Prostaglandin J2 (BioDeep_00000003318)

 

Secondary id: BioDeep_00000174979, BioDeep_00000404647, BioDeep_00000629495

human metabolite Endogenous blood metabolite natural product


代谢物信息卡片


(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoic acid

化学式: C20H30O4 (334.2144)
中文名称: 前列腺素J2
谱图信息: 最多检出来源 Homo sapiens(blood) 28.14%

分子结构信息

SMILES: CCCCCC(C=CC1C(C=CC1=O)CC=CCCCC(=O)O)O
InChI: InChI=1S/C20H30O4/c1-2-3-6-10-17(21)13-14-18-16(12-15-19(18)22)9-7-4-5-8-11-20(23)24/h4,7,12-18,21H,2-3,5-6,8-11H2,1H3,(H,23,24)/b7-4-,14-13+/t16-,17-,18+/m0/s1

描述信息

Prostaglandin J2 (PGJ2) is an endogenous product of inflammation in humans. It induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. It may play a role in neurodegenerative disorders inducing a chain of events that culminates in neuronal cell death. An altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. The peroxisome proliferator-activated receptor gamma (PPARγ) has a fundamental role in glucose homeostasis and adipocyte differentiation. Besides linoleate, linolenate and arachidonate, the most notable PPAR ligand is 15-deoxy-delta12-14-prostaglandin J2, a natural derivative of prostaglandin D2 and PGJ2. It is therefore plausible that the production of 15d-PGJ2 within adipose tissue may act as an endogenous mediator of adipocyte differentiation. PGJ2 disrupts the cytoskeleton in neuronal cells. This cyclopentenone prostaglandin triggered endoplasmic reticulum (ER) collapse and the redistribution of ER proteins, such as calnexin and catechol-O-methyltransferase, into a large centrosomal aggregate containing ubiquitinated proteins and alpha-synuclein. The PGJ2-dependent cytoskeletal rearrangement paralleled the development of the large centrosomal aggregate. Supporting a mechanism by which, upon PGJ2 treatment, cytoskeleton/ER collapse coincides with the relocation of ER proteins, other potentially neighboring proteins, and ubiquitinated proteins into centrosomal aggregates. Development of these large perinuclear aggregates is associated with disruption of the microtubule/ER network. This aberrant protein deposition, triggered by a product of inflammation, may be common to other compounds that disrupt microtubules and induce protein aggregation, such as MPP+ and rotenone, found to be associated with neurodegeneration. Many neurodegenerative disorders, such as Parkinson disease, exhibit inclusion bodies containing ubiquitinated proteins. Concentrations of PGJ2 in biofluids have not been established, since this prostaglandin is further metabolized into delta12-PGJ2, and 15-deoxy-delta12,14-PGJ2. (PMID: 16737963, 16842938, 16774923)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Prostaglandin J2 (PGJ2) is an endogenous product of inflammation in humans. It induces neuronal death and the accumulation of ubiquitinated proteins into distinct aggregates. It may play a role in neurodegenerative disorders inducing a chain of events that culminates in neuronal cell death. An altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. The peroxisome proliferator-activated receptor gamma (PPARγ) has a fundamental role in glucose homeostasis and adipocyte differentiation. Besides linoleate, linolenate and arachidonate, the most notable PPAR ligand is 15-deoxy-delta12-14-prostaglandin J2, a natural derivative of prostaglandin D2 and PGJ2. It is therefore plausible that the production of 15d-PGJ2 within adipose tissue may act as an endogenous mediator of adipocyte differentiation. PGJ2 disrupts the cytoskeleton in neuronal cells. This cyclopentenone prostaglandin triggered endoplasmic reticulum (ER) collapse and the redistribution of ER proteins, such as calnexin and catechol-O-methyltransferase, into a large centrosomal aggregate containing ubiquitinated proteins and alpha-synuclein. The PGJ2-dependent cytoskeletal rearrangement paralleled the development of the large centrosomal aggregate. Supporting a mechanism by which, upon PGJ2 treatment, cytoskeleton/ER collapse coincides with the relocation of ER proteins, other potentially neighboring proteins, and ubiquitinated proteins into centrosomal aggregates. Development of these large perinuclear aggregates is associated with disruption of the microtubule/ER network. This aberrant protein deposition, triggered by a product of inflammation, may be common to other compounds that disrupt microtubules and induce protein aggregation, such as MPP+ and rotenone, found to be associated with neurodegeneration. Many neurodegenerative disorders, such as Parkinson disease, exhibit inclusion bodies containing ubiquitinated proteins. Concentrations of PGJ2 in biofluids have not been established, since this prostaglandin is further metabolized into delta12-PGJ2, and 15-deoxy-delta12,14-PGJ2. (PMID: 16737963, 16842938, 16774923)
D000970 - Antineoplastic Agents

同义名列表

11 个代谢物同义名

(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoic acid; 11-oxo-15S-Hydroxy-5Z,8Z,13E-prostatrienoic acid; 11-oxo-15S-Hydroxy-5Z,8Z,13E-prostatrienoate; 9-Deoxy-delta-9-prostaglandin D2; 9-Deoxy-δ-9-prostaglandin D2; 9-Deoxy-delta-9-PGD2; 9-Deoxy-δ-9-PGD2; MCULE-3363997729; Prostaglandin J2; PGJ2; Prostaglandin J2



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

55 个相关的代谢反应过程信息。

Reactome(5)

BioCyc(0)

WikiPathways(4)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(46)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADIG, AKT1, CASP3, HPGD, MAPK14, MAPK8, NFE2L2, NFKB1, PPARG, PTGS2, STAT3
Peripheral membrane protein 2 AP1S2, PTGS2
Endoplasmic reticulum membrane 3 HMOX1, PTGDS, PTGS2
Nucleus 12 ADIG, AKT1, CASP3, HMOX1, JUN, MAPK14, MAPK8, NFE2L2, NFKB1, PPARA, PPARG, STAT3
cytosol 11 AKT1, AP1S2, CASP3, HMOX1, HPGD, MAPK14, MAPK8, NFE2L2, NFKB1, PPARG, STAT3
centrosome 1 NFE2L2
nucleoplasm 12 AKT1, CASP3, HMOX1, HPGD, JUN, MAPK14, MAPK8, NFE2L2, NFKB1, PPARA, PPARG, STAT3
RNA polymerase II transcription regulator complex 4 JUN, NFE2L2, PPARG, STAT3
Cell membrane 3 AKT1, PTGDR2, TNF
Cytoplasmic side 2 AP1S2, HMOX1
lamellipodium 1 AKT1
Multi-pass membrane protein 1 PTGDR2
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 3 AP1S2, NFE2L2, PTGDS
Golgi membrane 1 AP1S2
lysosomal membrane 1 AP1S2
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NFE2L2
plasma membrane 5 AKT1, NFE2L2, PTGDR2, STAT3, TNF
Membrane 3 ADIG, AKT1, HMOX1
axon 1 MAPK8
basolateral plasma membrane 1 HPGD
caveola 1 PTGS2
extracellular exosome 2 HPGD, PTGDS
endoplasmic reticulum 2 HMOX1, PTGS2
extracellular space 5 CXCL8, HMOX1, IL6, PTGDS, TNF
perinuclear region of cytoplasm 3 HMOX1, PPARG, PTGDS
mitochondrion 2 MAPK14, NFKB1
protein-containing complex 2 AKT1, PTGS2
intracellular membrane-bounded organelle 2 AP1S2, PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 4 ADIG, CXCL8, IL6, PTGDS
extracellular region 7 ADIG, CXCL8, IL6, MAPK14, NFKB1, PTGDS, TNF
Single-pass membrane protein 1 ADIG
mitochondrial outer membrane 1 HMOX1
transcription regulator complex 3 JUN, NFKB1, STAT3
Nucleus membrane 1 PTGDS
nuclear membrane 1 PTGDS
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
cell-cell junction 1 AKT1
clathrin-coated pit 1 AP1S2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 PTGDS
Membrane raft 1 TNF
spindle 1 AKT1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 2 PTGDR2, PTGS2
ciliary basal body 1 AKT1
chromatin 6 JUN, NFE2L2, NFKB1, PPARA, PPARG, STAT3
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
spindle pole 1 MAPK14
nuclear chromosome 1 JUN
Endomembrane system 1 AP1S2
Lipid droplet 1 ADIG
Cytoplasmic vesicle membrane 1 AP1S2
euchromatin 1 JUN
trans-Golgi network membrane 1 AP1S2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 MAPK14, NFKB1
endoplasmic reticulum lumen 2 IL6, PTGS2
specific granule lumen 1 NFKB1
Single-pass type IV membrane protein 1 HMOX1
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
Rough endoplasmic reticulum 1 PTGDS
AP-1 adaptor complex 1 AP1S2
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Carl Eguez, Michelle A Clark, Ann Tenneil O'Connor. 15-Deoxy-Δ-12,14-prostaglandin J2 effects in vascular smooth muscle cells: Implications in vascular smooth muscle cell proliferation and contractility. Prostaglandins & other lipid mediators. 2021 10; 156(?):106583. doi: 10.1016/j.prostaglandins.2021.106583. [PMID: 34332056]
  • Christoph Schmöcker, Heike Gottschall, Katharina M Rund, Laura Kutzner, Fabian Nolte, Annika I Ostermann, Dirk Hartmann, Nils Helge Schebb, Karsten H Weylandt. Oxylipin patterns in human colon adenomas. Prostaglandins, leukotrienes, and essential fatty acids. 2021 04; 167(?):102269. doi: 10.1016/j.plefa.2021.102269. [PMID: 33812217]
  • Meng Yuan, Yue Zhang, Tong Hua, Xiang-Li Liu, Tong Liu, Ru-Yu Yuan, Guang-Ping Li, Yi Zhu, Xu Zhang. Omega-3 polyunsaturated fatty acid supplementation improves lipid metabolism and endothelial function by providing a beneficial eicosanoid-pattern in patients with acute myocardial infarction: A randomized, controlled trial. Clinical nutrition (Edinburgh, Scotland). 2021 02; 40(2):445-459. doi: 10.1016/j.clnu.2020.05.034. [PMID: 33041091]
  • Karol Mierzejewski, Łukasz Paukszto, Aleksandra Kurzyńska, Zuzanna Kunicka, Jan Paweł Jastrzębski, Iwona Bogacka. Transcriptome analysis of porcine endometrium after LPS-induced inflammation: effects of the PPAR-gamma ligands in vitro†. Biology of reproduction. 2021 01; 104(1):130-143. doi: 10.1093/biolre/ioaa200. [PMID: 33112378]
  • Yuanting Chen, Jie Xiang, Fenghua Qian, Bastihalli T Diwakar, Baiye Ruan, Siyang Hao, K Sandeep Prabhu, Robert F Paulson. Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood. 2020 07; 136(2):235-246. doi: 10.1182/blood.2019003480. [PMID: 32350523]
  • Vikas Kumar, A Aneesh Kumar, Vinod Joseph, Vipin Mohan Dan, Abdul Jaleel, T R Santhosh Kumar, Chandrasekharan C Kartha. Untargeted metabolomics reveals alterations in metabolites of lipid metabolism and immune pathways in the serum of rats after long-term oral administration of Amalaki rasayana. Molecular and cellular biochemistry. 2020 Jan; 463(1-2):147-160. doi: 10.1007/s11010-019-03637-1. [PMID: 31595424]
  • Hu Wang, Fanny Cheung, Anna C Stoll, Patricia Rockwell, Maria E Figueiredo-Pereira. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Biochimica et biophysica acta. Molecular basis of disease. 2019 06; 1865(6):1436-1450. doi: 10.1016/j.bbadis.2019.02.016. [PMID: 30796971]
  • Karina Cristina Giannotti, Elbio Leiguez, Ana Eduarda Zulim de Carvalho, Neide Galvão Nascimento, Márcio Hideki Matsubara, Consuelo Latorre Fortes-Dias, Vanessa Moreira, Catarina Teixeira. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages. Scientific reports. 2017 06; 7(1):4098. doi: 10.1038/s41598-017-04498-8. [PMID: 28642580]
  • Simon K Wright, Beverly R Wuertz, George Harris, Raed Abu Ghazallah, Wendy A Miller, Patrick M Gaffney, Frank G Ondrey. Functional activation of PPARγ in human upper aerodigestive cancer cell lines. Molecular carcinogenesis. 2017 01; 56(1):149-162. doi: 10.1002/mc.22479. [PMID: 26999671]
  • Suzanne M Pilkington, Neil K Gibbs, Patrick Costello, Susan P Bennett, Karen A Massey, Peter S Friedmann, Anna Nicolaou, Lesley E Rhodes. Effect of oral eicosapentaenoic acid on epidermal Langerhans cell numbers and PGD2 production in UVR-exposed human skin: a randomised controlled study. Experimental dermatology. 2016 12; 25(12):962-968. doi: 10.1111/exd.13177. [PMID: 27572109]
  • Jennifer Kaplan, Marchele Nowell, Ranjit Chima, Basilia Zingarelli. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate immunity. 2014 Jul; 20(5):519-28. doi: 10.1177/1753425913501565. [PMID: 24029145]
  • Xiao-Qun Han, Zuo-Jiong Gong, San-Qing Xu, Xun Li, Li-Kun Wang, Shi-Min Wu, Jian-Hong Wu, Hua-Fen Yang. Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban. 2014 Feb; 34(1):10-17. doi: 10.1007/s11596-014-1224-1. [PMID: 24496672]
  • Guangrui Yang, Zhanjun Jia, Toshinori Aoyagi, Donald McClain, Richard M Mortensen, Tianxin Yang. Systemic PPARγ deletion impairs circadian rhythms of behavior and metabolism. PloS one. 2012; 7(8):e38117. doi: 10.1371/journal.pone.0038117. [PMID: 22899986]
  • P Flachs, R Rühl, M Hensler, P Janovska, P Zouhar, V Kus, Z Macek Jilkova, E Papp, O Kuda, M Svobodova, M Rossmeisl, G Tsenov, V Mohamed-Ali, J Kopecky. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011 Oct; 54(10):2626-38. doi: 10.1007/s00125-011-2233-2. [PMID: 21779874]
  • Mansoor Ali Syed, M Joo, Zulfiqar Abbas, D Rodger, J W Christman, D Mehta, R T Sadikot. Expression of TREM-1 is inhibited by PGD2 and PGJ2 in macrophages. Experimental cell research. 2010 Nov; 316(19):3140-9. doi: 10.1016/j.yexcr.2010.08.009. [PMID: 20797396]
  • Dennis J Templeton, Myo-Sabai Aye, Joshua Rady, Fang Xu, Janet V Cross. Purification of reversibly oxidized proteins (PROP) reveals a redox switch controlling p38 MAP kinase activity. PloS one. 2010 Nov; 5(11):e15012. doi: 10.1371/journal.pone.0015012. [PMID: 21085594]
  • Beatriz G Pérez-Nievas, Borja García-Bueno, José L M Madrigal, Juan C Leza. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated. Journal of neuroinflammation. 2010 Oct; 7(?):60. doi: 10.1186/1742-2094-7-60. [PMID: 20929574]
  • Caroline Subra, David Grand, Karine Laulagnier, Alexandre Stella, Gérard Lambeau, Michael Paillasse, Philippe De Medina, Bernard Monsarrat, Bertrand Perret, Sandrine Silvente-Poirot, Marc Poirot, Michel Record. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of lipid research. 2010 Aug; 51(8):2105-20. doi: 10.1194/jlr.m003657. [PMID: 20424270]
  • Etsuo Niki. Lipid peroxidation: physiological levels and dual biological effects. Free radical biology & medicine. 2009 Sep; 47(5):469-84. doi: 10.1016/j.freeradbiomed.2009.05.032. [PMID: 19500666]
  • Ying Wang, Jamie Santos, Reiko Sakurai, Eugene Shin, Laura Cerny, John S Torday, Virender K Rehan. Peroxisome proliferator-activated receptor gamma agonists enhance lung maturation in a neonatal rat model. Pediatric research. 2009 Feb; 65(2):150-5. doi: 10.1203/pdr.0b013e3181938c40. [PMID: 19262292]
  • Jamie J O'Brien, Sherry L Spinelli, Joanna Tober, Neil Blumberg, Charles W Francis, Mark B Taubman, James Palis, Kathryn E Seweryniak, Jacqueline M Gertz, Richard P Phipps. 15-deoxy-delta12,14-PGJ2 enhances platelet production from megakaryocytes. Blood. 2008 Nov; 112(10):4051-60. doi: 10.1182/blood-2008-05-158535. [PMID: 18755987]
  • Daniëlle M J Curfs, Stijn A I Ghesquiere, Monique N Vergouwe, Ingeborg van der Made, Marion J J Gijbels, David R Greaves, J Sjef Verbeek, Marten H Hofker, Menno P J de Winther. Macrophage secretory phospholipase A2 group X enhances anti-inflammatory responses, promotes lipid accumulation, and contributes to aberrant lung pathology. The Journal of biological chemistry. 2008 Aug; 283(31):21640-8. doi: 10.1074/jbc.m710584200. [PMID: 18511424]
  • Ravinder S Chana, James E Sidaway, Nigel J Brunskill. Statins but not thiazolidinediones attenuate albumin-mediated chemokine production by proximal tubular cells independently of endocytosis. American journal of nephrology. 2008; 28(5):823-30. doi: 10.1159/000137682. [PMID: 18535368]
  • Erin E Kershaw, Michael Schupp, Hong-Ping Guan, Noah P Gardner, Mitchell A Lazar, Jeffrey S Flier. PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. American journal of physiology. Endocrinology and metabolism. 2007 Dec; 293(6):E1736-45. doi: 10.1152/ajpendo.00122.2007. [PMID: 17848638]
  • Saveria Aquila, Daniela Bonofiglio, Mariaelena Gentile, Emilia Middea, Sabrina Gabriele, Maria Belmonte, Stefania Catalano, Michele Pellegrino, Sebastiano Andò. Peroxisome proliferator-activated receptor (PPAR)gamma is expressed by human spermatozoa: its potential role on the sperm physiology. Journal of cellular physiology. 2006 Dec; 209(3):977-86. doi: 10.1002/jcp.20807. [PMID: 16972250]
  • K Figarella, N L Uzcategui, A Beck, C Schoenfeld, B K Kubata, F Lang, M Duszenko. Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell death and differentiation. 2006 Oct; 13(10):1802-14. doi: 10.1038/sj.cdd.4401862. [PMID: 16456581]
  • Tomoharu Shimizu, László Szalay, Ya-Ching Hsieh, Takao Suzuki, Mashkoor A Choudhry, Kirby I Bland, Irshad H Chaudry. A role of PPAR-gamma in androstenediol-mediated salutary effects on cardiac function following trauma-hemorrhage. Annals of surgery. 2006 Jul; 244(1):131-8. doi: 10.1097/01.sla.0000217709.00863.82. [PMID: 16794398]
  • Wei-ming Wang, Feng Liu, Nan Chen. [Effects of peroxisome proliferators-activated receptor gamma agonists on transforming growth factor-beta1 and Smads signal pathway: experiment with rat renal fibroblasts]. Zhonghua yi xue za zhi. 2006 Mar; 86(11):740-4. doi: NULL. [PMID: 16681946]
  • Christel Rousseaux, Pierre Desreumaux. [The peroxisome-proliferator-activated gamma receptor and chronic inflammatory bowel disease (PPARgamma and IBD)]. Journal de la Societe de biologie. 2006; 200(2):121-31. doi: 10.1051/jbio:2006015. [PMID: 17151549]
  • M-G Zurich, S Lengacher, O Braissant, F Monnet-Tschudi, L Pellerin, P Honegger. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience. 2005; 134(3):771-82. doi: 10.1016/j.neuroscience.2005.04.030. [PMID: 15994020]
  • M M T Downie, D A Sanders, L M Maier, D M Stock, T Kealey. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro. The British journal of dermatology. 2004 Oct; 151(4):766-75. doi: 10.1111/j.1365-2133.2004.06171.x. [PMID: 15491415]
  • Laura Dugo, Marika Collin, Salvatore Cuzzocrea, Christoph Thiemermann. 15d-prostaglandin J2 reduces multiple organ failure caused by wall-fragment of Gram-positive and Gram-negative bacteria. European journal of pharmacology. 2004 Sep; 498(1-3):295-301. doi: 10.1016/j.ejphar.2004.07.074. [PMID: 15364008]
  • Helen A Rodway, Alan N Hunt, Janice A Kohler, Anthony D Postle, Karen A Lillycrop. Lysophosphatidic acid attenuates the cytotoxic effects and degree of peroxisome proliferator-activated receptor gamma activation induced by 15-deoxyDelta12,14-prostaglandin J2 in neuroblastoma cells. The Biochemical journal. 2004 Aug; 382(Pt 1):83-91. doi: 10.1042/bj20040107. [PMID: 15171682]
  • Toshiyuki Sasaguri, Yoshikazu Miwa. Prostaglandin J2 family and the cardiovascular system. Current vascular pharmacology. 2004 Apr; 2(2):103-14. doi: 10.2174/1570161043476384. [PMID: 15320511]
  • Xiong Z Ruan, John F Moorhead, Ray Fernando, David C Wheeler, Stephen H Powis, Zac Varghese. PPAR agonists protect mesangial cells from interleukin 1beta-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. Journal of the American Society of Nephrology : JASN. 2003 Mar; 14(3):593-600. doi: 10.1097/01.asn.0000050414.52908.da. [PMID: 12595494]
  • V Rehan, J Torday. Hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation. Cell biochemistry and biophysics. 2003; 38(3):239-50. doi: 10.1385/cbb:38:3:239. [PMID: 12794266]
  • Alicja Józkowicz, Ihor Huk, Anneliese Nigisch, Jarosław Cisowski, Guenter Weigel, Józef Dulak. Prostaglandin-J(2) upregulates expression of matrix metalloproteinase-1 independently of activation of peroxisome proliferator-activated receptor-gamma. Acta biochimica Polonica. 2003; 50(3):677-89. doi: 035003677. [PMID: 14515149]
  • Mustafa Arici, Ravinder Chana, Andrew Lewington, Jez Brown, Nigel John Brunskill. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma. Journal of the American Society of Nephrology : JASN. 2003 Jan; 14(1):17-27. doi: 10.1097/01.asn.0000042167.66685.ea. [PMID: 12506134]
  • Paul R Skolnik, Mohammed F Rabbi, Jean-Marie Mathys, Andrew S Greenberg. Stimulation of peroxisome proliferator-activated receptors alpha and gamma blocks HIV-1 replication and TNFalpha production in acutely infected primary blood cells, chronically infected U1 cells, and alveolar macrophages from HIV-infected subjects. Journal of acquired immune deficiency syndromes (1999). 2002 Sep; 31(1):1-10. doi: 10.1097/00126334-200209010-00001. [PMID: 12352144]
  • Vibhas S Mujumdar, Chandra M Tummalapalli, Giorgio M Aru, Suresh C Tyagi. Mechanism of constrictive vascular remodeling by homocysteine: role of PPAR. American journal of physiology. Cell physiology. 2002 May; 282(5):C1009-15. doi: 10.1152/ajpcell.00353.2001. [PMID: 11940516]
  • Stefania Pizzimenti, Stefano Laurora, Federica Briatore, Carlo Ferretti, Mario U Dianzani, Giuseppina Barrera. Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation. Free radical biology & medicine. 2002 Feb; 32(3):233-45. doi: 10.1016/s0891-5849(01)00798-5. [PMID: 11827749]
  • K Satoh, M Hayakari, K Ookawa, M Satou, S Aizawa, M Tanaka, I Hatayama, S Tsuchida, K Uchida. Lipid peroxidation end products-responded induction of a preneoplastic marker enzyme glutathione S-transferase P-form (GST-P) in rat liver on admistration via the portal vein. Mutation research. 2001 Nov; 483(1-2):65-72. doi: 10.1016/s0027-5107(01)00225-1. [PMID: 11600134]
  • A Jozkowicz, J Dulak, M Prager, J Nanobashvili, A Nigisch, B Winter, G Weigel, I Huk. Prostaglandin-J2 induces synthesis of interleukin-8 by endothelial cells in a PPAR-gamma-independent manner. Prostaglandins & other lipid mediators. 2001 Oct; 66(3):165-77. doi: 10.1016/s0090-6980(01)00155-1. [PMID: 11577781]
  • Brad H Rovin, Ling Lu, Anna Cosio. Cyclopentenone prostaglandins inhibit cytokine-induced nf-kappab activation and chemokine production by human mesangial cells. Journal of the American Society of Nephrology : JASN. 2001 Aug; 12(8):1659-1667. doi: 10.1681/asn.v1281659. [PMID: 11461938]
  • S Fukushima, S Kishimoto, Y Takeuchi, M Fukushima. Preparation and evaluation of o/w type emulsions containing antitumor prostaglandin. Advanced drug delivery reviews. 2000 Dec; 45(1):65-75. doi: 10.1016/s0169-409x(00)00101-0. [PMID: 11104898]
  • A Valmaseda, M C Carmona, M J Barberá, O Viñas, T Mampel, R Iglesias, F Villarroya, M Giralt. Opposite regulation of PPAR-alpha and -gamma gene expression by both their ligands and retinoic acid in brown adipocytes. Molecular and cellular endocrinology. 1999 Aug; 154(1-2):101-9. doi: 10.1016/s0303-7207(99)00081-7. [PMID: 10509805]
  • Y Chen, J D Morrow, L J Roberts. Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. The Journal of biological chemistry. 1999 Apr; 274(16):10863-8. doi: 10.1074/jbc.274.16.10863. [PMID: 10196163]
  • S Takahashi, N Odani, K Tomokiyo, K Furuta, M Suzuki, A Ichikawa, M Negishi. Localization of a cyclopentenone prostaglandin to the endoplasmic reticulum and induction of BiP mRNA. The Biochemical journal. 1998 Oct; 335 ( Pt 1)(?):35-42. doi: 10.1042/bj3350035. [PMID: 9742210]
  • N Marx, G Sukhova, C Murphy, P Libby, J Plutzky. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. The American journal of pathology. 1998 Jul; 153(1):17-23. doi: 10.1016/s0002-9440(10)65540-x. [PMID: 9665460]
  • D H Wright, K M Metters, M Abramovitz, A W Ford-Hutchinson. Characterization of the recombinant human prostanoid DP receptor and identification of L-644,698, a novel selective DP agonist. British journal of pharmacology. 1998 Apr; 123(7):1317-24. doi: 10.1038/sj.bjp.0701708. [PMID: 9579725]
  • A Shalev, C A Meier. Peroxisome proliferator-activated receptors: a nuclear hormone receptor involved in adipocyte differentiation and lipid homeostasis. European journal of endocrinology. 1996 May; 134(5):541-2. doi: 10.1530/eje.0.1340541. [PMID: 8664970]
  • M Negishi, T Koizumi, A Ichikawa. Biological actions of delta 12-prostaglandin J2. Journal of lipid mediators and cell signalling. 1995 Oct; 12(2-3):443-8. doi: 10.1016/0929-7855(95)00029-p. [PMID: 8777585]
  • D H Lahaye, G B Afink, D A Bleijs, D C Van Alewijk, E J Van Zoelen. Effect of bradykinin on loss of density-dependent growth inhibition of normal rat kidney cells. Cellular and molecular biology (Noisy-le-Grand, France). 1994 Jul; 40(5):717-21. doi: NULL. [PMID: 7981625]
  • T Koizumi, M Negishi, A Ichikawa. Inhibitory effect of an intracellular glutathione on delta 12-prostaglandin J2-induced protein syntheses in porcine aortic endothelial cells. Biochemical pharmacology. 1992 Oct; 44(8):1597-602. doi: 10.1016/0006-2952(92)90477-z. [PMID: 1417983]
  • T Sasaguri, J Masuda, K Shimokado, T Yokota, C Kosaka, M Fujishima, J Ogata. Prostaglandins A and J arrest the cell cycle of cultured vascular smooth muscle cells without suppression of c-myc expression. Experimental cell research. 1992 Jun; 200(2):351-7. doi: 10.1016/0014-4827(92)90182-8. [PMID: 1572402]
  • M Fukushima. Prostaglandin J2--anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids. 1990; 3(4):189-99. doi: . [PMID: 2073399]
  • Y Hirata, H Hayashi, S Ito, Y Kikawa, M Ishibashi, M Sudo, H Miyazaki, M Fukushima, S Narumiya, O Hayaishi. Occurrence of 9-deoxy-delta 9,delta 12-13,14-dihydroprostaglandin D2 in human urine. The Journal of biological chemistry. 1988 Nov; 263(32):16619-25. doi: NULL. [PMID: 3053696]
  • K Ohno, T Sakai, M Fukushima, S Narumiya, M Fujiwara. Site and mechanism of growth inhibition by prostaglandins. IV. Effect of cyclopentenone prostaglandins on cell cycle progression of G1-enriched HeLa S3 cells. The Journal of pharmacology and experimental therapeutics. 1988 Apr; 245(1):294-8. doi: NULL. [PMID: 3361448]
  • M G Santoro, M Fukushima, A Benedetto, C Amici. PGJ2, a new antiviral prostaglandin: inhibition of Sendai virus replication and alteration of virus protein synthesis. The Journal of general virology. 1987 Apr; 68 ( Pt 4)(?):1153-8. doi: 10.1099/0022-1317-68-4-1153. [PMID: 3033130]
  • K Ohno, M Fujiwara, M Fukushima, S Narumiya. Metabolic dehydration of prostaglandin E2 and cellular uptake of the dehydration product: correlation with prostaglandin E2-induced growth inhibition. Biochemical and biophysical research communications. 1986 Sep; 139(2):808-15. doi: 10.1016/s0006-291x(86)80062-6. [PMID: 3464277]
  • I Mahmud, D L Smith, M A Whyte, J T Nelson, D Cho, L G Tokes, R Alvarez, A L Willis. On the identification and biological properties of prostaglandin J2. Prostaglandins, leukotrienes, and medicine. 1984 Nov; 16(2):131-46. doi: 10.1016/0262-1746(84)90066-0. [PMID: 6597446]