NCBI Taxonomy: 1960787

Astragalus microcephalus (ncbi_taxid: 1960787)

found 29 associated metabolites at species taxonomy rank level.

Ancestor: Astragalus

Child Taxonomies: none taxonomy data.

Astragaloside IV

(2R,3R,4S,5S,6R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4-hydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyl-9-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Astragaloside

[(2S,3R,4S,5R)-4,5-dihydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C43H70O15 (826.4714)


Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.

   

Liquiritigenin

4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O4 (256.0736)


Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

7-Hydroxyflavone

7-Hydroxy-2-phenyl-4-benzopyrone

C15H10O3 (238.063)


[Raw Data] CB049_7-Hydroxyflavone_pos_10eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_30eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_50eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_20eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_40eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_neg_20eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_10eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_40eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_30eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_50eV_000015.txt 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2].

   

Astragaloside A

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Cycloastragenol

15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-6,9,14-triol

C30H50O5 (490.3658)


Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1]. Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1].

   

Sulfuretin

2-[(3,4-dihydroxyphenyl)methylidene]-6-hydroxy-2,3-dihydro-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Liquiritin rhamnoside

7-hydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O4 (256.0736)


Isolated from Glycyrrhiza glabra (licorice). Liquiritin rhamnoside is found in tea and herbs and spices.

   

Cycloastragenol

InChI=1/C30H50O5/c1-24(2)20(33)8-11-30-16-29(30)13-12-26(5)23(28(7)10-9-21(35-28)25(3,4)34)18(32)15-27(26,6)19(29)14-17(31)22(24)30/h17-23,31-34H,8-16H2,1-7H3/t17-,18-,19-,20-,21-,22-,23-,26+,27-,28+,29-,30+/m0/s1

C30H50O5 (490.3658)


Cycloastragenol is a sapogenin that is the aglycone derivative of astragaloside IV, a major saponin extracted from the root of Astragalus membranaceus. It has a role as a metabolite. It is a sapogenin, a pentacyclic triterpenoid, a tetrol and a member of oxolanes. It derives from a hydride of a 5alpha-gonane. Cycloastragenol is a natural product found in Euphorbia glareosa, Astragalus mongholicus, and other organisms with data available. A sapogenin that is the aglycone derivative of astragaloside IV, a major saponin extracted from the root of Astragalus membranaceus. Cycloastragenol (Astramembrangenin), the active form of astragaloside IV, has anti-oxidant, anti-inflammatory, anti-aging, anti-apoptotic, and cardiovascular protective effects. Cycloastragenol is a potent telomerase activator and can lengthen telomeres. Cycloastragenol alleviates age-related bone loss and improves bone microstructure and biomechanical properties[1][2][3]. Cycloastragenol (Astramembrangenin), the active form of astragaloside IV, has anti-oxidant, anti-inflammatory, anti-aging, anti-apoptotic, and cardiovascular protective effects. Cycloastragenol is a potent telomerase activator and can lengthen telomeres. Cycloastragenol alleviates age-related bone loss and improves bone microstructure and biomechanical properties[1][2][3]. Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1]. Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1].

   

Liquiritigenin

(S) -2,3-Dihydro-7-hydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H12O4 (256.0736)


Origin: Plant; Formula(Parent): C15H12O4; Bottle Name:Liquiritigenin; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Bottle Name:Liquiritigenin; Origin: Plant; Formula(Parent): C15H12O4; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Astragaloside II

Astragaloside II

C43H70O15 (826.4714)


   

7-Hydroxy-2-phenyl-4H-1-benzopyran-4-one

4H-1-Benzopyran-4-one, 7-hydroxy-2-phenyl-

C15H10O3 (238.063)


7-hydroxyflavone is a hydroxyflavonoid in which the flavone nucleus is substituted at position 7 by a hydroxy group. 7-Hydroxyflavone is a natural product found in Lawsonia inermis, Berberis dictyota, and other organisms with data available. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6665-86-7 (retrieved 2024-10-18) (CAS RN: 6665-86-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

7-Hydroxyflavone

7-Hydroxyflavone

C15H10O3 (238.063)


7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2].

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Sulfuretin

6,3,4-Trihydroxyaurone

C15H10O5 (270.0528)


   

Liquiritigenin

4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-, (S)-

C15H12O4 (256.0736)


Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.

   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,9s,11s,12s,14s,15r,16r)-6,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,9s,11s,12s,14s,15r,16r)-6,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H60O10 (652.4186)


   

4,5-dihydroxy-2-{[(1s,3r,6s,11s,14s,16r)-14-hydroxy-15-[(5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-oxapentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

4,5-dihydroxy-2-{[(1s,3r,6s,11s,14s,16r)-14-hydroxy-15-[(5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-oxapentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

C42H68O16 (828.4507)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-14-hydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-14-hydroxy-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H70O14 (786.4765)


   

2-{[(1s,3r,8r,11r,12s,15s,16r)-14-hydroxy-15-[(2r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[(1s,3r,8r,11r,12s,15s,16r)-14-hydroxy-15-[(2r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


   

4,5-dihydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

4,5-dihydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

C43H70O15 (826.4714)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2s,5s)-5-hydroxy-2,6,6-trimethyloxan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


   

(2s,3r,4s,5r)-4-(acetyloxy)-5-hydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

(2s,3r,4s,5r)-4-(acetyloxy)-5-hydroxy-2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)oxan-3-yl acetate

C45H72O16 (868.482)


   

(2r,3r,4s,5s)-4-(acetyloxy)-5-hydroxy-2-{[(1s,3r,6r,8s,9r,11s,12r,14s,15s,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

(2r,3r,4s,5s)-4-(acetyloxy)-5-hydroxy-2-{[(1s,3r,6r,8s,9r,11s,12r,14s,15s,16r)-14-hydroxy-15-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

C45H72O16 (868.482)


   

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


   

(3r,4r,5r,6s)-4,5-dihydroxy-6-{[(1s,3r,6s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

(3r,4r,5r,6s)-4,5-dihydroxy-6-{[(1s,3r,6s,9s,11s,12s,14s,15r,16r)-14-hydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxan-3-yl acetate

C43H70O15 (826.4714)