CID 441748 (BioDeep_00001870504)

Main id: BioDeep_00000003591

 

PANOMIX_OTCML-2023


代谢物信息卡片


CID 441748

化学式: C37H50N2O10 (682.3465)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCN1CC2(CCC(C34C2C(C(C31)(C5(CC(C6CC4C5C6OC)OC)O)O)OC)OC)COC(=O)C7=CC=CC=C7N8C(=O)CC(C8=O)C
InChI: InChI=1S/C37H50N2O10/c1-7-38-17-34(18-49-32(42)20-10-8-9-11-23(20)39-26(40)14-19(2)31(39)41)13-12-25(46-4)36-22-15-21-24(45-3)16-35(43,27(22)28(21)47-5)37(44,33(36)38)30(48-6)29(34)36/h8-11,19,21-22,24-25,27-30,33,43-44H,7,12-18H2,1-6H3/t19?,21-,22-,24+,25+,27-,28+,29-,30+,33?,34+,35-,36+,37-/m1/s1

描述信息

D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
D010575 - Pesticides > D007306 - Insecticides
D016573 - Agrochemicals

同义名列表

2 个代谢物同义名

CID 441748; Methyllycaconitine



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, BDNF, CA1, CA3, GFAP, JAK2, MAPK14, PIK3C3, PIK3CA, SLC6A3, STAT3
Peripheral membrane protein 3 ACHE, GORASP1, JAK2
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 6 ACHE, AKT1, JAK2, MAPK14, MPO, STAT3
autophagosome 1 PIK3C3
cytosol 10 AKT1, CA1, CA3, GFAP, JAK2, MAPK14, PIK3C3, PIK3CA, PRKCQ, STAT3
dendrite 1 BDNF
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
nucleoplasm 5 AKT1, JAK2, MAPK14, MPO, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 5 ACHE, AKT1, GRID1, SLC6A3, TNF
Cytoplasmic side 1 GORASP1
lamellipodium 2 AKT1, PIK3CA
Cell projection, axon 1 SLC6A3
Multi-pass membrane protein 2 GRID1, SLC6A3
Golgi apparatus membrane 1 GORASP1
Synapse 1 ACHE
cell cortex 1 AKT1
cell surface 3 ACHE, SLC6A3, TNF
glutamatergic synapse 5 AKT1, GRID1, JAK2, MAPK14, PIK3C3
Golgi apparatus 2 ACHE, GORASP1
Golgi membrane 1 GORASP1
neuromuscular junction 1 ACHE
neuronal cell body 2 SLC6A3, TNF
postsynapse 2 AKT1, JAK2
presynaptic membrane 1 SLC6A3
synaptic vesicle 1 BDNF
Lysosome 1 MPO
endosome 1 PIK3C3
plasma membrane 10 ACHE, AKT1, BCHE, GRID1, JAK2, PIK3CA, PRKCQ, SLC6A3, STAT3, TNF
Membrane 6 ACHE, AKT1, BDNF, JAK2, PIK3C3, SLC6A3
axon 2 BDNF, SLC6A3
caveola 1 JAK2
extracellular exosome 3 CA1, GRID1, MPO
extracellular space 7 ACHE, BCHE, BDNF, IL10, IL6, MPO, TNF
perinuclear region of cytoplasm 3 ACHE, BDNF, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 1 MAPK14
protein-containing complex 1 AKT1
intracellular membrane-bounded organelle 1 MPO
Secreted 5 ACHE, BCHE, BDNF, IL10, IL6
extracellular region 8 ACHE, BCHE, BDNF, IL10, IL6, MAPK14, MPO, TNF
cytoplasmic side of plasma membrane 1 JAK2
astrocyte end-foot 1 GFAP
neuronal cell body membrane 1 SLC6A3
Extracellular side 1 ACHE
transcription regulator complex 1 STAT3
centriolar satellite 1 PRKCQ
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 2 GRID1, SLC6A3
Membrane raft 3 JAK2, SLC6A3, TNF
focal adhesion 1 JAK2
spindle 1 AKT1
GABA-ergic synapse 2 GRID1, PIK3C3
cis-Golgi network 1 GORASP1
flotillin complex 1 SLC6A3
Peroxisome 1 PIK3C3
basement membrane 1 ACHE
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 MPO
intermediate filament 1 GFAP
axoneme 1 PIK3C3
nuclear speck 1 MAPK14
Postsynaptic cell membrane 1 GRID1
Late endosome 1 PIK3C3
Cell projection, neuron projection 1 SLC6A3
neuron projection 1 SLC6A3
ciliary basal body 1 AKT1
chromatin 1 STAT3
cell projection 1 GFAP
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
cytoskeleton 1 JAK2
spindle pole 1 MAPK14
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
Endomembrane system 1 JAK2
endosome lumen 1 JAK2
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
euchromatin 1 JAK2
cell body 1 GFAP
side of membrane 1 ACHE
intermediate filament cytoskeleton 1 GFAP
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 3 BCHE, BDNF, IL6
axon terminus 1 SLC6A3
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
postsynaptic density membrane 1 GRID1
immunological synapse 1 PRKCQ
presynaptic endosome 1 PIK3C3
aggresome 1 PRKCQ
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
nuclear envelope lumen 1 BCHE
phagocytic vesicle lumen 1 MPO
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
synaptic cleft 1 ACHE
dopaminergic synapse 1 SLC6A3
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
postsynaptic endosome 1 PIK3C3
cytoplasmic side of lysosomal membrane 1 GFAP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
interleukin-6 receptor complex 1 IL6
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Meihua Li, Can Zheng, Toru Kawada, Masashi Inagaki, Kazunori Uemura, Tsuyoshi Akiyama, Masaru Sugimachi. Impact of Peripheral α7-Nicotinic Acetylcholine Receptors on Cardioprotective Effects of Donepezil in Chronic Heart Failure Rats. Cardiovascular drugs and therapy. 2021 10; 35(5):877-888. doi: 10.1007/s10557-020-07062-1. [PMID: 32860618]
  • Shu-Juan Zhang, Cong-Xin Huang, Qing-Yan Zhao, Shu-Di Zhang, Zi-Xuan Dai, Hong-Yi Zhao, Yong-Sheng Qian, You-Jing Zhang, You-Cheng Wang, Bo He, Yan-Hong Tang, Teng Wang, Xi Wang. The Role of α7nAChR-Mediated Cholinergic Anti-Inflammatory Pathway in Vagal Nerve Regulated Atrial Fibrillation. International heart journal. 2021; 62(3):607-615. doi: 10.1536/ihj.18-510. [PMID: 34054001]
  • Liu Ji, Yongmei Chen, Huixia Wei, Hui Feng, Ruijie Chang, Di Yu, Xianyu Wang, Xingrui Gong, Mazhong Zhang. Activation of alpha7 acetylcholine receptors reduces neuropathic pain by decreasing dynorphin A release from microglia. Brain research. 2019 07; 1715(?):57-65. doi: 10.1016/j.brainres.2019.03.016. [PMID: 30898676]
  • Clinton A Stonecipher, Stephen T Lee, Benedict T Green, Daniel Cook, Kevin D Welch, James A Pfister, Dale R Gardner. Evaluation of noninvasive specimens to diagnose livestock exposure to toxic larkspur (Delphinium spp.). Toxicon : official journal of the International Society on Toxinology. 2019 Apr; 161(?):33-39. doi: 10.1016/j.toxicon.2019.02.013. [PMID: 30826472]
  • Benedict T Green, John W Keele, Dale R Gardner, Kevin D Welch, Gary L Bennett, Daniel Cook, James A Pfister, T Zane Davis, Clint A Stonecipher, Stephen T Lee, Bryan L Stegelmeier. Sex-dependent differences for larkspur (Delphinium barbeyi) toxicosis in yearling Angus cattle1. Journal of animal science. 2019 Mar; 97(3):1424-1432. doi: 10.1093/jas/skz002. [PMID: 30772914]
  • Sherehan M Ibrahim, Muhammad Y Al-Shorbagy, Dalaal M Abdallah, Hanan S El-Abhar. Activation of α7 Nicotinic Acetylcholine Receptor Ameliorates Zymosan-Induced Acute Kidney Injury in BALB/c Mice. Scientific reports. 2018 11; 8(1):16814. doi: 10.1038/s41598-018-35254-1. [PMID: 30429582]
  • K D Welch, D R Gardner, C A Stonecipher, B T Green, J A Pfister. Serum toxicokinetics after intravenous and oral dosing of larkspur toxins in goats. Toxicon : official journal of the International Society on Toxinology. 2017 Jul; 133(?):91-94. doi: 10.1016/j.toxicon.2017.05.008. [PMID: 28479311]
  • Bo-Shi Fan, En-Hui Zhang, Ming-He Cheng, Zhao-Tang Wu, Bing Han, Jian-Guang Yu. Diurnal Variation of the Peripheral Cholinergic Antiinflammatory Function in Mice. CNS neuroscience & therapeutics. 2016 09; 22(9):764-70. doi: 10.1111/cns.12578. [PMID: 27306582]
  • Wei Peng, Fei Ding. Biomolecular recognition of antagonists by α7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2015 Aug; 76(?):119-32. doi: 10.1016/j.ejps.2015.05.005. [PMID: 25963024]
  • K D Welch, B T Green, D R Gardner, D Cook, J A Pfister. The effect of administering multiple doses of tall larkspur (Delphinium barbeyi) to cattle. Journal of animal science. 2015 Aug; 93(8):4181-8. doi: 10.2527/jas.2015-9101. [PMID: 26440198]
  • Khalil Hajiasgharzadeh, Seyed Mohammad Tavangar, Mohammad Javan, Ahmad R Dehpour, Ali R Mani. Does hepatic vagus nerve modulate the progression of biliary fibrosis in rats?. Autonomic neuroscience : basic & clinical. 2014 Oct; 185(?):67-75. doi: 10.1016/j.autneu.2014.07.005. [PMID: 25088816]
  • Galyna Gergalova, Olena Lykhmus, Sergiy Komisarenko, Maryna Skok. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. The international journal of biochemistry & cell biology. 2014 Apr; 49(?):26-31. doi: 10.1016/j.biocel.2014.01.001. [PMID: 24412630]
  • Simona Bertoni, Valentina Arcaro, Valentina Vivo, Alberto Rapalli, Massimiliano Tognolini, Anna Maria Cantoni, Francesca Saccani, Lisa Flammini, Giuseppe Domenichini, Vigilio Ballabeni, Elisabetta Barocelli. Suppression of inflammatory events associated to intestinal ischemia-reperfusion by 5-HT1A blockade in mice. Pharmacological research. 2014 Mar; 81(?):17-25. doi: 10.1016/j.phrs.2014.02.002. [PMID: 24548822]
  • Kirsty Danielson, Fraser Putt, Penelope Truman, Bronwyn M Kivell. The effects of nicotine and tobacco particulate matter on dopamine uptake in the rat brain. Synapse (New York, N.Y.). 2014 Feb; 68(2):45-60. doi: 10.1002/syn.21715. [PMID: 23999947]
  • K D Welch, J A Pfister, D R Gardner, B T Green, K E Panter. The role of the α7 subunit of the nicotinic acetylcholine receptor on motor coordination in mice treated with methyllycaconitine and anabasine. Journal of applied toxicology : JAT. 2013 Sep; 33(9):1017-26. doi: 10.1002/jat.2894. [PMID: 23702881]
  • K D Welch, B T Green, K E Panter, J A Pfister, D R Gardner. The role of the α7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice. Journal of applied toxicology : JAT. 2013 Sep; 33(9):1011-6. doi: 10.1002/jat.2851. [PMID: 23296980]
  • Carmen Frías-Domínguez, Julieta Garduño, Salvador Hernández, René Drucker-Colin, Stefan Mihailescu. Flattening plasma corticosterone levels increases the prevalence of serotonergic dorsal raphe neurons inhibitory responses to nicotine in adrenalectomised rats. Brain research bulletin. 2013 Sep; 98(?):10-22. doi: 10.1016/j.brainresbull.2013.07.006. [PMID: 23872451]
  • David Pubill, Sara Garcia-Ratés, Jordi Camarasa, Elena Escubedo. 3,4-Methylenedioxy-methamphetamine induces in vivo regional up-regulation of central nicotinic receptors in rats and potentiates the regulatory effects of nicotine on these receptors. Neurotoxicology. 2013 Mar; 35(?):41-9. doi: 10.1016/j.neuro.2012.11.008. [PMID: 23261423]
  • Kevin D Welch, James A Pfister, Flavia G Lima, Benedict T Green, Dale R Gardner. Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice. Toxicology and applied pharmacology. 2013 Feb; 266(3):366-74. doi: 10.1016/j.taap.2012.11.024. [PMID: 23219611]
  • Gabriel Rezonzew, Phillip Chumley, Wenguang Feng, Ping Hua, Gene P Siegal, Edgar A Jaimes. Nicotine exposure and the progression of chronic kidney disease: role of the α7-nicotinic acetylcholine receptor. American journal of physiology. Renal physiology. 2012 Jul; 303(2):F304-12. doi: 10.1152/ajprenal.00661.2011. [PMID: 22552933]
  • Ramakrishna Nirogi, Vishwottam Kandikere, Gopinadh Bhyrapuneni, Ramanatha Saralaya, Nageswararao Muddana, Prashanth Komarneni. Methyllycaconitine: a non-radiolabeled ligand for mapping α7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain. Journal of pharmacological and toxicological methods. 2012 Jul; 66(1):22-8. doi: 10.1016/j.vascn.2012.05.003. [PMID: 22609758]
  • Zishen Zhang, Xiaoguang Bai, Kejun Du, Yi Huang, Wenyong Wang, Yiling Zhao, Yuping Pei, Jinglan Mu, Han Han, Sheng Hu, Shuzhi Li, Hailong Dong, Yan Lu, Lichao Hou, Lize Xiong. Activation of cholinergic anti-inflammatory pathway contributes to the protective effects of 100\% oxygen inhalation on zymosan-induced generalized inflammation in mice. The Journal of surgical research. 2012 May; 174(2):e75-83. doi: 10.1016/j.jss.2011.10.037. [PMID: 22261596]
  • Ramakrishna Nirogi, Vishwottam Kandikere, Prashanth Komarneni, Raghupathi Aleti, Rajesh Boggavarapu, Gopinadh Bhyrapuneni, Nageswararao Muddana, K Mukkanti. Quantification of methyllycaconitine, selective α7 nicotinic receptor antagonist, in rodent plasma and brain tissue by liquid chromatography tandem mass spectrometry--application to neuropharmacokinetics of methyllycaconitine in rats. Biomedical chromatography : BMC. 2011 Nov; 25(11):1273-82. doi: 10.1002/bmc.1603. [PMID: 21337354]
  • Benedict T Green, Kevin D Welch, Daniel Cook, Dale R Gardner. Potentiation of the actions of acetylcholine, epibatidine, and nicotine by methyllycaconitine at fetal muscle-type nicotinic acetylcholine receptors. European journal of pharmacology. 2011 Jul; 662(1-3):15-21. doi: 10.1016/j.ejphar.2011.04.053. [PMID: 21554871]
  • K D Welch, K E Panter, D R Gardner, B L Stegelmeier, B T Green, J A Pfister, D Cook. The acute toxicity of the death camas (Zigadenus species) alkaloid zygacine in mice, including the effect of methyllycaconitine coadministration on zygacine toxicity. Journal of animal science. 2011 May; 89(5):1650-7. doi: 10.2527/jas.2010-3444. [PMID: 21521823]
  • Benedict T Green, Kevin D Welch, Dale R Gardner, Bryan L Stegelmeier, James A Pfister, Daniel Cook, T Zane Davis. A toxicokinetic comparison of norditerpenoid alkaloids from Delphinium barbeyi and D. glaucescens in cattle. Journal of applied toxicology : JAT. 2011 Jan; 31(1):20-6. doi: 10.1002/jat.1563. [PMID: 20635330]
  • Jayanta Mukherjee, Alexander Kuryatov, Stephen J Moss, Jon M Lindstrom, Rene Anand. Mutations of cytosolic loop residues impair assembly and maturation of alpha7 nicotinic acetylcholine receptors. Journal of neurochemistry. 2009 Sep; 110(6):1885-94. doi: 10.1111/j.1471-4159.2009.06285.x. [PMID: 19627445]
  • Benedict T Green, Kevin D Welch, Dale R Gardner, Bryan L Stegelmeier, T Zane Davis, Daniel Cook, Stephen T Lee, James A Pfister, Kip E Panter. Serum elimination profiles of methyllycaconitine and deltaline in cattle following oral administration of larkspur (Delphinium barbeyi). American journal of veterinary research. 2009 Jul; 70(7):926-31. doi: 10.2460/ajvr.70.7.926. [PMID: 19566479]
  • Teresa A Murray, Qiang Liu, Paul Whiteaker, Jie Wu, Ronald J Lukas. Nicotinic acetylcholine receptor alpha7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors. Acta pharmacologica Sinica. 2009 Jun; 30(6):828-41. doi: 10.1038/aps.2009.78. [PMID: 19498423]
  • Daniel Cook, Dale R Gardner, James A Pfister, Kevin D Welch, Benedict T Green, Stephen T Lee. The biogeographical distribution of duncecap larkspur (Delphinium occidentale) chemotypes and their potential toxicity. Journal of chemical ecology. 2009 Jun; 35(6):643-52. doi: 10.1007/s10886-009-9637-1. [PMID: 19459011]
  • K D Welch, B T Green, K E Panter, D R Gardner, J A Pfister, D Cook, B L Stegelmeier. Investigation of the susceptibility of various strains of mice to methyllycaconitine toxicosis. Journal of animal science. 2009 Apr; 87(4):1558-64. doi: 10.2527/jas.2008-1577. [PMID: 19098233]
  • K D Welch, K E Panter, D R Gardner, B T Green, J A Pfister, D Cook, B L Stegelmeier. The effect of 7,8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of methyllycaconitine in mice. Journal of animal science. 2008 Oct; 86(10):2761-70. doi: 10.2527/jas.2008-1025. [PMID: 18539831]
  • Jun Zhu, Michael T Bardo, Ronald C Bruntz, Dustin J Stairs, Linda P Dwoskin. Individual differences in response to novelty predict prefrontal cortex dopamine transporter function and cell surface expression. The European journal of neuroscience. 2007 Aug; 26(3):717-28. doi: 10.1111/j.1460-9568.2007.05690.x. [PMID: 17651428]
  • David H Small, Danuta Maksel, Megan L Kerr, Judy Ng, Xu Hou, Cindy Chu, Hossein Mehrani, Sharon Unabia, Michael F Azari, Richard Loiacono, Marie-Isabel Aguilar, Mary Chebib. The beta-amyloid protein of Alzheimer's disease binds to membrane lipids but does not bind to the alpha7 nicotinic acetylcholine receptor. Journal of neurochemistry. 2007 Jun; 101(6):1527-38. doi: 10.1111/j.1471-4159.2006.04444.x. [PMID: 17286584]
  • Elena Escubedo, Carlos Chipana, Mónica Pérez-Sánchez, Jordi Camarasa, David Pubill. Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors. The Journal of pharmacology and experimental therapeutics. 2005 Nov; 315(2):658-67. doi: 10.1124/jpet.105.089748. [PMID: 16076935]
  • Sangeetha P Sumithran, Peter A Crooks, Rui Xu, Jun Zhu, Agripina G Deaciuc, Lincoln H Wilkins, Linda P Dwoskin. Introduction of unsaturation into the N-n-alkyl chain of the nicotinic receptor antagonists, NONI and NDNI: effect on affinity and selectivity. The AAPS journal. 2005 Aug; 7(1):E201-17. doi: 10.1208/aapsj070119. [PMID: 16146341]
  • Dennis K Miller, Peter A Crooks, Guangrong Zheng, Vladimir P Grinevich, Seth D Norrholm, Linda P Dwoskin. Lobeline analogs with enhanced affinity and selectivity for plasmalemma and vesicular monoamine transporters. The Journal of pharmacology and experimental therapeutics. 2004 Sep; 310(3):1035-45. doi: 10.1124/jpet.104.068098. [PMID: 15121762]
  • Ulyana Lalo, Yuri Pankratov, Oleg Krishtal, R Alan North. Methyllycaconitine, alpha-bungarotoxin and (+)-tubocurarine block fast ATP-gated currents in rat dorsal root ganglion cells. British journal of pharmacology. 2004 Aug; 142(8):1227-32. doi: 10.1038/sj.bjp.0705878. [PMID: 15277311]
  • B L Stegelmeier, J O Hall, D R Gardner, K E Panter. The toxicity and kinetics of larkspur alkaloid, methyllycaconitine, in mice. Journal of animal science. 2003 May; 81(5):1237-41. doi: 10.2527/2003.8151237x. [PMID: 12772851]
  • S T Lee, B L Stegelmeier, K E Panter, J A Pfister, D R Gardner, T K Schoch, L F James. Evaluation of vaccination against methyllycaconitine toxicity in mice. Journal of animal science. 2003 Jan; 81(1):232-8. doi: 10.2527/2003.811232x. [PMID: 12597394]
  • Adrian J Mogg, Paul Whiteaker, J Michael McIntosh, Michael Marks, Allan C Collins, Susan Wonnacott. Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. The Journal of pharmacology and experimental therapeutics. 2002 Jul; 302(1):197-204. doi: 10.1124/jpet.302.1.197. [PMID: 12065717]
  • R R Jonnala, J J Buccafusco. Relationship between the increased cell surface alpha7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. Journal of neuroscience research. 2001 Nov; 66(4):565-72. doi: 10.1002/jnr.10022. [PMID: 11746376]
  • B Buisson, D Bertrand. Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2001 Mar; 21(6):1819-29. doi: 10.1523/jneurosci.21-06-01819.2001. [PMID: 11245666]
  • E M Sorenson, D G El-Bogdadi, Y Nong, V A Chiappinelli. alpha7-Containing nicotinic receptors are segregated to the somatodendritic membrane of the cholinergic neurons in the avian nucleus semilunaris. Neuroscience. 2001; 103(2):541-50. doi: 10.1016/s0306-4522(00)00553-4. [PMID: 11246167]
  • D R Gardner, G D Manners, K E Panter, S T Lee, J A Pfister. Three new toxic norditerpenoid alkaloids from the low larkspur Delphinium nuttallianum. Journal of natural products. 2000 Aug; 63(8):1127-30. doi: 10.1021/np0000116. [PMID: 10978210]
  • E Palma, L Maggi, B Barabino, F Eusebi, M Ballivet. Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. The Journal of biological chemistry. 1999 Jun; 274(26):18335-40. doi: 10.1074/jbc.274.26.18335. [PMID: 10373437]
  • E J Molinari, O Delbono, M L Messi, M Renganathan, S P Arneric, J P Sullivan, M Gopalakrishnan. Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. European journal of pharmacology. 1998 Apr; 347(1):131-9. doi: 10.1016/s0014-2999(98)00084-3. [PMID: 9650859]
  • E Palma, S Bertrand, T Binzoni, D Bertrand. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. The Journal of physiology. 1996 Feb; 491 ( Pt 1)(?):151-61. doi: 10.1113/jphysiol.1996.sp021203. [PMID: 9011607]
  • J W Turek, C H Kang, J E Campbell, S P Arneric, J P Sullivan. A sensitive technique for the detection of the alpha 7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. Journal of neuroscience methods. 1995 Sep; 61(1-2):113-8. doi: 10.1016/0165-0270(95)00032-p. [PMID: 8618408]
  • J A Pfister, K E Panter, G D Manners, C D Cheney. Reversal of tall larkspur (Delphinium barbeyi) poisoning in cattle with physostigmine. Veterinary and human toxicology. 1994 Dec; 36(6):511-4. doi: ". [PMID: 7900266]
  • J A Pfister, K E Panter, G D Manners. Effective dose in cattle of toxic alkaloids from tall larkspur (Delphinium barbeyi). Veterinary and human toxicology. 1994 Feb; 36(1):10-1. doi: . [PMID: 8154094]