Reaction Process: WikiPathways:WP5241
Mitochondrial beta oxidation related metabolites
find 60 related metabolites which is associated with chemical reaction(pathway) Mitochondrial beta oxidation
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
Myristic acid
Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Palmitic acid
Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gamma-Linolenic acid
Gamma-linolenic acid is a C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an omega-6 fatty acid and a linolenic acid. It is a conjugate acid of a gamma-linolenate. Gamolenic acid, or gamma-linolenic acid (γ-Linolenic acid) or GLA, is an essential fatty acid (EFA) comprised of 18 carbon atoms with three double bonds that is most commonly found in human milk and other botanical sources. It is an omega-6 polyunsaturated fatty acid (PUFA) also referred to as 18:3n-6; 6,9,12-octadecatrienoic acid; and cis-6, cis-9, cis-12- octadecatrienoic acid. Gamolenic acid is produced minimally in the body as the delta 6-desaturase metabolite of [DB00132]. It is converted to [DB00154], a biosynthetic precursor of monoenoic prostaglandins such as PGE1. While Gamolenic acid is found naturally in the fatty acid fractions of some plant seed oils, [DB11358] and [DB11238] are rich sources of gamolenic acid. Evening primrose oil has been investigated for clinical use in menopausal syndrome, diabetic neuropathy, and breast pain, where gamolenic acid is present at concentrations of 7-14\\\\\%. Gamolenic acid may be found in over-the-counter dietary supplements. Gamolenic acid is also found in some fungal sources and also present naturally in the form of triglycerides. Various clinical indications of gamolenic acid have been studied, including rheumatoid arthritis, atopic eczema, acute respiratory distress syndrome, asthma, premenstrual syndrome, cardiovascular disease, ulcerative colitis, ADHD, cancer, osteoporosis, diabetic neuropathy, and insomnia. gamma-Linolenic acid is a natural product found in Anemone cylindrica, Eurhynchium striatum, and other organisms with data available. Gamolenic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 6th, 9th and 12th positions from the methyl end, with all double bonds in the cis- configuration. An omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted to dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1. (From Merck Index, 11th ed) gamma-Linolenic acid, also known as 18:3n6 or GLA, belongs to the class of organic compounds known as linoleic acids and derivatives. These are derivatives of linoleic acid. Linoleic acid is a polyunsaturated omega-6 18-carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. gamma-Linolenic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Linolenic acid is an omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted into dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1 (PubChem). A C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. gamma-Linolenic acid or GLA (γ-linolenic acid) (INN: gamolenic acid) is an n−6, or omega-6, fatty acid found primarily in seed oils. When acting on GLA, arachidonate 5-lipoxygenase produces no leukotrienes and the conversion by the enzyme of arachidonic acid to leukotrienes is inhibited. GLA is obtained from vegetable oils such as evening primrose (Oenothera biennis) oil (EPO), blackcurrant seed oil, borage seed oil, and hemp seed oil. GLA is also found in varying amounts in edible hemp seeds, oats, barley,[3] and spirulina.[4] Normal safflower (Carthamus tinctorius) oil does not contain GLA, but a genetically modified GLA safflower oil available in commercial quantities since 2011 contains 40\\\% GLA.[5] Borage oil contains 20\\\% GLA, evening primrose oil ranges from 8\\\% to 10\\\% GLA, and black-currant oil contains 15–20\\\%.[6] The human body produces GLA from linoleic acid (LA). This reaction is catalyzed by Δ6-desaturase (D6D), an enzyme that allows the creation of a double bond on the sixth carbon counting from the carboxyl terminus. LA is consumed sufficiently in most diets, from such abundant sources as cooking oils and meats. However, a lack of GLA can occur when there is a reduction of the efficiency of the D6D conversion (for instance, as people grow older or when there are specific dietary deficiencies) or in disease states wherein there is excessive consumption of GLA metabolites.[7] From GLA, the body forms dihomo-γ-linolenic acid (DGLA). This is one of the body's three sources of eicosanoids (along with AA and EPA.) DGLA is the precursor of the prostaglandin PGH1, which in turn forms PGE1 and the thromboxane TXA1. Both PGE11 and TXA1 are anti-inflammatory; thromboxane TXA1, unlike its series-2 variant, induces vasodilation, and inhibits platelet[8] consequently, TXA1 modulates (reduces) the pro-inflammatory properties of the thromboxane TXA2. PGE1 has a role in regulation of immune system function and is used as the medicine alprostadil. Unlike AA and EPA, DGLA cannot yield leukotrienes. However, it can inhibit the formation of pro-inflammatory leukotrienes from AA.[9] Although GLA is an n−6 fatty acid, a type of acid that is, in general, pro-inflammatory[citation needed], it has anti-inflammatory properties. (See discussion at Essential fatty acid interactions: The paradox of dietary GLA.) Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
Eicosapentaenoic acid
Icosapent, also known as icosapentaenoate or (5z,8z,11z,14z,17z)-eicosapentaenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, icosapent is considered to be a fatty acid lipid molecule. Icosapent is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Icosapent can be found in a number of food items such as barley, sacred lotus, white lupine, and rape, which makes icosapent a potential biomarker for the consumption of these food products. Icosapent can be found primarily in blood, feces, sweat, and urine, as well as throughout most human tissues. In humans, icosapent is involved in the alpha linolenic acid and linoleic acid metabolism. Moreover, icosapent is found to be associated with essential hypertension and hypertension. Ethyl eicosapentaenoic acid (E-EPA, icosapent ethyl) is a derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA) that is used in combination with changes in diet to lower triglyceride levels in adults with severe (≥ 500 mg/dL) hypertriglyceridemia. This was the second class of fish oil-based drug to be approved for use as a drug and was approved by the FDA in 2012. These fish oil drugs are similar to fish oil dietary supplements but the ingredients are better controlled and have been tested in clinical trials . The anti-inflammatory, antithrombotic and immunomodulatory actions of EPA is probably due to its role in eicosanoid physiology and biochemistry. Most eicosanoids are produced by the metabolism of omega-3 fatty acids, specifically, arachidonic acid. These eicosanoids, leukotriene B4 (LTB4) and thromboxane A2 (TXA2) stimulate leukocyte chemotaxis, platelet aggregation and vasoconstriction. They are thrombogenic and artherogenic. On the other hand, EPA is metabolized to leukotriene B5 (LTB5) and thromboxane A3 (TXA3), which are eicosanoids that promote vasodilation, inhibit platelet aggregation and leukocyte chemotaxis and are anti-artherogenic and anti-thrombotic. The triglyceride-lowering effect of EPA results from inhibition of lipogenesis and stimulation of fatty acid oxidation. Fatty acid oxidation of EPA occurs mainly in the mitochondria. EPA is a substrate for Prostaglandin-endoperoxide synthase 1 and 2. It also appears to affect the function and bind to the Carbohydrate responsive element binding protein (ChREBP) and to a fatty acid receptor (G-coupled receptor) known as GP40 (DrugBank). Eicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia). Chemical was purchased from CAY 90110 (Lot. 0443819-6); Diagnostic ions: 301.2, 257.1, 202.9 CONFIDENCE standard compound; INTERNAL_ID 305 Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3]. Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].
Crotonoyl-CoA
Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.
Decanoyl-CoA (n-C10:0CoA)
Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752) [HMDB] Decanoyl CoA is a human liver acyl-CoA ester. It is selected to determine apparent kinetic constants for human liver acyl-CoA due to its relevance to the human diseases with cellular accumulation of this esters, especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester. (PMID: 3707752). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
butanoyl-CoA
C25H42N7O17P3S (837.1570672000001)
Butyryl-coa, also known as 4:0-coa or butanoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, butyryl-coa is considered to be a fatty ester lipid molecule. Butyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Butyryl-coa can be synthesized from coenzyme A and butyric acid. Butyryl-coa is also a parent compound for other transformation products, including but not limited to, (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA, acetoacetyl-CoA, and 2-methylacetoacetyl-CoA. Butyryl-coa can be found in a number of food items such as wild carrot, persian lime, redcurrant, and arrowroot, which makes butyryl-coa a potential biomarker for the consumption of these food products. Butyryl-coa may be a unique E.coli metabolite.
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Palmitoleic acid
Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.
Octanoyl-CoA
C29H50N7O17P3S (893.2196640000001)
Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase. [HMDB]. Octanoyl-CoA is found in many foods, some of which are millet, loganberry, horseradish, and sea-buckthornberry. Octanoyl-CoA is a substrate for Trifunctional enzyme beta subunit (mitochondrial), Acyl-coenzyme A oxidase 1 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Nuclear receptor-binding factor 1, Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 3 (peroxisomal), HPDHase, Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal) and Peroxisomal carnitine O-octanoyltransferase.
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Linoleic acid
Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.
Arachidonic acid
Arachidonic acid is a polyunsaturated, essential fatty acid that has a 20-carbon chain as a backbone and four cis-double bonds at the C5, C8, C11, and C14 positions. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is synthesized from dietary linoleic acid. Arachidonic acid mediates inflammation and the functioning of several organs and systems either directly or upon its conversion into eicosanoids. Arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. Arachidonic acid can be metabolized by cytochrome p450 (CYP450) enzymes into 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE). The production of kidney CYP450 arachidonic acid metabolites is altered in diabetes, pregnancy, hepatorenal syndrome, and in various models of hypertension, and it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions. Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (PMID: 12736897, 12736897, 12700820, 12570747, 12432908). The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes (PMID: 23371504). 9-Oxononanoic acid (9-ONA), one of the major products of peroxidized fatty acids, was found to stimulate the activity of phospholipase A2 (PLA2), the key enzyme to initiate the arachidonate cascade and eicosanoid production (PMID: 23704812). Arachidonate lipoxygenase (ALOX) enzymes metabolize arachidonic acid to generate potent inflammatory mediators and play an important role in inflammation-associated diseases (PMID: 23404351). Essential fatty acid. Constituent of many animal phospholipids Arachidonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=506-32-1 (retrieved 2024-07-15) (CAS RN: 506-32-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arachidonic acid is an essential fatty acid and a major constituent of biomembranes. Arachidonic acid is an essential fatty acid and a major constituent of biomembranes.
Dodecanoic acid
Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
Acetyl-CoA
C23H38N7O17P3S (809.1257688000001)
The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)
Docosahexaenoic acid
Docosahexaenoic acid (DHA) is an omega-3 essential fatty acid. Chemically, DHA is a carboxylic acid with a 22-carbon chain and six cis- double bonds with the first double bond located at the third carbon from the omega end. DHA is most often found in fish oil. It is a major fatty acid in sperm and brain phospholipids, especially in the retina. Dietary DHA can reduce the level of blood triglycerides in humans, which may reduce the risk of heart disease (Wikipedia). Docosahexaenoic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Extensively marketed as a dietary supplement in Japan [DFC]. Doconexent is found in many foods, some of which are mung bean, fruit preserve, northern pike, and snapper. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Docosahexaenoic Acid (DHA) is an omega-3 fatty acid abundantly present brain and retina. It can be obtained directly from fish oil and maternal milk.
Palmityl-CoA
Palmityl-CoA is a fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Stearoyl-CoA
Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.) [HMDB]. Stearoyl-CoA is found in many foods, some of which are romaine lettuce, grapefruit/pummelo hybrid, radish, and european cranberry. Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.).
Oleoyl-CoA
Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A. [HMDB]. Oleoyl-CoA is found in many foods, some of which are cardoon, fruits, hyssop, and rice. Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A.
(S)-3-Hydroxybutyryl-CoA
C25H42N7O18P3S (853.1519822000001)
(S)-3-Hydroxybutyryl-CoA is classified as a member of the (S)-3-hydroxyacyl CoAs. (S)-3-hydroxyacyl CoAs are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. (S)-3-Hydroxybutyryl-CoA is considered to be slightly soluble (in water) and acidic
Lauroyl-CoA
Lauroyl-CoA is a substrate for Protein FAM34A. [HMDB]. Lauroyl-CoA is found in many foods, some of which are apricot, hazelnut, other soy product, and thistle. Lauroyl-CoA is a substrate for Protein FAM34A.
Linoleoyl-CoA
Linoleoyl-CoA is the acyl-CoA of linoleic acid found in the human body. It binds to and results in decreased activity of glutathione S-transferase1. It has been proposed that inhibition of mitochondrial adenine nucleotide translocator by long-chain acyl-CoA underlies the mechanism associating obesity and type 2 diabetes. Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. Their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation. ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (PMID: 17184976, 16020546).
Arachidonyl-CoA
Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).
Tetradecanoyl-CoA
Tetradecanoyl-CoA (or myristoyl-CoA) is an intermediate in fatty acid biosynthesis, fatty acid elongation and the beta oxidation of fatty acids. It is also used in the myristoylation of proteins. The first pass through the beta-oxidation process starts with the saturated fatty acid palmitoyl-CoA and produces myristoyl-CoA. A total of four enzymatic steps are required, starting with VLCAD CoA dehydrogenase (Very Long Chain) activity, followed by three enzymatic steps catalyzed by enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and ketoacyl-CoA thiolase, all present in the mitochondria. Myristoylation of proteins is also catalyzed by the presence of myristoyl-CoA along with Myristoyl-CoA:protein N-myristoyltransferase (NMT). Myristoylation is an irreversible, co-translational (during translation) protein modification found in animals, plants, fungi and viruses. In this protein modification a myristoyl group (derived from myristioyl CoA) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. It is more common on glycine residues but also occurs on other amino acids. Myristoylation also occurs post-translationally, for example when previously internal glycine residues become exposed by caspase cleavage during apoptosis. Myristoylation plays a vital role in membrane targeting and signal transduction in plant responses to environmental stress. Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase (NMT) gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. Myristoyl-coa, also known as S-tetradecanoyl-coenzyme a or myristoyl-coenzyme a, is a member of the class of compounds known as long-chain fatty acyl coas. Long-chain fatty acyl coas are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms. Myristoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Myristoyl-coa can be found in a number of food items such as sea-buckthornberry, anise, chicory, and cassava, which makes myristoyl-coa a potential biomarker for the consumption of these food products. Myristoyl-coa can be found primarily in human fibroblasts tissue. Myristoyl-coa exists in all eukaryotes, ranging from yeast to humans. In humans, myristoyl-coa is involved in few metabolic pathways, which include adrenoleukodystrophy, x-linked, beta oxidation of very long chain fatty acids, and fatty acid metabolism. Myristoyl-coa is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(18:0/14:0/22:0), de novo triacylglycerol biosynthesis tg(i-21:0/12:0/14:0), de novo triacylglycerol biosynthesis TG(18:1(9Z)/14:0/22:2(13Z,16Z)), and de novo triacylglycerol biosynthesis TG(14:0/16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)).
3Z-dodecenoyl-CoA
C33H56N7O17P3S (947.2666116000001)
3Z-dodecenoyl-CoA is an intermediate in fatty acid metabolism. 3Z-dodecenoyl-CoA is converted from trans-Dodec-2-enoyl-CoA via acyl-CoA oxidase, acyl-CoA dehydrogenase, and long-chain-acyl-CoA dehydrogenase [EC:1.3.3.6, 1.3.99.3, 1.3.99.13] [HMDB] 3Z-dodecenoyl-CoA is an intermediate in fatty acid metabolism. 3Z-dodecenoyl-CoA is converted from trans-Dodec-2-enoyl-CoA via acyl-CoA oxidase, acyl-CoA dehydrogenase, and long-chain-acyl-CoA dehydrogenase [EC:1.3.3.6, 1.3.99.3, 1.3.99.13].
Gamma-linolenoyl-CoA
Gamma-linolenoyl-CoA is the product of a chemical reaction that involves linoleoyl-CoA desaturase which acts as a catalyst. In enzymology, linoleoyl-CoA desaturase (EC 1.14.19.3) is an enzyme that catalyzes the chemical reaction. linoleoyl-CoA + AH2 + O2 gamma-linolenoyl-CoA + A + 2 H2O. The 3 substrates of this enzyme are linoleoyl-CoA, AH2, and O2, whereas its 3 products are gamma-linolenoyl-CoA, A, and H2O. (Wikipedia). gamma-Linolenoyl-CoA is the product of a chemical reaction that involves linoleoyl-CoA desaturase which acts as a catalyst. In enzymology, linoleoyl-CoA desaturase (EC 1.14.19.3) is an enzyme that catalyzes the chemical reaction
Trans-2,3-dehydrododecanoyl-CoA
C33H56N7O17P3S (947.2666116000001)
Trans-2,3-dehydrododecanoyl-CoA is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is adapted from cysteamine, pantothenate, and adenosine triphosphate. This compound is formed by Trans-2,3-dehydrododecanoic acid reacting with thiol group of CoA molecules. [HMDB] Trans-2,3-dehydrododecanoyl-CoA is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is adapted from cysteamine, pantothenate, and adenosine triphosphate. This compound is formed by Trans-2,3-dehydrododecanoic acid reacting with thiol group of CoA molecules.
(S)-3-Hydroxyhexadecanoyl-CoA
(S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716) [HMDB] (S)-3-Hydroxyhexadecanoyl-CoA is a beta-oxidation intermediate derivative of palmitoyl-CoA and the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, EC 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (S)-3-Hydroxyhexadecanoyl-CoA may accumulate intracellularly in certain long-chain fatty acid/j-oxidation deficiencies. Succinate-driven synthesis of ATP from ADP and phosphate is progressively inhibited by increasing concentrations of (S)-3-Hydroxyhexadecanoyl-CoA. (PMID: 11673457, 8739955, 7662716).
3-Oxohexadecanoyl-CoA
C37H64N7O18P3S (1019.3241234000001)
3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA. [HMDB] 3-Oxohexadecanoyl-CoA has a role in the synthesis and oxidation of fatty acid. It is involved in the pathway, fatty acid elongation in mitochondria. In this pathway Acetyl-CoA is acted upon by the enzyme, acetyl-CoA C-acyltransferase to produce 3-Oxohexadecanoyl-CoA. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group it is usually referred to as CoASH or HSCoA.
(S)-3-Hydroxytetradecanoyl-CoA
(S)-3-Hydroxytetradecanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. (S)-3-Hydroxytetradecanoyl-CoA is the 7th to last step in the synthesis of Hexadecanoic acid and is converted from 3-Oxotetradecanoyl-CoA via the enzyme long-chain 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211). It is then converted to trans-Tetradec-2-enoyl-CoA via the enzyme enoyl-CoA hydratase (EC 4.2.1.17). [HMDB] (S)-3-Hydroxytetradecanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. (S)-3-Hydroxytetradecanoyl-CoA is the 7th to last step in the synthesis of Hexadecanoic acid and is converted from 3-Oxotetradecanoyl-CoA via the enzyme long-chain 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211). It is then converted to trans-Tetradec-2-enoyl-CoA via the enzyme enoyl-CoA hydratase (EC 4.2.1.17).
3-Oxotetradecanoyl-CoA
C35H60N7O18P3S (991.2928250000001)
3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202). Myristoyl-CoA:protein N-myristoyltransferase (E.C. 2.3.1.97) is a eukaryotic enzyme that catalyzes the transfer of myristate (C14:O) from myristoyl-CoA to the amino nitrogen of glycine. This covalent protein modification occurs cotranslationally, is apparently irreversible, and affects proteins with diverse functions. (PMID: 2818568). 3-Oxotetradecanoyl-CoA is a product of the peroxisomal beta oxidation of hexadenoic acid by the enzyme acyl-CoA oxidase which results in long-chain 3-oxoacyl-CoA-esters. (PMID: 7548202)
(S)-3-Hydroxydodecanoyl-CoA
(S)-3-Hydroxydodecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA. [HMDB] (S)-3-Hydroxydodecanoyl-CoA is a human metabolite involved in the fatty acid elongation in mitochondria pathway. The enzyme long-chain-3-hydroxyacyl-CoA dehydrogenase catalyzes the conversion of 3-Oxododecanoyl-CoA to (S)-3-Hydroxydodecanoyl-CoA.
3-Oxodecanoyl-CoA
C31H52N7O18P3S (935.2302281999999)
3-oxodecanoyl-coa, also known as 3-ketodecanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 3-oxodecanoic acid thioester of coenzyme A. 3-oxodecanoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 3-oxodecanoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 3-oxodecanoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 3-Oxodecanoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 3-Oxodecanoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 3-Oxodecanoyl-CoA into 3-oxodecanoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 3-oxodecanoylcarnitine is converted back to 3-Oxodecanoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 3-Oxodecanoyl-CoA occurs in four steps. First, since 3-Oxodecanoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 3-Oxodecanoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is ... 3-Oxodecanoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme acetyl-Coenzyme A acetyltransferase 1 and 2 [EC:2.3.1.16-2.3.1.9]; 3-Oxodecanoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.211-1.1.1.35]. (KEGG) [HMDB]. 3-Oxodecanoyl-CoA is found in many foods, some of which are chinese cabbage, calabash, safflower, and sunburst squash (pattypan squash).
(S)-Hydroxyoctanoyl-CoA
C29H50N7O18P3S (909.2145790000001)
Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. Specifically (S)-Hydroxyoctanoyl-CoA is involved in fatty acid metabolism. It is the product of a reaction between 3-Oxooctanoyl-CoA and two enzymes; 3-hydroxyacyl-CoA Dehydrogenase and long-chain- 3-hydroxyacyl-CoA dehydrogenase. [HMDB] Coenzyme A is notable for its role in the synthesis and oxidation of fatty acids. Since coenzyme A is chemically a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. It assists in transferring fatty acids from the cytoplasm to mitochondria. Specifically (S)-Hydroxyoctanoyl-CoA is involved in fatty acid metabolism. It is the product of a reaction between 3-Oxooctanoyl-CoA and two enzymes; 3-hydroxyacyl-CoA Dehydrogenase and long-chain- 3-hydroxyacyl-CoA dehydrogenase.
3-Oxooctanoyl-CoA
3-Oxooctanoyl-CoA is the substrate of the acetyl-CoA C-acyltransferase/oxoacyl-CoA thiolase A (EC 2.3.1.16, SCP2/3-oxoacyl-CoA thiolase) present in peroxisomes from normal liver. Peroxisomes beta -oxidize a wide variety of substrates including straight chain fatty acids, 2-methyl-branched fatty acids, and the side chain of the bile acid intermediates di- and trihydroxycoprostanic acids. Peroxisomes contain several beta -oxidation pathways with different substrate specificities; or example, straight chain acyl-CoAs are desaturated by palmitoyl-CoA oxidase, and their enoyl-CoAs are then converted to 3-oxoacyl-CoAs by MFP-1, which forms (hydration) and dehydrogenates L-3(3S)-hydroxyacyl-CoAs; for example, straight chain acyl-CoAs are desaturated by palmitoyl-CoA oxidase (23), and their enoyl-CoAs are then converted to 3-oxoacyl-CoAs by 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), which forms (hydration) and dehydrogenates L-3(3S)-hydroxyacyl-CoAs and their enoyl-CoAs are then converted to the corresponding 3-oxoacyl-CoAs by long-chain-enoyl-CoA hydratase(EC 4.2.1.74), which forms and dehydrogenates D-3(3R)-hydroxyacyl-CoAs. (PMID: 9325339). 3-Oxooctanoyl-CoA is the substrate of the acetyl-CoA C-acyltransferase/oxoacyl-CoA thiolase A (EC 2.3.1.16, SCP2/3-oxoacyl-CoA thiolase) present in peroxisomes from normal liver.
(S)-Hydroxyhexanoyl-CoA
C27H46N7O18P3S (881.1832806000001)
(s)-3-hydroxyhexanoyl-coa is a member of the class of compounds known as (s)-3-hydroxyacyl coas (s)-3-hydroxyacyl coas are organic compounds containing a (S)-3-hydroxyl acylated coenzyme A derivative. Thus, (s)-3-hydroxyhexanoyl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxyhexanoyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxyhexanoyl-coa can be found in a number of food items such as common grape, yam, grass pea, and roman camomile, which makes (s)-3-hydroxyhexanoyl-coa a potential biomarker for the consumption of these food products. (S)-Hydroxyhexanoyl-CoA is an intermediate in fatty acid metabolism, being the substrate of the enzymes beta-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.211) and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). (S)-Hydroxyhexanoyl-CoA is also an intermediate in fatty acid elongation in mitochondria, the substrate of the enzymes enoyl-CoA hydratase (EC 4.2.1.17) and long-chain-enoyl-CoA hydratase (EC 4.2.1.74) (KEGG).
3-Oxohexanoyl-CoA
3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35). [HMDB]. 3-Oxohexanoyl-CoA is found in many foods, some of which are soy bean, cloudberry, other bread, and lemon thyme. 3-Oxohexanoyl-CoA is an intermediate in Fatty acid elongation in mitochondria. 3-Oxohexanoyl-CoA is the 3rd to last step in the synthesis of Hexanoyl-CoA and is converted from Butanoyl-CoA via the enzyme acetyl-CoA acyltransferase 2 (EC 2.3.1.16). It is then converted to (S)-Hydroxyhexanoyl-CoA via the 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35).
Hexanoyl-CoA
C27H46N7O17P3S (865.1883656000001)
Hexanoyl-CoA, also known as hexanoyl-coenzyme A or caproyl-CoA, is a medium-chain fatty acyl-CoA having hexanoyl as the acyl group. Hexanoyl-CoA is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Within the cell, hexanoyl-CoA is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Hexanoyl-CoA exists in all living organisms, ranging from bacteria to humans. In humans, hexanoyl-CoA is involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Hexanoyl-CoA is also involved in few metabolic disorders, such as fatty acid elongation in mitochondria, mitochondrial beta-oxidation of medium chain saturated fatty acids, and mitochondrial beta-oxidation of short chain saturated fatty acids. Fatty acid coenzyme A derivative that can be involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. [HMDB]
trans-2-Hexenoyl-CoA
trans-Hexenoyl-CoA is an intermediate in fatty acid metabolism. Beta-oxidation occurs in both mitochondria and peroxisomes. Mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x. trans-Hexenoyl-CoA is the substrate of the enzymes enoyl-coenzyme A reductase, acyl-CoA oxidase [EC 1.3.99.2-1.3.3.6], acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13], and Oxidoreductases [EC 1.3.99.-]; trans-Hexenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzymes enoyl-CoA hydratase and long-chain-enoyl-CoA hydratase [EC 4.2.1.17-4.2.1.74]. (PMID: 11375435). trans-Hexenoyl-CoA is an intermediate in fatty acid metabolism. beta-oxidation occurs in both mitochondria and peroxisomes. mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x.
(2E)-Hexadecenoyl-CoA
C37H64N7O17P3S (1003.3292084000001)
(2E)-Hexadecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme enoyl-CoA hydratase [EC:4.2.1.17]; (2E)-Hexadecenoyl-CoA is also the substrate of the enzyme trans-2-enoyl-CoA reductase [EC:1.3.1.38], in the fatty acid elongation pathway in mitochondria. (PMID: 1278159, KEGG) [HMDB] (2E)-Hexadecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzyme enoyl-CoA hydratase [EC:4.2.1.17]; (2E)-Hexadecenoyl-CoA is also the substrate of the enzyme trans-2-enoyl-CoA reductase [EC:1.3.1.38], in the fatty acid elongation pathway in mitochondria. (PMID: 1278159, KEGG).
(2E)-Tetradecenoyl-CoA
C35H60N7O17P3S (975.2979100000001)
(2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG) [HMDB] (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid metabolism, the substrate of the enzymes acyl-CoA oxidase and Oxidoreductases [EC 1.3.3.6-1.3.99.-] and enzymes acyl-CoA dehydrogenase, long-chain-acyl-CoA dehydrogenase [EC 1.3.99.3-1.3.99.13]; (2E)-Tetradecenoyl-CoA is an intermediate in fatty acid elongation in mitochondria, being the substrate of the enzyme trans-2-enoyl-CoA reductase (NADPH) [EC 1.3.1.38]. (KEGG).
(2E)-Decenoyl-CoA
(2E)-Decenoyl-CoA is a beta-oxidation intermediate, the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (PMID: 11673457) [HMDB] (2E)-Decenoyl-CoA is a beta-oxidation intermediate, the substrate of the enzyme peroxisomal acyl-CoA thioesterase 2 (PTE-2, 3.1.2.2), which is localized in the peroxisome. The peroxisomal beta-oxidation system contains two sets of enzymes, one of which is involved in the oxidation of branched chain fatty acids and intermediates in the hepatic bile acid biosynthetic pathway and consists of one or two branched-chain acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like protein x (SCPx). Peroxisomes are cellular organelles present in all eukaryotic cells. They play an indispensable role in the metabolism of a variety of lipids including very long-chain fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic fatty acids. (PMID: 11673457).
S-2-Octenoyl CoA
S-2-Octenoyl coenzyme A is an intermediate metabolite of fatty acid metabolism. Mitochondrial beta-oxidation of saturated acyl-CoA esters proceeds by a repeated cycle of four concerted reactions: flavoprotein-linked dehydrogenation, hydration, NAD-linked dehydrogenation and thiolysis. The three chain-length-specific acyl-CoA dehydrogenases which catalyse the first dehydrogenation step are linked to the respiratory chain by the electron-transferring flavoprotein (ETF) and ETF: ubiquinone oxidoreductase (ETF: QO). The second dehydrogenation step is catalysed by two chain-length-specific NAD+-dependent 3-hydroxyacyl-CoA dehydrogenases. The control of beta-oxidation in the mitochondrial matrix occurs at several steps and depends on the redox state and the rate of recycling of CoA. The rate is lowered with reduced states, since high NAD+/NADH ratios impair the activity of the hydroxyacyl-CoA dehydrogenase and increase the formation of ETF semiquinone (ETFSq), which is a potent inhibitor of the acyl-CoA dehydrogenases. These changes affect the steady-state concentrations of acyl-CoA intermediates, which in turn may change the control strength of other enzymes of the pathway. In liver mitochondria, acetyl-CoA produced by each cycle of beta-oxidation has four major routes of disposal: ketogenesis, oxidation by the citrate cycle, conversion into acetylcarnitine or hydrolysis to acetate; each of these reactions generates free CoA. During maximum flux through beta-oxidation, up to 95 \\% of the mitochondrial CoA pool is acylated, and thus the rate of recycling of CoA may partly control beta-oxidation. Increased steady-state concentrations of some acyl-CoA esters may also occur when one or more of the enzymes of beta-oxidation is inhibited, as in hypoglycin poisoning, or where one or more of the enzymes of the pathway is absent. Such inborn errors of beta-oxidation are being increasingly recognized as important causes of disease, especially in children, and deficiencies of long-chain-acyl-CoA dehydrogenase, medium-chain-acyl-CoA dehydrogenase, short-chain-acyl-CoA dehydrogenase, ETF, ETF: QO and acetoacetyl-CoA thiolase have been described. (PMID: 2818568).
(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA
(2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is also known as (2t,6C)-Dodecadienoyl-coenzyme A or trans,cis-2,6-Laurodienoyl-coenzyme A. (2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is considered to be slightly soluble (in water) and acidic. (2-trans,6-cis)-dodeca-2,6-dienoyl-CoA is a fatty ester lipid molecule
cis,cis-3,6-Dodecadienoyl-CoA
cis,cis-3,6-Dodecadienoyl-CoA is an intermediate in Fatty acid metabolism. cis,cis-3,6-Dodecadienoyl-CoA is produced from trans,cis-Lauro-2,6-dienoyl-CoA via the enzyme dodecenoyl-CoA delta-isomerase (EC 5.3.3.8). [HMDB] cis,cis-3,6-Dodecadienoyl-CoA is an intermediate in Fatty acid metabolism. cis,cis-3,6-Dodecadienoyl-CoA is produced from trans,cis-Lauro-2,6-dienoyl-CoA via the enzyme dodecenoyl-CoA delta-isomerase (EC 5.3.3.8).
Alpha-Linolenoyl-CoA
Alpha-Linolenoyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. alpha-Linolenoyl-CoA is converted. from Linoleoyl-CoA via the enzyme fatty acid desaturase (EC 1.14.19.-). It is then converted to alpha-Linolenic acid via the enzyme palmitoyl-CoA hydrolase(EC 3.1.2.2). Alpha-Linolenoyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. alpha-Linolenoyl-CoA is converted
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
Cervonyl coenzyme A
This compound belongs to the family of Acyl CoAs. These are organic compounds contaning a coenzyme A substructure linked to another moeity through an ester bond.
3-Oxooctadecanoyl-CoA
3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652) [HMDB] 3-Oxooctadecanoyl-CoA is a metabolite intermediate in the microsomal fatty acid chain elongation system. Microsomal electron-transport components NADPH-cytochrome P450 reductase (EC 1.6.2.4) and cytochrome b5 (EC 1.6.2.2) participate in the conversion from 3-Oxooctadecanoyl-CoA to beta-hydroxystearoyl-CoA, the first reductive step of the microsomal chain elongating system initiated by NADPH. (PMID: 6404652).
Palmitelaidoyl-CoA
C37H64N7O17P3S (1003.3292084000001)
Palmitelaidoyl-CoA is a monounsaturated fatty acid, the product of palmitoyl-CoA from a reaction catalyzed by stearoyl-CoA desaturase (EC 1.14.99.5, SCD) in the endoplasmic reticulum, an enzyme that catalyzes the delta9-cis desaturation of saturated fatty acyl-CoAs. These monounsaturated fatty acids are used as substrates for the synthesis of triglycerides, wax esters, cholesteryl esters and membrane phospholipids. The saturated to monounsaturated fatty acid ratio affects membrane phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, skin disorders and cancer. Thus, the expression of SCD is of physiological importance in normal and disease states. Unsaturated fatty acids are the most abundant form of stored fat in the human body and are vital for all living organisms. In addition to their role as an energy source, they are integral constituents of cell membranes, playing a role in membrane fluidity, cell signaling, and membrane integrity. Numerous beneficial physiologic effects have been attributed to unsaturated fatty acids, including protection from obesity, diabetes, cancer, and atherosclerosis. Palmitelaidoyl-CoA has been shown to inhibit oxidative phosphorylation in human cells which has implications for long-chain fatty acid disorders. (PMID: 12538075, 16020546, 16651524, 7662716) [HMDB] Palmitelaidoyl-CoA is a monounsaturated fatty acid, the product of palmitoyl-CoA from a reaction catalyzed by stearoyl-CoA desaturase (EC 1.14.99.5, SCD) in the endoplasmic reticulum, an enzyme that catalyzes the delta9-cis desaturation of saturated fatty acyl-CoAs. These monounsaturated fatty acids are used as substrates for the synthesis of triglycerides, wax esters, cholesteryl esters, and membrane phospholipids. The saturated to monounsaturated fatty acid ratio affects membrane phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, skin disorders, and cancer. Thus, the expression of SCD is of physiological importance in normal and disease states. Unsaturated fatty acids are the most abundant form of stored fat in the human body and are vital for all living organisms. In addition to their role as an energy source, they are integral constituents of cell membranes, playing a role in membrane fluidity, cell signalling, and membrane integrity. Numerous beneficial physiologic effects have been attributed to unsaturated fatty acids, including protection from obesity, diabetes, cancer, and atherosclerosis. Palmitelaidoyl-CoA has been shown to inhibit oxidative phosphorylation in human cells which has implications for long-chain fatty acid disorders (PMID: 12538075, 16020546, 16651524, 7662716).
trans-3-Decenoyl-CoA
trans-3-Decenoyl-CoA is an intermediate in fatty acid metabolism. trans-3-Decenoyl-CoA is the substrate of medium-chain acyl-CoA dehydrogenase (MCAD, EC 1.3.99.3) MCAD acts on C4-C16 acyl-CoAs with its peak activity toward medium-chain (C6-C12) substrates. MCAD is a key enzyme for the beta-oxidation of fatty acids. MCAD deficiency is caused by mutation in the medium-chain acyl-CoA dehydrogenase gene (ACADM; OMIM 607008). Inherited deficiency of medium-chain acyl-CoA dehydrogenase is characterized by intolerance to prolonged fasting, recurrent episodes of hypoglycemic coma with medium-chain dicarboxylic aciduria, impaired ketogenesis, and low plasma and tissue carnitine levels. The disorder may be severe, and even fatal, in young patients. It has been reported that between 19 and 25\\% of patients with undiagnosed deficiency of MCAD die during their first episode of metabolic decompensation. (PMID: 15850406) [HMDB] trans-3-Decenoyl-CoA is an intermediate in fatty acid metabolism. trans-3-Decenoyl-CoA is the substrate of medium-chain acyl-CoA dehydrogenase (MCAD, EC 1.3.99.3) MCAD acts on C4-C16 acyl-CoAs with its peak activity toward medium-chain (C6-C12) substrates. MCAD is a key enzyme for the beta-oxidation of fatty acids. MCAD deficiency is caused by mutation in the medium-chain acyl-CoA dehydrogenase gene (ACADM; OMIM 607008). Inherited deficiency of medium-chain acyl-CoA dehydrogenase is characterized by intolerance to prolonged fasting, recurrent episodes of hypoglycemic coma with medium-chain dicarboxylic aciduria, impaired ketogenesis, and low plasma and tissue carnitine levels. The disorder may be severe, and even fatal, in young patients. It has been reported that between 19 and 25\\% of patients with undiagnosed deficiency of MCAD die during their first episode of metabolic decompensation. (PMID: 15850406).
2,4,7,10,13,16,19-Docosaheptaenoyl-CoA
2,4,7,10,13,16,19-Docosaheptaenoyl-CoA is a coenzyme A derivative, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. This compound is formed by 2,4,7,10,13,16,19-Docosaheptaenoic acid reacting with thiol group of CoA molecules. [HMDB] 2,4,7,10,13,16,19-Docosaheptaenoyl-CoA is a coenzyme A derivative, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. This compound is formed by 2,4,7,10,13,16,19-Docosaheptaenoic acid reacting with thiol group of CoA molecules.
2-trans-4-cis-decadienoyl-CoA
C31H50N7O17P3S (917.2196640000001)
2-trans-4-cis-decadienoyl-CoA is also known as (2-trans,4-cis)-Deca-2,4-dienoyl-coenzyme A or 2,4-Decadienoyl-CoA. 2-trans-4-cis-decadienoyl-CoA is considered to be slightly soluble (in water) and acidic. 2-trans-4-cis-decadienoyl-CoA is a fatty ester lipid molecule
3-oxo-dodecanoyl-CoA
C33H56N7O18P3S (963.2615266000001)
3-oxo-dodecanoyl-CoA is classified as a member of the 3-oxo-acyl CoAs. 3-oxo-acyl CoAs are organic compounds containing a 3-oxo acylated coenzyme A derivative. 3-oxo-dodecanoyl-CoA is considered to be slightly soluble (in water) and acidic. 3-oxo-dodecanoyl-CoA is a fatty ester lipid molecule
5Z-tetradecenoyl-CoA
C35H60N7O17P3S (975.2979100000001)
5Z-tetradecenoyl-CoA is also known as 14:1(N-9)-CoA or (cis-Delta(5))-Tetradecanoyl-CoA. 5Z-tetradecenoyl-CoA is considered to be slightly soluble (in water) and acidic. 5Z-tetradecenoyl-CoA is a fatty ester lipid molecule
Trans-2-octadecenoyl-CoA
Trans-2-octadecenoyl-CoA is also known as (2E)-Octadecenoyl-CoA or trans-Octadec-2-enoyl-coenzyme A. Trans-2-octadecenoyl-CoA is considered to be practically insoluble (in water) and acidic. Trans-2-octadecenoyl-CoA is a fatty ester lipid molecule. Trans-2-octadecenoyl-CoA may be a unique E.coli metabolite
CoA 22:6;O
C43H66N7O18P3S (1093.3397726000003)
CoA 18:0;O
A 3-hydroxy fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-hydroxyoctadecanoic acid.