NCBI Taxonomy: 1852778

Corydalis balansae (ncbi_taxid: 1852778)

found 36 associated metabolites at species taxonomy rank level.

Ancestor: Corydalis

Child Taxonomies: none taxonomy data.

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.0^{4,12}.0^{6,10}.0^{18,22}]tetracosa-1(24),4(12),5,10,17,22-hexaen-3-one

C20H19NO5 (353.12631640000006)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.178349)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

[C21H22NO4]+ (352.15487520000005)


Annotation level-1 Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of). KEIO_ID P071; [MS2] KO009210 KEIO_ID P071

   

Dihydrosanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10.0^{4,8.0^{14,22.0^{17,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaene

C20H15NO4 (333.10010300000005)


Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine. Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3]. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].

   

Hydroxysanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaen-23-one

C20H13NO5 (347.07936880000005)


Hydroxysanguinarine is a benzophenanthridine alkaloid. Hydroxysanguinarine is a natural product found in Fumaria indica, Fumaria parviflora, and other organisms with data available.

   

(S)-scoulerine

(13aS)-5,8,13,13a-Tetrahydro-3,10-dimethoxy-6H- dibenzo[a,g]quinolizine-2,9-diol

C19H21NO4 (327.14705060000006)


(s)-scoulerine, also known as discretamine or aequaline, belongs to protoberberine alkaloids and derivatives class of compounds. Those are alkaloids with a structure based on a protoberberine moiety, which consists of a 5,6-dihydrodibenzene moiety fused to a quinolizinium and forming 5,6-Dihydrodibenzo(a,g)quinolizinium skeleton (s)-scoulerine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-scoulerine can be found in a number of food items such as rice, lemon grass, chinese bayberry, and sea-buckthornberry, which makes (s)-scoulerine a potential biomarker for the consumption of these food products.

   

Norsanguinarine

5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaene

C19H11NO4 (317.0688046)


Norsanguinarine is a member of phenanthridines. Norsanguinarine is a natural product found in Fumaria indica, Corydalis balansae, and other organisms with data available. Norsanguinarine is found in opium poppy. Norsanguinarine is an alkaloid from Papaver rhoeas (corn poppy D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

Protopine

Protopine

C20H19NO5 (353.12631640000006)


Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Scoulerin

(13aS)-3,10-dimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline-2,9-diol

C19H21NO4 (327.14705060000006)


A berberine alkaloid isolated from Corydalis saxicola.

   

Palmatin

Palmatine

[C21H22NO4]+ (352.15487520000005)


Origin: Plant; Formula(Parent): C21H22NO4; Bottle Name:Palmatine chloride; PRIME Parent Name:Palmatine; PRIME in-house No.:V0288; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   

Tetrahydropalmatin

D-Tetrahydropalmatine

C21H25NO4 (355.178349)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2302 D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3].

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

C21H22NO4+ (352.15487520000005)


Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of).

   

Hyndarin

InChI=1\C21H25NO4\c1-23-18-6-5-13-9-17-15-11-20(25-3)19(24-2)10-14(15)7-8-22(17)12-16(13)21(18)26-4\h5-6,10-11,17H,7-9,12H2,1-4H3\t17-\m0\s

C21H25NO4 (355.178349)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.

   

dicyanide

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21)-octaen-23-one

C20H13NO5 (347.07936880000005)


Hydroxysanguinarine is a benzophenanthridine alkaloid. Hydroxysanguinarine is a natural product found in Fumaria indica, Fumaria parviflora, and other organisms with data available.

   

(1s)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

(1s)-1-[(4-hydroxyphenyl)methyl]-7-methoxy-1,2,3,4-tetrahydroisoquinolin-8-ol

C17H19NO3 (285.13648639999997)


   

11-methoxy-12-methyl-5,7,17,19-tetraoxa-12-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁴,²².0¹⁶,²⁰]tetracosa-1(13),2,4(8),9,14,16(20),21,23-octaene

11-methoxy-12-methyl-5,7,17,19-tetraoxa-12-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁴,²².0¹⁶,²⁰]tetracosa-1(13),2,4(8),9,14,16(20),21,23-octaene

C21H17NO5 (363.1106672)