diol

5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-13,17-diol

C19H21NO5 (343.142)


   

20-methoxy-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(20),3,5(9),10,13(21),14,16,18-octaen-12-one

20-methoxy-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(20),3,5(9),10,13(21),14,16,18-octaen-12-one

C18H11NO5 (321.0637)


   

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-5,16-diol

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-5,16-diol

C19H21NO4 (327.1471)


   

5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

C18H19NO4 (313.1314)


   

(10s)-5,17-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaen-4-ol

(10s)-5,17-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaen-4-ol

C19H21NO4 (327.1471)


   

(13s,16r)-14-methyl-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaene-16,20-diol

(13s,16r)-14-methyl-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaene-16,20-diol

C18H17NO5 (327.1107)


   

4,16-dimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(13),2,4,6,14,16-hexaene-3,15-diol

4,16-dimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(13),2,4,6,14,16-hexaene-3,15-diol

C19H23NO4 (329.1627)


   

(1s,12r,14s)-13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaene

(1s,12r,14s)-13-methyl-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15,20,22-hexaene

C20H17NO5 (351.1107)


   

(10s,13r)-5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-13,17-diol

(10s,13r)-5,6-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene-13,17-diol

C19H21NO5 (343.142)


   

(10s)-5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

(10s)-5,6,17-trimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaene

C20H23NO4 (341.1627)


   

(1s)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

(1s)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

C19H23NO4 (329.1627)


   

(10r)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

(10r)-5-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene-4,17-diol

C18H19NO4 (313.1314)


   

17-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3,8,10,14(19),15,17-hexaen-16-ol

17-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3,8,10,14(19),15,17-hexaen-16-ol

C19H19NO4 (325.1314)


   

7-methoxy-2-[(4-methoxyphenyl)methyl]-3,4-dihydro-1h-isoquinolin-6-ol

7-methoxy-2-[(4-methoxyphenyl)methyl]-3,4-dihydro-1h-isoquinolin-6-ol

C18H21NO3 (299.1521)


   

(6r,12bs)-12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

(6r,12bs)-12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

C20H23NO5 (357.1576)


   

methyl 4,5-dimethoxy-2-[(7-methoxy-2-methyl-1-oxo-3,4-dihydroisoquinolin-8-yl)oxy]benzoate

methyl 4,5-dimethoxy-2-[(7-methoxy-2-methyl-1-oxo-3,4-dihydroisoquinolin-8-yl)oxy]benzoate

C21H23NO7 (401.1474)


   

(9s)-4,5,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

(9s)-4,5,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene

C21H25NO4 (355.1783)


   

3-[2-(dimethylamino)ethyl]-6-methoxy-2-[(1e)-2-(4-methoxyphenyl)ethenyl]phenol

3-[2-(dimethylamino)ethyl]-6-methoxy-2-[(1e)-2-(4-methoxyphenyl)ethenyl]phenol

C20H25NO3 (327.1834)


   

(13s)-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaen-20-ol

(13s)-2,6,8-trioxa-14-azapentacyclo[11.7.1.0³,¹¹.0⁵,⁹.0¹⁷,²¹]henicosa-1(21),3,5(9),10,17,19-hexaen-20-ol

C17H15NO4 (297.1001)


   

6-methoxy-2-[(4-methoxyphenyl)methyl]-3,4-dihydro-1h-isoquinolin-7-ol

6-methoxy-2-[(4-methoxyphenyl)methyl]-3,4-dihydro-1h-isoquinolin-7-ol

C18H21NO3 (299.1521)


   

(1r)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

(1r)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

C18H21NO3 (299.1521)


   

(1s,12r,14s)-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15(23),16(20),21-hexaene

(1s,12r,14s)-5,7,17,19,25-pentaoxa-13-azaheptacyclo[12.10.1.0¹,¹².0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]pentacosa-2,4(8),9,15(23),16(20),21-hexaene

C19H15NO5 (337.095)


   

(10s)-5,6-dimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

(10s)-5,6-dimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3(8),4,6,14(18),15-hexaen-17-ol

C18H19NO4 (313.1314)


   

5-{2h-[1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl}-2h-1,3-benzodioxol-4-ol

5-{2h-[1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl}-2h-1,3-benzodioxol-4-ol

C18H11NO6 (337.0586)


   

5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]tetracosa-2,4(8),9,15(23),16(20),21-hexaene

5,7,17,19-tetraoxa-13-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁵,²³.0¹⁶,²⁰]tetracosa-2,4(8),9,15(23),16(20),21-hexaene

C19H17NO4 (323.1158)


   

(5s)-5-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methyl-2h,5h,7h,8h-[1,3]dioxolo[4,5-g]isoquinolin-4-ol

(5s)-5-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methyl-2h,5h,7h,8h-[1,3]dioxolo[4,5-g]isoquinolin-4-ol

C19H21NO5 (343.142)


   

(12bs)-12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

(12bs)-12-hydroxy-2,3,11-trimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-6-ium-6-olate

C20H23NO5 (357.1576)


   

(1s,9s)-5-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,10,13-pentaen-12-one

(1s,9s)-5-hydroxy-4,13-dimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,10,13-pentaen-12-one

C19H21NO4 (327.1471)


   

1-[(3-hydroxy-4-methoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

1-[(3-hydroxy-4-methoxyphenyl)methyl]-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-8-ol

C19H23NO4 (329.1627)


   

5-[(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)methyl]-2-methoxyphenol

5-[(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)methyl]-2-methoxyphenol

C19H23NO4 (329.1627)


   

(9s)-4,5,15-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-16-ol

(9s)-4,5,15-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-16-ol

C20H23NO4 (341.1627)


   

4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene

4,5,17-trimethoxy-2-oxa-11-azatetracyclo[8.7.1.0³,⁸.0¹⁴,¹⁸]octadeca-1(17),3,5,7,14(18),15-hexaene

C19H21NO4 (327.1471)