Acetyl-CoA (BioDeep_00000002522)
Secondary id: BioDeep_00000419552
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C23H38N7O17P3S (809.1258)
中文名称: 乙酰辅酶 A 钠盐, 乙酰辅酶A
谱图信息:
最多检出来源 Rattus norvegicus(otcml) 12.12%
分子结构信息
SMILES: CC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C23H38N7O17P3S/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38)
描述信息
The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)
同义名列表
27 个代谢物同义名
{[(2R,3S,4R,5R)-2-({[({[(3R)-3-[(2-{[2-(acetylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-5-(6-amino-9H-purin-9-yl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid; 12-Hydroxy Taurolithocholic Acid Sulfate Disodium Salt; Acetyl Coenzyme A trisodium; Acetyl coenzyme A (C2:0); S-Acetate coenzyme A; S-Acetyl coenzyme A; Acetyl-S-coenzyme A; S-Acetyl-coenzyme A; coenzyme A, Acetyl; Acetyl-coenzyme A; Acetyl coenzyme A; Acetyl coenzyme-A; Acetylcoenzyme-A; Acetylcoenzyme A; Ac-S-coenzyme A; Ac-coenzyme A; S-Acetate CoA; S-Acetyl-CoA; Acetyl-S-CoA; CoA, Acetyl; Acetyl-CoA; Acetyl CoA; Ac-S-CoA; Ac-CoA; AcCoA; Acetyl-CoA; Acetyl-CoA
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:15351
- KEGG: C00024
- PubChem: 444493
- PubChem: 6302
- PubChem: 3326
- PubChem: 181
- HMDB: HMDB0001206
- Metlin: METLIN36661
- ChEMBL: CHEMBL1230809
- Wikipedia: Acetyl-CoA
- MeSH: Acetyl Coenzyme A
- MetaCyc: ACETYL-COA
- KNApSAcK: C00007259
- foodb: FDB022491
- chemspider: 392413
- CAS: 102029-73-2
- CAS: 66874-07-5
- CAS: 72-89-9
- MoNA: KNA00606
- MoNA: PS016209
- MoNA: PS016208
- MoNA: PS016201
- MoNA: KNA00208
- MoNA: KNA00205
- MoNA: PS016202
- MoNA: PS016205
- MoNA: PS016203
- MoNA: PS016210
- MoNA: KNA00605
- MoNA: PS016207
- MoNA: KNA00604
- MoNA: KNA00207
- MoNA: PS016206
- MoNA: PS016204
- MoNA: KNA00607
- PMhub: MS000003205
- LipidMAPS: LMFA07050281
- PDB-CCD: ACO
- 3DMET: B04621
- NIKKAJI: J192.549K
- RefMet: Acetyl-CoA
- KNApSAcK: 15351
分类词条
相关代谢途径
Reactome(6)
BioCyc(24)
- ubiquinone (coenzyme Q) biosynthesis
- polyamine degradation (N-acetyl pathway)
- lysine biosynthesis
- aromatic compound degradation
- beta-alanine degradation
- lysine degradation
- fatty acid oxidation pathway
- TCA cycle, aerobic respiration
- oxidative ethanol degradation
- phenylacetate degradation
- acetate utilization
- ethanol degradation
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation
- peptidoglycan and lipid A precursor biosynthesis
- superpathway of threonine metabolism
- glutathione-mediated detoxification
- fatty acid β-oxidation II (core pathway)
- oxidative ethanol degradation III (microsomal)
- ethanol degradation IV (peroxisomal)
- superpathway of glyoxylate cycle
- arginine biosynthesis I
- lactate oxidation
- isoleucine degradation I
- ornithine biosynthesis
PlantCyc(0)
代谢反应
1898 个相关的代谢反应过程信息。
Reactome(205)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
FAD + Octanoyl-CoA ⟶ FADH2 + trans-Oct-2-enoyl-CoA
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of UDP-N-acetyl-glucosamine:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Mycothiol metabolism:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Mycothiol biosynthesis:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
ALA + ATP + CoA-SH ⟶ ALA-CoA + AMP + PPi
- alpha-linolenic acid (ALA) metabolism:
ALA + ATP + CoA-SH ⟶ ALA-CoA + AMP + PPi
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of pristanoyl-CoA:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Ketone body catabolism:
ACA-CoA + CoA ⟶ Ac-CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Organelle biogenesis and maintenance:
Homologues of GLUD1 + NAD ⟶ NAM
- Cilium Assembly:
CoA-SH + acetylated microtubule ⟶ Ac-CoA + Microtubule
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- DNA Double Strand Break Response:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- Sensing of DNA Double Strand Breaks:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- S Phase:
ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
- Establishment of Sister Chromatid Cohesion:
Ac-CoA + Cohesin:PDS5:WAPAL:Chromosomal Arm ⟶ Ac-Cohesin:PDS5:WAPAL:Chromosomal Arm + CoA
- Chromatin organization:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- HATs acetylate histones:
Ac-CoA + HIST1H4 ⟶ AcK5,12-HIST1H4A + CoA
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular Senescence:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- DNA Damage/Telomere Stress Induced Senescence:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine synthesis from O-acetylserine:
OAcSer + S(2-) ⟶ CH3COO- + L-Cys
- Organelle biogenesis and maintenance:
Homologues of GLUD1 + NAD ⟶ NAM
- Cilium Assembly:
CoA-SH + acetylated microtubule ⟶ Ac-CoA + Microtubule
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + p-T2609,S2612,T2638,T2647-PRKDC:XRCC5:XRCC6:p-S645-DCLRE1C:DNA DSB ends ⟶ ADP + p-T2609,S2612,T2638,T2647-PRKDC:XRCC5:XRCC6:p-S516,S645-DCLRE1C:DNA DSB ends
- DNA Double Strand Break Response:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Sensing of DNA Double Strand Breaks:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular Senescence:
ATP ⟶ ADP
- DNA Damage/Telomere Stress Induced Senescence:
ATP + Shortened telomere:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + Shortened telomere:MRN:KAT5:p-S1981,Ac-K3016-ATM + phospho-p-S1981,Ac-K3016-ATM
- Cell Cycle:
ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
- Cell Cycle, Mitotic:
ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
- S Phase:
ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
- Establishment of Sister Chromatid Cohesion:
Ac-CoA + Cohesin:PDS5:WAPAL:Chromosomal Arm ⟶ Ac-Cohesin:PDS5:WAPAL:Chromosomal Arm + CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Fatty acyl-CoA biosynthesis:
ATP + CoA-SH + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
ALA + ATP + CoA-SH ⟶ ALA-CoA + AMP + PPi
- alpha-linolenic acid (ALA) metabolism:
ALA + ATP + CoA-SH ⟶ ALA-CoA + AMP + PPi
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of pristanoyl-CoA:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Synthesis of Ketone Bodies:
ACA + ATP + CoA-SH ⟶ ACA-CoA + AMP + PPi
- Ketone body catabolism:
ACA-CoA + CoA ⟶ Ac-CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Ketone body catabolism:
ACA-CoA + CoA ⟶ Ac-CoA
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- Acetylcholine Neurotransmitter Release Cycle:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular Senescence:
ATP + H0YQQ4 ⟶ ADP + phospho-p-T38-ETS1
- DNA Damage/Telomere Stress Induced Senescence:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Cell Cycle:
ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
- Cell Cycle, Mitotic:
ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
- S Phase:
ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
- Establishment of Sister Chromatid Cohesion:
Ac-CoA + Cohesin:PDS5:WAPAL:Chromosomal Arm ⟶ Ac-Cohesin:PDS5:WAPAL:Chromosomal Arm + CoA
- M Phase:
ATP + p-T216,S274,S373-GORASP1:p-S37-GOLGA2:p-RAB1:GTP:p-T210-PLK1 ⟶ ADP + p-T216,S189,S274,S373-GORASP1:p-S37-GOLGA2:p-RAB1:GTP:p-T210-PLK1
- Mitotic Prometaphase:
ATP + Sister Chromosomal Arms:Ac-Cohesin:PDS5:CDCA5:WAPAL ⟶ ADP + Sister Chromosomal Arms:Ac-Cohesin:PDS5:p-CDCA5:WAPAL
- Resolution of Sister Chromatid Cohesion:
ATP + Sister Chromosomal Arms:Ac-Cohesin:PDS5:CDCA5:WAPAL ⟶ ADP + Sister Chromosomal Arms:Ac-Cohesin:PDS5:p-CDCA5:WAPAL
- Mitotic Metaphase and Anaphase:
ATP + H0ZLQ5 ⟶ ADP + phospho-p-FBXO5
- Mitotic Anaphase:
Cleaved Cohesin:PDS5:WAPAL + CoA-SH + H0ZQ03 ⟶ Ac-CoA + Cohesin Complex + H0ZQ03 + WAPAL + phospho-p-S454-RAD21(451-631)
- Separation of Sister Chromatids:
Cleaved Cohesin:PDS5:WAPAL + CoA-SH + H0ZQ03 ⟶ Ac-CoA + Cohesin Complex + H0ZQ03 + WAPAL + phospho-p-S454-RAD21(451-631)
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HATs acetylate histones:
Ac-CoA + Homologues of HIST1H4 ⟶ CoA + Homologues of AcK5,12-HIST1H4A
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA Polymerase II Transcription:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Generic Transcription Pathway:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Transcriptional regulation by RUNX3:
ATP + MyrG-p-Y419-SRC:RUNX3 ⟶ ADP + phospho-MyrG-p-Y419-SRC + phospho-p-Y-RUNX3
- RUNX3 regulates p14-ARF:
Ac-CoA + RUNX3:CBFB:EP300 ⟶ Ac-K94,K171-RUNX3:CBFB:EP300 + CoA
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Positive epigenetic regulation of rRNA expression:
Ac-CoA + Nucleosome ⟶ CoA + Nucleosome (H3K9ac)
- B-WICH complex positively regulates rRNA expression:
Ac-CoA + Nucleosome ⟶ CoA + Nucleosome (H3K9ac)
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- DNA Double Strand Break Response:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Sensing of DNA Double Strand Breaks:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA:
3-Oxopalmitoyl-CoA + CoA ⟶ Ac-CoA + MYS-CoA
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
FAD + MYS-CoA ⟶ FADH2 + trans-Tetradec-2-enoyl-CoA
- Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA:
FAD + LAU-CoA ⟶ 2-trans-Dodecenoyl-CoA + FADH2
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA:
3-Oxohexanoyl-CoA + CoA ⟶ Ac-CoA + BT-CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Phospholipid metabolism:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Glycerophospholipid biosynthesis:
H2O + PETA ⟶ CH3CHO + Pi + ammonia
- Synthesis of PC:
Ac-CoA + Cho ⟶ AcCho + CoA-SH
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Ketone body metabolism:
ACA + H+ + NADH ⟶ NAD + bHBA
- Synthesis of Ketone Bodies:
ACA + H+ + NADH ⟶ NAD + bHBA
- Ketone body catabolism:
NAD + bHBA ⟶ ACA + H+ + NADH
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Ethanol oxidation:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Acetylation:
Ac-CoA + Homologues of NAT2 ⟶ CoA-SH + Homologues of AcC-NAT2
- Acetylation:
Ac-CoA + Homologues of NAT2 ⟶ CoA-SH + Homologues of AcC-NAT2
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
BioCyc(57)
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- glyoxylate cycle:
H2O + acetyl-CoA + glyoxylate ⟶ (S)-malate + H+ + coenzyme A
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- glyoxylate cycle:
H2O + cis-aconitate ⟶ isocitrate
- polyamine degradation (N-acetyl pathway):
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- lysine biosynthesis:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- aromatic compound degradation:
NADPH + O2 + phenol ⟶ H2O + NADP+ + catechol
- beta-alanine degradation:
α-ketoglutarate + β-alanine ⟶ L-glutamate + malonate semialdehyde
- lysine degradation:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- fatty acid oxidation pathway:
ATP + a fatty acid + coenzyme A ⟶ AMP + an acyl-CoA + pyrophosphate
- UDP-N-acetylglucosamine biosynthesis:
N-acetyl-glucosamine-1-phosphate + UTP ⟶ UDP-N-acetyl-D-glucosamine + pyrophosphate
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- methionine biosynthesis:
O-acetyl-L-homoserine + H2S ⟶ acetate + homocysteine
- oxidative ethanol degradation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- phenylacetate degradation:
ATP + coenzyme A + phenylacetate ⟶ AMP + phenylacetyl-CoA + pyrophosphate
- threonine degradation:
2-oxobutanoate + ammonia + succinate ⟶ H2O + O-succinyl-L-homoserine
- arginine biosynthesis:
ATP + L-aspartate + citrulline ⟶ AMP + L-arginino-succinate + pyrophosphate
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
- pyruvate dehydrogenase complex:
enzyme N6-(lipoyl)lysine + pyruvate ⟶ CO2 + enzyme N6-(S-acetyldihydrolipoyl)lysine
- mevalonate pathway I:
(R)-mevalonate + NADP+ + coenzyme A ⟶ 3-hydroxy-3-methyl-glutaryl-CoA + NADPH
- acetate utilization:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + pyrophosphate
- ethanol degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ NADH + acetyl-CoA
- leucine biosynthesis:
2-isopropylmalate + coenzyme A ⟶ 2-keto-isovalerate + H2O + acetyl-CoA
- superpathway of ergosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + NADP+ + formate
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ 1-(2-amino-2-deoxy-α-D-glucopyranoside)-1D-myo-inositol + acetate
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- threonine degradation II:
acetyl-CoA + gly ⟶ 2-amino-3-oxobutanoate + H+ + coenzyme A
- 3-oxoadipate degradation:
3-oxoadipate + succinyl-CoA ⟶ 3-oxoadipyl-CoA + succinate
- superpathway of acetate utilization and formation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- acetate conversion to acetyl-CoA:
ATP + acetate + coenzyme A ⟶ AMP + H+ + acetyl-CoA + diphosphate
- acetate formation from acetyl-CoA I:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- phenylacetate degradation I (aerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- benzoyl-CoA degradation I (aerobic):
2,3-dihydro-2,3-dihydroxybenzoyl-CoA + H2O + H+ ⟶ 3,4-dehydroadipyl-CoA semialdehyde + formate
- fatty acid β-oxidation II (core pathway):
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- fatty acid β-oxidation I:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- oxidative ethanol degradation III (microsomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation IV (peroxisomal):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- ethanol degradation II (cytosol):
H2O + NAD+ + acetaldehyde ⟶ H+ + NADH + acetate
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- isoleucine degradation I:
2-methylacetoacetyl-CoA + coenzyme A ⟶ acetyl-CoA + propanoyl-CoA
- threonine degradation IV:
thr ⟶ acetaldehyde + gly
- glutathione-mediated detoxification:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonia + pyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- UDP-N-acetyl-D-glucosamine biosynthesis I:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
WikiPathways(32)
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- Acetylcholine synthesis:
Acetate ⟶ Acetyl-CoA
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Beta-oxidation of unsaturated fatty acids:
Linoleoyl-CoA ⟶ Acetyl-CoA
- Fatty acid biosynthesis:
Citric acid ⟶ Acetyl-CoA
- Cholesterol metabolism:
Dehydrocholesterol ⟶ Cholesterol
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Statin pathway:
Acetyl-CoA ⟶ Mevalonate
- Glycerophospholipid biosynthetic pathway:
Serine ⟶ Ethanolamine
- Butyrate-induced histone acetylation:
Butyrate ⟶ Acetyl CoA
- Butyrate-induced histone acetylation:
Butyrate ⟶ Acetyl CoA
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Lipid metabolism pathway:
Acetate ⟶ Acetyl-CoA(cyt)
- Ethanol effects on histone modifications:
Ethanol ⟶ Acetaldehyde
- Mevalonate arm of cholesterol biosynthesis pathway with inhibitors:
Acetyl-CoA ⟶ 3-hydroxy-3-methylglutaryl-CoA
- Pyrimidine metabolism and related diseases:
2-Deoxyuridine ⟶ Uracil
- Thiamine metabolic pathways:
alpha-ketoglutarate ⟶ succinate
- Cerebral organic acidurias, including diseases:
L-2-Aminoadipic acid ⟶ 2-Oxoadipic acid
- Effect of L-carnitine on metabolism:
Phosphoenolpyruvate ⟶ pyruvate
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Ketogenesis and ketolysis:
ACA ⟶ BHB
- TCA cycle in senescence:
Malate ⟶ Pyruvate
- Kynurenine pathway and links to cell senescence:
N-Formylkynurenine ⟶ Kynurenine
- Neuroinflammation and glutamatergic signaling:
L-serine ⟶ D-serine
- Disorders in Ketolysis:
Acetyl-CoA ⟶ Acetoacetyl-CoA
- Cholesterol synthesis disorders:
squalene ⟶ (S)-2,3-epoxysqualene
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
- Mitochondrial beta oxidation:
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
- Cholestasis:
Acetyl CoA ⟶ Cholesterol
- Mevalonate pathway:
Acetyl-CoA ⟶ Acetoacetyl-CoA
- Ergosterol biosynthesis:
PreSqualene-PP ⟶ Squalene
Plant Reactome(1026)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
IPPP ⟶ DMAPP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
IPPP ⟶ DMAPP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- MVA pathway:
IPPP ⟶ DMAPP
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
(R)-mevalonate + ATP ⟶ ADP + MVA5P
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cysteine biosynthesis I:
H2S + OAcSer ⟶ CH3COO- + L-Cys
- Homocysteine biosynthesis:
Ac-CoA + homoserine ⟶ CoA-SH + O-acetyl-L-homoserine
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- MVA pathway:
HMG-CoA + TPNH ⟶ (R)-mevalonate + CoA-SH + TPN
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
INOH(15)
- Aminosugars metabolism ( Aminosugars metabolism ):
D-Fructose 6-phosphate + NH3 ⟶ D-Glucosamine 6-phosphate + H2O
- Acetyl-CoA + Dihydro-lipoamide = CoA + 6-S-Acetyl-dihydro-lipoamide ( Pyruvate metabolism ):
6-S-Acetyl-dihydro-lipoamide + CoA ⟶ Acetyl-CoA + Dihydro-lipoamide
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- Acetyl-CoA + Glycine = CoA + L-2-Amino-3-oxo-butanoic acid ( Glycine and Serine metabolism ):
Acetyl-CoA + Glycine ⟶ CoA + L-2-Amino-3-oxo-butanoic acid
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Butanoate metabolism ( Butanoate metabolism ):
Acetoacetic acid + NADH ⟶ (R)-3-Hydroxy-butanoic acid + NAD+
- 2 Acetyl-CoA = CoA + Acetoacetyl-CoA ( Tryptophan degradation ):
Acetoacetyl-CoA + CoA ⟶ Acetyl-CoA
- (S)-3-Hydroxy-3-methyl-glutaryl-CoA = Acetyl-CoA + Acetoacetic acid ( Valine,Leucine and Isoleucine degradation ):
(S)-3-Hydroxy-3-methyl-glutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- ATP + CoA + Citric acid = ADP + Acetyl-CoA + Oxaloacetic acid + Orthophosphate ( Lysine degradation ):
ADP + Acetyl-CoA + Orthophosphate + Oxaloacetic acid ⟶ ATP + Citric acid + CoA
- Lysine degradation ( Lysine degradation ):
2-Oxo-glutaric acid + L-Lysine + NADH ⟶ H2O + L-Saccharopine + NAD+
- Malonyl-CoA = Acetyl-CoA + CO2 ( Pyruvate metabolism ):
Malonyl-CoA ⟶ Acetyl-CoA + CO2
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(563)
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Serine Biosynthesis and Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of Succinate:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of Fumarate:
Citric acid ⟶ Water + cis-Aconitic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Retinol Metabolism:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Vitamin A Deficiency:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 3:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-D-Fucosamine
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- Acetate Metabolism:
Acetylphosphate + Adenosine diphosphate ⟶ Acetic acid + Adenosine triphosphate
- alpha-Linolenic Acid Metabolism:
-Linolenic acid + Oxygen ⟶ 13(S)-HPOTE
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Elongation in Mitochondria:
(2E)-Hexenoyl-CoA + NADPH ⟶ Hexanoyl-CoA + NADP
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Glutaric Aciduria Type I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHAD):
(2E)-Hexenoyl-CoA + NADPH ⟶ Hexanoyl-CoA + NADP
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (SCHAD):
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Elongation In Mitochondria:
(2E)-Hexenoyl-CoA + NADPH ⟶ Hexanoyl-CoA + NADP
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Elongation In Mitochondria:
Palmityl-CoA + Water ⟶ Coenzyme A + Palmitic acid
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHAD):
Palmityl-CoA + Water ⟶ Coenzyme A + Palmitic acid
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (SCHAD):
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Elongation in Mitochondria:
Palmityl-CoA + Water ⟶ Coenzyme A + Palmitic acid
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Elongation in Mitochondria:
Palmityl-CoA + Water ⟶ Coenzyme A + Palmitic acid
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Short Chain Saturated Fatty Acids:
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHAD):
Palmityl-CoA + Water ⟶ Coenzyme A + Palmitic acid
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency (SCHAD):
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA + Pyrophosphate
- Fatty Acid Elongation:
Water + hexadecanoyl-CoA ⟶ Coenzyme A + Palmitic acid
- Fatty Acid Oxidation (Hexanoate):
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Steroid Biosynthesis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Smith-Lemli-Opitz Syndrome (SLOS):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- CHILD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Desmosterolosis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Ibandronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Simvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pravastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Rosuvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Alendronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Hypercholesterolemia:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lovastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Zoledronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cerivastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Risedronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pamidronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Fluvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Atorvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Cholesteryl Ester Storage Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hyper-IgD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Mevalonic Aciduria:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Wolman Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Fatty Acid Oxidation:
Adenosine triphosphate + Coenzyme A + a 2,3,4- saturated fatty acid ⟶ Adenosine monophosphate + Pyrophosphate + a 2,3,4-saturated fatty acyl CoA
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Palmitate Biosynthesis:
Hydrogen Ion + NADPH + acetoacetyl-[acp] ⟶ (R)-3-hydroxybutanoyl-[acp] + NADP
- Fatty Acid Elongation (Saturated):
3-oxoacyl-[acp] + Hydrogen Ion + NADPH ⟶ (3R)-3-hydroxyacyl-[acyl-carrier protein] + NADP
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Quorum Sensing:
S-Adenosylhomocysteine + Water ⟶ Adenine + S-ribosyl-L-homocysteine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Fatty Acid Biosynthesis:
3-oxoacyl-[acp] + Hydrogen Ion + NADPH ⟶ (3R)-3-hydroxyacyl-[acyl-carrier protein] + NADP
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- TCA cycle (ubiquinol-2):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-3):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-4):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-5):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-6):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-7):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-8):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-9):
Citric acid ⟶ Water + cis-Aconitic acid
- TCA cycle (ubiquinol-10):
Citric acid ⟶ Water + cis-Aconitic acid
- fatty acid oxidation (Butanoate):
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine triphosphate + Butyryl-CoA
- fatty acid oxidation (Decanoate):
Adenosine triphosphate + Capric acid + Coenzyme A ⟶ Adenosine monophosphate + Decanoyl-CoA
- fatty acid oxidation (hexanoate):
Adenosine triphosphate + Caproic acid + Coenzyme A ⟶ Adenosine monophosphate + Hexanoyl-CoA
- Fatty Acid Oxidation (Laurate):
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA
- fatty acid oxidation (myristate):
Adenosine triphosphate + Coenzyme A + Myristic acid ⟶ Adenosine monophosphate + Tetradecanoyl-CoA
- fatty acid oxidation (octanoate):
Adenosine triphosphate + Caprylic acid + Coenzyme A ⟶ Adenosine monophosphate + Octanoyl-CoA
- fatty acid oxidation (palmitate):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA
- fatty acid oxidation (steareate):
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Stearoyl-CoA
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- TCA cycle (ubiquinol-0):
Citric acid ⟶ Water + cis-Aconitic acid
- Phenylethylamine Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Palmitate Biosynthesis 2:
Hydrogen Ion + NADPH + acetoacetyl-[acp] ⟶ (R)-3-hydroxybutanoyl-[acp] + NADP
- Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 2:
L-Glutamic acid + dTDP-4-dehydro-6-deoxy-D-glucose ⟶ Oxoglutaric acid + dTDP-thomosamine
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
- Pyruvate Decarboxylation to Acetyl-CoA:
Hydrogen Ion + Pyruvic acid + a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ Carbon dioxide + a [pyruvate dehydrogenase E2 protein] N6-S-acetyldihydrolipoyl-L-lysine
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Threonine Metabolism:
L-Threonine ⟶ Acetaldehyde + Glycine
- Lysine Metabolism:
Adenosine triphosphate + Aminoadipic acid + holo-[LYS2 peptidyl-carrier-protein] ⟶ Adenosine monophosphate + L-2-aminoadipyl-[LYS2 peptidyl-carrier-protein] + Pyrophosphate
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Steroid Biosynthesis:
Farnesyl pyrophosphate + NADPH ⟶ NADP + Pyrophosphate + Squalene
- Ketone Body Metabolism:
Acetyl-CoA ⟶ Acetoacetyl-CoA + Coenzyme A
- Terpenoid Backbone Biosynthesis:
3-Hydroxy-3-methylglutaryl-CoA + NADPH ⟶ Coenzyme A + Mevalonic acid + NADP
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Glutamine Metabolism:
Adenosine triphosphate + Phosphate + Pyruvic acid ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoenolpyruvic acid + Pyrophosphate
- Isoleucine Degradation:
L-Isoleucine + Oxoglutaric acid ⟶ (S)-3-methyl-2-oxopentanoate + L-Glutamic acid
- Leucine Degradation:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Lysine Metabolism:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Cholesterol biosynthesis and metabolism CE(14:0):
Desmosterol ⟶ Cholesterol
- Cholesterol biosynthesis and metabolism CE(10:0):
Desmosterol ⟶ Cholesterol
- Cholesterol Biosynthesis and Metabolism CE(12:0):
Cholesterol + Lauroyl-CoA ⟶ CE(12:0) + Coenzyme A
- Cholesterol Biosynthesis and Metabolism CE(16:0):
Cholesterol + Palmityl-CoA ⟶ CE(16:0) + Coenzyme A
- Cholesterol biosynthesis and metabolism CE(18:0):
Desmosterol ⟶ Cholesterol
- Threonine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Fatty Acid Beta-Oxidation I:
Adenosine triphosphate + Coenzyme A + a 2,3,4- saturated fatty acid ⟶ Adenosine monophosphate + Pyrophosphate + a 2,3,4-saturated fatty acyl CoA
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 2-Aminoadipic 2-Oxoadipic Aciduria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cholesterol Biosynthesis and Metabolism:
Cholesterol + long-chain fatty acyl-CoA ⟶ Cholesteryl ester + Coenzyme A
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Butyrate Metabolism:
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA + Pyrophosphate
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Ethanol Degradation:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Ketone Body Metabolism:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Lysine Degradation:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Fatty Acid Biosynthesis:
But-2-enoic acid ⟶ Butyric acid
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Glutaric Aciduria Type I:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Saccharopinuria/Hyperlysinemia II:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Hyperlysinemia I, Familial:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Hyperlysinemia II or Saccharopinuria:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Succinyl CoA: 3-Ketoacid CoA Transferase Deficiency:
(R)-3-Hydroxybutyric acid + NAD ⟶ Acetoacetic acid + NADH
- Pyridoxine Dependency with Seizures:
L-Lysine + NADPH + Oxoglutaric acid ⟶ NADP + Saccharopine + Water
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- Mevalonate Pathway:
(S)-2,3-Epoxysqualene ⟶ Lanosterol
- Ether Lipid Metabolism:
2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine + Water ⟶ 1-Organyl-2-lyso-sn-glycero-3-phosphocholine + Acetic acid
- Ketone Body Metabolism:
Acetoacetic acid + Succinyl-CoA ⟶ Acetoacetyl-CoA + Succinic acid
- Citrate Cycle:
Isocitric acid ⟶ Water + cis-Aconitic acid
- L-Homomethionine Biosynthesis:
L-Methionine + a 2-oxo carboxylate ⟶ 2-Oxo-4-methylthiobutanoic acid + a proteinogenic amino acid
- Jasmonic Acid Biosynthesis:
8-[(1R,2R)-3-oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate + Adenosine triphosphate + Coenzyme A ⟶ 3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoyl-CoA + Adenosine monophosphate + Pyrophosphate
- Mevalonate Pathway:
3-Hydroxy-3-methylglutaryl-CoA + Hydrogen Ion + NADPH ⟶ (R)-mevalonate + Coenzyme A + NADP
- Fatty Acid Oxidation:
Adenosine triphosphate + Coenzyme A + a 2,3,4- saturated fatty acid ⟶ Adenosine monophosphate + Pyrophosphate + a 2,3,4-saturated fatty acyl CoA
- TCA Cycle:
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Palmitate Biosynthesis:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Fatty Acid Elongation (Saturated):
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Threonine Biosynthesis:
L-Glutamic acid + Oxalacetic acid ⟶ L-Aspartic acid + Oxoglutaric acid
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- S-Adenosyl-L-Methionine Biosynthesis:
5'-S-methyl-5'-thioadenosine + Water ⟶ 5-Methylthioribose + Adenine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Fatty Acid Biosynthesis:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- TCA Cycle (Ubiquinol-2):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-3):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-4):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-5):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-6):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-7):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-8):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-9):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- TCA Cycle (Ubiquinol-10):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- Fatty Acid Oxidation (Butanoate):
Adenosine triphosphate + Butyric acid + Coenzyme A ⟶ Adenosine monophosphate + Butyryl-CoA
- Fatty Acid Oxidation (Decanoate):
Adenosine triphosphate + Capric acid + Coenzyme A ⟶ Adenosine monophosphate + Decanoyl-CoA
- Fatty Acid Oxidation (Laurate):
Adenosine triphosphate + Coenzyme A + Dodecanoic acid ⟶ Adenosine monophosphate + Lauroyl-CoA
- Fatty Acid Oxidation (Myristate):
Adenosine triphosphate + Coenzyme A + Myristic acid ⟶ Adenosine monophosphate + Tetradecanoyl-CoA
- Fatty Acid Oxidation (Octanoate):
Adenosine triphosphate + Caprylic acid + Coenzyme A ⟶ Adenosine monophosphate + Octanoyl-CoA
- Fatty Acid Oxidation (Palmitate):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA
- Fatty Acid Oxidation (Steareate):
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Stearoyl-CoA
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- TCA Cycle (Ubiquinol-0):
Water + cis-Aconitic acid ⟶ D-threo-Isocitric acid
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- Palmitate Biosynthesis 2:
Acetyl-CoA + Adenosine triphosphate + Hydrogen carbonate ⟶ Adenosine diphosphate + Hydrogen Ion + Malonyl-CoA + Phosphate
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- 1,6-Anhydro-N-acetylmuramic Acid Recycling:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + D-glucosamine 6-phosphate
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
- Pyruvate Decarboxylation to Acetyl-CoA:
Hydrogen Ion + Pyruvic acid + a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ Carbon dioxide + a [pyruvate dehydrogenase E2 protein] N6-S-acetyldihydrolipoyl-L-lysine
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
PharmGKB(0)
5 个相关的物种来源信息
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 1901 - Streptomyces clavuligerus: 10.1128/AEM.07699-11
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shubha Sharma, Seema Chaurasia, Sandeep Dinday, Gaurav Srivastava, Anamika Singh, Chandan Singh Chanotiya, Sumit Ghosh. High-level biosynthesis of enantiopure germacrene D in yeast.
Applied microbiology and biotechnology.
2024 Dec; 108(1):50. doi:
10.1007/s00253-023-12885-7
. [PMID: 38183482] - Juhong Wang, Yannan Yang, Fei Shao, Ying Meng, Dong Guo, Jie He, Zhimin Lu. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc.
Nature metabolism.
2024 May; 6(5):914-932. doi:
10.1038/s42255-024-01037-4
. [PMID: 38702440] - Xue Bai, Shuling Wang, Qin Zhang, Yuhan Hu, Jiawei Zhou, Lianhui Men, Dengyu Li, Jing Ma, Qiuhui Wei, Mengdie Xu, Xiaopu Yin, Tianyuan Hu. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene.
Journal of agricultural and food chemistry.
2024 Apr; 72(15):8704-8714. doi:
10.1021/acs.jafc.4c01203
. [PMID: 38572931] - Qiaoqiao Guo, Jingtong Su, Yuling Liao, Yin Yu, Lizhen Luo, Xiaoshan Weng, Wenbin Zhang, Zhe Hu, Haihong Wang, Gwyn A Beattie, Jincheng Ma. An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in Pseudomonas syringae pv. syringae B728a.
Applied and environmental microbiology.
2024 Mar; 90(3):e0225623. doi:
10.1128/aem.02256-23
. [PMID: 38415624] - Yang Ning, Mengsu Liu, Ziyun Ru, Weizhu Zeng, Song Liu, Jingwen Zhou. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica.
Bioresource technology.
2024 Mar; 395(?):130379. doi:
10.1016/j.biortech.2024.130379
. [PMID: 38281547] - Yue Yu, Feng Zhao, Yaping Yue, Yu Zhao, Dao-Xiu Zhou. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants.
Nature plants.
2024 03; 10(3):439-452. doi:
10.1038/s41477-024-01623-0
. [PMID: 38326652] - Kyung Hee Jung, Sujin Lee, Han Sun Kim, Jin-Mo Kim, Yun Ji Lee, Min Seok Park, Myeong-Seong Seo, Misu Lee, Mijin Yun, Sunghyouk Park, Soon-Sun Hong. Acetyl-CoA synthetase 2 contributes to a better prognosis for liver cancer by switching acetate-glucose metabolism.
Experimental & molecular medicine.
2024 Mar; 56(3):721-733. doi:
10.1038/s12276-024-01185-3
. [PMID: 38528124] - Shuhua Zhao, Qingqiang Wang, Xiaohong Zhang, Boyi Ma, Yuan Shi, Yadong Yin, Weina Kong, Wei Zhang, Jibin Li, Hong Yang. MARCH5-mediated downregulation of ACC2 promotes fatty acid oxidation and tumor progression in ovarian cancer.
Free radical biology & medicine.
2024 Feb; 212(?):464-476. doi:
10.1016/j.freeradbiomed.2024.01.004
. [PMID: 38211832] - Lan Wang, Hongmei Yuan, Wenwen Li, Peishuo Yan, Mengxia Zhao, Zhongzheng Li, Huabin Zhao, Shenghui Wang, Ruyan Wan, Yajun Li, Juntang Yang, Xin Pan, Ivan Rosas, Guoying Yu. ACSS3 regulates the metabolic homeostasis of epithelial cells and alleviates pulmonary fibrosis.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Feb; 1870(2):166960. doi:
10.1016/j.bbadis.2023.166960
. [PMID: 37979225] - Yongshuo Ma, Yi Shang, Gregory Stephanopoulos. Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Jan; 121(5):e2314798121. doi:
10.1073/pnas.2314798121
. [PMID: 38261612] - Shaofang Xie, Lei Yuan, Yue Sui, Shan Feng, Hengle Li, Xu Li. NME4 mediates metabolic reprogramming and promotes nonalcoholic fatty liver disease progression.
EMBO reports.
2024 Jan; 25(1):378-403. doi:
10.1038/s44319-023-00012-6
. [PMID: 38177901] - João Vitor Alcantara da Silva, Jessica Ispada, Ricardo Perecin Nociti, Aldcejam Martins da Fonseca Junior, Camila Bruna De Lima, Erika Cristina Dos Santos, Marcos Roberto Chiaratti, Marcella Pecora Milazzotto. The central role of pyruvate metabolism on the epigenetic maturation and transcriptional profile of bovine oocytes.
Reproduction (Cambridge, England).
2024 Jan; ?(?):. doi:
10.1530/rep-23-0181
. [PMID: 38271822] - Kenneth K Y Ting, Pei Yu, Mudia Iyayi, Riley Dow, Sharon J Hyduk, Eric Floro, Hisham Ibrahim, Saraf Karim, Chanele K Polenz, Daniel A Winer, Minna Woo, Jonathan Rocheleau, Jenny Jongstra-Bilen, Myron I Cybulsky. Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl-Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation.
ImmunoHorizons.
2024 Jan; 8(1):57-73. doi:
10.4049/immunohorizons.2300101
. [PMID: 38193847] - Shiyong Li, Chaodong Song, Hongyan Zhang, Yan Qin, Mingguo Jiang, Naikun Shen. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137.
Polish journal of microbiology.
2023 Dec; 72(4):399-411. doi:
10.33073/pjm-2023-036
. [PMID: 38000010] - Guo Chen, Banghe Bao, Yang Cheng, Minxiu Tian, Jiyu Song, Liduan Zheng, Qiangsong Tong. Acetyl-CoA metabolism as a therapeutic target for cancer.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Dec; 168(?):115741. doi:
10.1016/j.biopha.2023.115741
. [PMID: 37864899] - Yuan Yao, Jiaming Shi, Chunlai Zhang, Wei Gao, Ning Huang, Yaobei Liu, Weiwen Yan, Yingguang Han, Wenjuan Zhou, Liang Kong. Pyruvate dehydrogenase kinase 1 protects against neuronal injury and memory loss in mouse models of diabetes.
Cell death & disease.
2023 11; 14(11):722. doi:
10.1038/s41419-023-06249-2
. [PMID: 37935660] - C Megan Young, Laurent Beziaud, Pierre Dessen, Angela Madurga Alonso, Albert Santamaria-Martínez, Joerg Huelsken. Metabolic dependencies of metastasis-initiating cells in female breast cancer.
Nature communications.
2023 11; 14(1):7076. doi:
10.1038/s41467-023-42748-8
. [PMID: 37925484] - Pranesha Prabhakaran, Mohamed Yusuf Mohamed Nazir, Roypim Thananusak, Aidil Abdul Hamid, Wanwipa Vongsangnak, Yuanda Song. Uncovering global lipid accumulation routes towards docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1 using integrative proteomic analysis.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2023 11; 1868(11):159381. doi:
10.1016/j.bbalip.2023.159381
. [PMID: 37625782] - Lin Tan, Sara A Martinez, Philip L Lorenzi, Anja Karlstaedt. Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes.
Journal of the American Society for Mass Spectrometry.
2023 Oct; ?(?):. doi:
10.1021/jasms.3c00278
. [PMID: 37812744] - Wenjun Wang, Junyang Tan, Xiaomin Liu, Wenqi Guo, Mengmeng Li, Xinjie Liu, Yanyan Liu, Wenyu Dai, Liubing Hu, Yimin Wang, Qiuxia Lu, Wen Xing Lee, Hong-Wen Tang, Qinghua Zhou. Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress.
Nature communications.
2023 Oct; 14(1):6201. doi:
10.1038/s41467-023-41757-x
. [PMID: 37794041] - Vishant Tomar, Erik H A Rikkerink, Janghoon Song, Svetla Sofkova-Bobcheva, Vincent G M Bus. Structure-Function Characterisation of Eop1 Effectors from the Erwinia-Pantoea Clade Reveals They May Acetylate Their Defence Target through a Catalytic Dyad.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914664
. [PMID: 37834112] - Jian Lu, Xue-Qi Li, Pei-Pei Chen, Jia-Xiu Zhang, Liang Li, Gui-Hua Wang, Xiao-Qi Liu, Chun-Ming Jiang, Kun-Ling Ma. Acetyl-CoA synthetase 2 promotes diabetic renal tubular injury in mice by rewiring fatty acid metabolism through SIRT1/ChREBP pathway.
Acta pharmacologica Sinica.
2023 Sep; ?(?):. doi:
10.1038/s41401-023-01160-0
. [PMID: 37770579] - Bin Zhang, Yang Xu, Jinyan Liu, Chongming Wu, Xiaohong Zhao, Lidong Zhou, Yong Xie. Oral Intake of Inosine 5'-Monophosphate in Mice Promotes the Absorption of Exogenous Fatty Acids and Their Conversion into Triglycerides though Enhancing the Phosphorylation of Adenosine 5'-Monophosphate-Activated Protein Kinase in the Liver, Leading to Lipohyperplasia.
International journal of molecular sciences.
2023 Sep; 24(19):. doi:
10.3390/ijms241914588
. [PMID: 37834038] - Dina Baier, Theresa Mendrina, Beatrix Schoenhacker-Alte, Christine Pirker, Thomas Mohr, Mate Rusz, Benedict Regner, Martin Schaier, Nicolas Sgarioto, Noël J-M Raynal, Karin Nowikovsky, Wolfgang M Schmidt, Petra Heffeter, Samuel M Meier-Menches, Gunda Koellensperger, Bernhard K Keppler, Walter Berger. The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 Sep; ?(?):e2301939. doi:
10.1002/advs.202301939
. [PMID: 37752764] - Zhicheng Huang, Qing Wang, Irshad Ali Khan, Yan Li, Jing Wang, Jiaoyu Wang, Xiaohong Liu, Fucheng Lin, Jianping Lu. The Methylcitrate Cycle and Its Crosstalk with the Glyoxylate Cycle and Tricarboxylic Acid Cycle in Pathogenic Fungi.
Molecules (Basel, Switzerland).
2023 Sep; 28(18):. doi:
10.3390/molecules28186667
. [PMID: 37764443] - Lior Doron, Markus Sutter, Cheryl A Kerfeld. Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria.
mBio.
2023 Jul; ?(?):e0121623. doi:
10.1128/mbio.01216-23
. [PMID: 37462359] - Eric Fordjour, Chun-Li Liu, Yunpeng Hao, Isaac Sackey, Yankun Yang, Xiuxia Liu, Ye Li, Tianwei Tan, Zhonghu Bai. Engineering Escherichia coli BL21 (DE3) for high-yield production of germacrene A, a precursor of β-elemene via combinatorial metabolic engineering strategies.
Biotechnology and bioengineering.
2023 Jun; ?(?):. doi:
10.1002/bit.28467
. [PMID: 37309999] - Qiutao Xu, Yaping Yue, Biao Liu, Zhengting Chen, Xuan Ma, Jing Wang, Yu Zhao, Dao-Xiu Zhou. ACL and HAT1 form a nuclear module to acetylate histone H4K5 and promote cell proliferation.
Nature communications.
2023 06; 14(1):3265. doi:
10.1038/s41467-023-39101-4
. [PMID: 37277331] - Jiawei Wang, Qin Wang, Xiaolin Huang, Wei Hu, Shanshan Wang, Zhiguo Zhou. Phosphorus-induced greater enhancement in carbon supply and storage for oil synthesis during the crucial period made cottonseed kernel oil yield have a higher increment than protein.
Plant physiology and biochemistry : PPB.
2023 May; 200(?):107781. doi:
10.1016/j.plaphy.2023.107781
. [PMID: 37230024] - Yawen Lu, Yimeng Chen, Wenxin Hu, Meng Wang, Xiaodong Wen, Jie Yang. Inhibition of ACSS2 attenuates alcoholic liver steatosis via epigenetically regulating de novo lipogenesis.
Liver international : official journal of the International Association for the Study of the Liver.
2023 May; ?(?):. doi:
10.1111/liv.15600
. [PMID: 37183518] - Adilson Guilherme, Leslie A Rowland, Nicole Wetoska, Emmanouela Tsagkaraki, Kaltinaitis B Santos, Alexander H Bedard, Felipe Henriques, Mark Kelly, Sean Munroe, David J Pedersen, Olga R Ilkayeva, Timothy R Koves, Lauren Tauer, Meixia Pan, Xianlin Han, Jason K Kim, Christopher B Newgard, Deborah M Muoio, Michael P Czech. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program.
Cell reports.
2023 May; 42(5):112488. doi:
10.1016/j.celrep.2023.112488
. [PMID: 37163372] - Luke T Izzo, Sophie Trefely, Christina Demetriadou, Jack M Drummond, Takuya Mizukami, Nina Kuprasertkul, Aimee T Farria, Phuong T T Nguyen, Nivitha Murali, Lauren Reich, Daniel S Kantner, Joshua Shaffer, Hayley Affronti, Alessandro Carrer, Andrew Andrews, Brian C Capell, Nathaniel W Snyder, Kathryn E Wellen. Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis.
Science advances.
2023 May; 9(18):eadf0115. doi:
10.1126/sciadv.adf0115
. [PMID: 37134161] - Chenyu Hu, Zechang Xin, Xiaoyan Sun, Yang Hu, Chunfeng Zhang, Rui Yan, Yuying Wang, Min Lu, Jing Huang, Xiaojuan Du, Baocai Xing, Xiaofeng Liu. Activation of ACLY by SEC63 deploys metabolic reprogramming to facilitate hepatocellular carcinoma metastasis upon endoplasmic reticulum stress.
Journal of experimental & clinical cancer research : CR.
2023 May; 42(1):108. doi:
10.1186/s13046-023-02656-7
. [PMID: 37122003] - Dan Liu, Changsheng Dong, Fengying Wang, Wei Liu, Xing Jin, Sheng-Lan Qi, Lei Liu, Qiang Jin, Siliang Wang, Jia Wu, Congcong Wang, Jing Yang, Haibin Deng, Yuejiao Cai, Lu Yang, Jingru Qin, Chengcheng Zhang, Xi Yang, Ming-Song Wang, Guanzhen Yu, Yu-Wen Xue, Zhongqi Wang, Guang-Bo Ge, Zhenye Xu, Wen-Lian Chen. Active post-transcriptional regulation and ACLY-mediated acetyl-CoA synthesis as a pivotal target of Shuang-Huang-Sheng-Bai formula for lung adenocarcinoma treatment.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 May; 113(?):154732. doi:
10.1016/j.phymed.2023.154732
. [PMID: 36933457] - Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
Metabolic engineering.
2023 Apr; 77(?):219-230. doi:
10.1016/j.ymben.2023.04.001
. [PMID: 37031949] - Yu Wang, Wei Sun, Sen Yan, Zhiyuan Meng, Ming Jia, Sinuo Tian, Shiran Huang, Xiaoxuan Sun, Shihang Han, Canping Pan, Jinling Diao, Qiuxia Wang, Wentao Zhu. A new strategy to alleviate the obesity induced by endocrine disruptors-A unique lysine metabolic pathway of nanoselenium Siraitia grosvenorii to repair gut microbiota and resist obesity.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Mar; 175(?):113737. doi:
10.1016/j.fct.2023.113737
. [PMID: 36944396] - Giovan N Cholico, Karina Orlowska, Russell R Fling, Warren J Sink, Nicholas A Zacharewski, Kelly A Fader, Rance Nault, Tim Zacharewski. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver.
Scientific reports.
2023 Mar; 13(1):4138. doi:
10.1038/s41598-023-31087-9
. [PMID: 36914879] - Maki Nishii, Shoki Ito, Takashi Osanai. Citrate synthase from Cyanidioschyzon merolae exhibits high oxaloacetate and acetyl-CoA catalytic efficiency.
Plant molecular biology.
2023 Mar; ?(?):. doi:
10.1007/s11103-023-01335-7
. [PMID: 36884198] - Patricia Altea-Manzano, Ginevra Doglioni, Yawen Liu, Alejandro M Cuadros, Emma Nolan, Juan Fernández-García, Qi Wu, Mélanie Planque, Kathrin Julia Laue, Florencia Cidre-Aranaz, Xiao-Zheng Liu, Oskar Marin-Bejar, Joke Van Elsen, Ines Vermeire, Dorien Broekaert, Sofie Demeyer, Xander Spotbeen, Jakub Idkowiak, Aurélie Montagne, Margherita Demicco, H Furkan Alkan, Nick Rabas, Carla Riera-Domingo, François Richard, Tatjana Geukens, Maxim De Schepper, Sophia Leduc, Sigrid Hatse, Yentl Lambrechts, Emily Jane Kay, Sergio Lilla, Alisa Alekseenko, Vincent Geldhof, Bram Boeckx, Celia de la Calle Arregui, Giuseppe Floris, Johannes V Swinnen, Jean-Christophe Marine, Diether Lambrechts, Vicent Pelechano, Massimiliano Mazzone, Sara Zanivan, Jan Cools, Hans Wildiers, Véronique Baud, Thomas G P Grünewald, Uri Ben-David, Christine Desmedt, Ilaria Malanchi, Sarah-Maria Fendt. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling.
Nature cancer.
2023 Feb; ?(?):. doi:
10.1038/s43018-023-00513-2
. [PMID: 36732635] - Jake Hsu, Nina Fatuzzo, Nielson Weng, Wojciech Michno, Wentao Dong, Maryline Kienle, Yuqin Dai, Anca Pasca, Monther Abu-Remaileh, Natalie Rasgon, Benedetta Bigio, Carla Nasca, Chaitan Khosla. Carnitine octanoyltransferase is important for the assimilation of exogenous acetyl-L-carnitine into acetyl-CoA in mammalian cells.
The Journal of biological chemistry.
2023 02; 299(2):102848. doi:
10.1016/j.jbc.2022.102848
. [PMID: 36587768] - Haoya Yao, Yaoqing Wang, Xiao Zhang, Ping Li, Lin Shang, Xiaocui Chen, Jia Zeng. Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice.
The Journal of biological chemistry.
2023 02; 299(2):102845. doi:
10.1016/j.jbc.2022.102845
. [PMID: 36586435] - Jürgen Eirich, Julia Sindlinger, Stefan Schön, Dirk Schwarzer, Iris Finkemeier. Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.
Methods in enzymology.
2023; 684(?):209-252. doi:
10.1016/bs.mie.2022.09.005
. [PMID: 37230590] - Weijing He, Qingguo Li, Xinxiang Li. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer.
Biochimica et biophysica acta. Reviews on cancer.
2023 01; 1878(1):188837. doi:
10.1016/j.bbcan.2022.188837
. [PMID: 36403921] - Youlin Wang, Hao Yang, Chloé Geerts, Alexandra Furtos, Paula Waters, Denis Cyr, Shupei Wang, Grant A Mitchell. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors.
Molecular genetics and metabolism.
2023 01; 138(1):106966. doi:
10.1016/j.ymgme.2022.106966
. [PMID: 36528988] - Sijia Chen, Weidong Ye, Kendall D Clements, Ziye Zan, Weishan Zhao, Hong Zou, Guitang Wang, Shangong Wu. Bacillus licheniformis FA6 Affects Zebrafish Lipid Metabolism through Promoting Acetyl-CoA Synthesis and Inhibiting β-Oxidation.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010673
. [PMID: 36614116] - Lianhu Zhang, Chonglei Shan, Yifan Zhang, Wenjing Miao, Xiaoli Bing, Weigang Kuang, Zonghua Wang, Ruqiang Cui, Stefan Olsson. Transcriptome Analysis of Protein Kinase MoCK2, which Affects Acetyl-CoA Metabolism and Import of CK2-Interacting Mitochondrial Proteins into Mitochondria in the Rice Blast Fungus Magnaporthe oryzae.
Microbiology spectrum.
2022 12; 10(6):e0304222. doi:
10.1128/spectrum.03042-22
. [PMID: 36255296] - Ying-Shuang Xu, Wang Ma, Jin Li, Peng-Wei Huang, Xiao-Man Sun, He Huang. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene.
Biotechnology and bioengineering.
2022 Dec; ?(?):. doi:
10.1002/bit.28311
. [PMID: 36522292] - Ting Miao, Jinoh Kim, Ping Kang, Hideji Fujiwara, Fong-Fu Hsu, Hua Bai. Acetyl-CoA-mediated autoacetylation of fatty acid synthase as a metabolic switch of de novo lipogenesis in Drosophila.
Proceedings of the National Academy of Sciences of the United States of America.
2022 12; 119(49):e2212220119. doi:
10.1073/pnas.2212220119
. [PMID: 36459649] - Mei Zhang, Zhu Wang, Zhe Chi, Guang-Lei Liu, Zhen-Ming Chi. Metabolic engineering of Aureobasidium melanogenum 9-1 for overproduction of liamocins by enhancing supply of acetyl-CoA and ATP.
Microbiological research.
2022 Dec; 265(?):127172. doi:
10.1016/j.micres.2022.127172
. [PMID: 36084615] - Eric Soupene, Frans A Kuypers. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins.
Biomolecules.
2022 11; 12(12):. doi:
10.3390/biom12121726
. [PMID: 36551154] - Jie Qi, Xianzun Xiao, Liming Ouyang, Chenghan Yang, Yingping Zhuang, Lixin Zhang. Enhancement of fatty acid degradation pathway promoted glucoamylase synthesis in Aspergillus niger.
Microbial cell factories.
2022 Nov; 21(1):238. doi:
10.1186/s12934-022-01966-3
. [PMID: 36376878] - Brian Kleiboeker, Irfan J Lodhi. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders.
Molecular metabolism.
2022 11; 65(?):101577. doi:
10.1016/j.molmet.2022.101577
. [PMID: 35988716] - Lu Cai, Han-Tong Guo, Guo-Di Zheng, Xin-Yu Wang, Kan Wang. Metagenomic analysis reveals the microbial degradation mechanism during kitchen waste biodrying.
Chemosphere.
2022 Nov; 307(Pt 4):135862. doi:
10.1016/j.chemosphere.2022.135862
. [PMID: 35944670] - Shanmei Zou, Zheng Huang, Xuemin Wu, Xinke Yu. Physiological and Genetic Regulation for High Lipid Accumulation by Chlorella sorokiniana Strains from Different Environments of an Arctic Glacier, Desert, and Temperate Lake under Nitrogen Deprivation Conditions.
Microbiology spectrum.
2022 10; 10(5):e0039422. doi:
10.1128/spectrum.00394-22
. [PMID: 36200894] - Arati P Vasav, Rucha C Godbole, Ashwini M Darshetkar, Anupama A Pable, Vitthal T Barvkar. Functional genomics-enabled characterization of CYP81B140 and CYP81B141 from Plumbago zeylanica L. substantiates their involvement in plumbagin biosynthesis.
Planta.
2022 Oct; 256(6):102. doi:
10.1007/s00425-022-04014-x
. [PMID: 36282353] - Lello Zolla. On the Need to Distinguish between Insulin-Normal and Insulin-Resistant Patients in Testosterone Therapy.
International journal of molecular sciences.
2022 Oct; 23(21):. doi:
10.3390/ijms232112730
. [PMID: 36361519] - Swati Megha, Zhengping Wang, Nat N V Kav, Habibur Rahman. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus.
BMC genomics.
2022 Oct; 23(1):707. doi:
10.1186/s12864-022-08920-y
. [PMID: 36253756] - Naglaa Elarabany, Abeer Hamad, Sanad M AlSobeai. Evaluating anti-obesity potential, active components, and antioxidant mechanisms of Moringa peregrina seeds extract on high-fat diet-induced obesity.
Journal of food biochemistry.
2022 10; 46(10):e14265. doi:
10.1111/jfbc.14265
. [PMID: 35661366] - Jia-Hui Lei, Hai-Yan Lin, Jin-Li Ding, Ming-Guang Feng, Sheng-Hua Ying. Functional characterization of two homologs of yeast acetyl-coenzyme A synthetase in the entomopathogenic fungus Beauveria bassiana.
Archives of microbiology.
2022 Sep; 204(10):653. doi:
10.1007/s00203-022-03269-y
. [PMID: 36175799] - Odeta Mece, Diede Houbaert, Patrizia Agostinis. Eating your own fat to stay fit: lipophagy sustains lymphangiogenesis.
Autophagy.
2022 Sep; ?(?):1-3. doi:
10.1080/15548627.2022.2117513
. [PMID: 36026459] - Weiyuan Yang, Xin Li, Guiyun Jiang, Yu Long, Hui Li, Shujun Yu, Huina Zhao, Juanxu Liu. Crotonylation versus acetylation in petunia corollas with reduced acetyl-CoA due to PaACL silencing.
Physiologia plantarum.
2022 Sep; 174(5):e13794. doi:
10.1111/ppl.13794
. [PMID: 36193016] - Mingfeng Cao, Vinh G Tran, Jiansong Qin, Andrew Olson, Shekhar Mishra, John C Schultz, Chunshuai Huang, Dongming Xie, Huimin Zhao. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone.
Biotechnology and bioengineering.
2022 09; 119(9):2529-2540. doi:
10.1002/bit.28159
. [PMID: 35701887] - Gang Luo, Lu Xiang, Lin Xiao. Acetyl-CoA Deficiency Is Involved in the Regulation of Iron Overload on Lipid Metabolism in Apolipoprotein E Knockout Mice.
Molecules (Basel, Switzerland).
2022 Aug; 27(15):. doi:
10.3390/molecules27154966
. [PMID: 35956917] - Mary Akinyi Nyonda, Jean-Baptiste Boyer, Lucid Belmudes, Aarti Krishnan, Paco Pino, Yohann Couté, Mathieu Brochet, Thierry Meinnel, Dominique Soldati-Favre, Carmela Giglione. N-acetylation of secreted proteins in Apicomplexa is widespread and is independent of the ER acetyl-CoA transporter AT1.
Journal of cell science.
2022 08; 135(15):. doi:
10.1242/jcs.259811
. [PMID: 35621049] - Christian C Dibble, Samuel A Barritt, Grace E Perry, Evan C Lien, Renee C Geck, Sarah E DuBois-Coyne, David Bartee, Thomas T Zengeya, Emily B Cohen, Min Yuan, Benjamin D Hopkins, Jordan L Meier, John G Clohessy, John M Asara, Lewis C Cantley, Alex Toker. PI3K drives the de novo synthesis of coenzyme A from vitamin B5.
Nature.
2022 08; 608(7921):192-198. doi:
10.1038/s41586-022-04984-8
. [PMID: 35896750] - Snehanshu Chowdhury, Anwesha Kar, Debaleena Bhowmik, Anupam Gautam, Debashree Basak, Ishita Sarkar, Puspendu Ghosh, Deborpita Sarkar, Alvina Deka, Paramita Chakraborty, Asima Mukhopadhyay, Shikhar Mehrotra, Soumen Basak, Sandip Paul, Shilpak Chatterjee. Intracellular Acetyl CoA Potentiates the Therapeutic Efficacy of Antitumor CD8+ T Cells.
Cancer research.
2022 07; 82(14):2640-2655. doi:
10.1158/0008-5472.can-21-4052
. [PMID: 35648389] - S Joseph Endicott, Alexander C Monovich, Eric L Huang, Evelynn I Henry, Dennis N Boynton, Logan J Beckmann, Michael J MacCoss, Richard A Miller. Lysosomal targetomics of ghr KO mice shows chaperone-mediated autophagy degrades nucleocytosolic acetyl-coA enzymes.
Autophagy.
2022 07; 18(7):1551-1571. doi:
10.1080/15548627.2021.1990670
. [PMID: 34704522] - Bo Zhang, Yunhui Zhang, Ruobing Guan, Mengfang Du, Xinming Yin, Wenli Zhao, Shiheng An. Trehalase is required for sex pheromone biosynthesis in Helicoverpa armigera.
Insect molecular biology.
2022 06; 31(3):334-345. doi:
10.1111/imb.12762
. [PMID: 35084068] - Mary T Doan, Michael D Neinast, Erika L Varner, Kenneth C Bedi, David Bartee, Helen Jiang, Sophie Trefely, Peining Xu, Jay P Singh, Cholsoon Jang, J Eduardo Rame, Donita C Brady, Jordan L Meier, Kenneth B Marguiles, Zoltan Arany, Nathaniel W Snyder. Direct anabolic metabolism of three-carbon propionate to a six-carbon metabolite occurs in vivo across tissues and species.
Journal of lipid research.
2022 06; 63(6):100224. doi:
10.1016/j.jlr.2022.100224
. [PMID: 35568254] - Ge Zhang, Huan Wang, Ze Zhang, Kevin J Verstrepen, Qinhong Wang, Zongjie Dai. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives.
Critical reviews in biotechnology.
2022 Jun; 42(4):618-633. doi:
10.1080/07388551.2021.1947183
. [PMID: 34325575] - Yunni Chen, Chenglong Xu, Huilin Yang, Zhenying Liu, Zhibin Zhang, Riming Yan, Du Zhu. L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway.
Applied microbiology and biotechnology.
2022 Apr; 106(7):2619-2636. doi:
10.1007/s00253-022-11877-3
. [PMID: 35291023] - João S Patrício, Daniela Dias-Pedroso, Rui A Carvalho, Helena L A Viera, John G Jones. A simple method for quantifying de novo lipogenesis rate and substrate selection in cell cultures by 13 C NMR isotopomer analysis of the crude lipid fraction.
NMR in biomedicine.
2022 03; 35(3):e4648. doi:
10.1002/nbm.4648
. [PMID: 34850989] - Li Zhu, Jieze Zhang, Jiawei Yang, Yu Jiang, Sheng Yang. Strategies for optimizing acetyl-CoA formation from glucose in bacteria.
Trends in biotechnology.
2022 02; 40(2):149-165. doi:
10.1016/j.tibtech.2021.04.004
. [PMID: 33965247] - Yongshuo Ma, Nian Liu, Per Greisen, Jingbo Li, Kangjian Qiao, Sanwen Huang, Gregory Stephanopoulos. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica.
Nature communications.
2022 01; 13(1):572. doi:
10.1038/s41467-022-28277-w
. [PMID: 35102143] - Evelina Charidemou, Maria A Tsiarli, Andria Theophanous, Vural Yilmaz, Chrysoula Pitsouli, Katerina Strati, Julian L Griffin, Antonis Kirmizis. Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis.
BMC biology.
2022 01; 20(1):22. doi:
10.1186/s12915-021-01225-8
. [PMID: 35057804] - Chong Zhang, Xiang-Yu Wang, Peng Zhang, Tao-Chen He, Jia-Hao Han, Rui Zhang, Jing Lin, Jie Fan, Lu Lu, Wen-Wei Zhu, Hu-Liang Jia, Ju-Bo Zhang, Jin-Hong Chen. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts.
Cell death & disease.
2022 01; 13(1):57. doi:
10.1038/s41419-022-04506-4
. [PMID: 35027547] - Wen-Chuan Hsieh, Benjamin M Sutter, Holly Ruess, Spencer D Barnes, Venkat S Malladi, Benjamin P Tu. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes.
Molecular cell.
2022 01; 82(1):60-74.e5. doi:
10.1016/j.molcel.2021.12.015
. [PMID: 34995509] - Fei Li, Xinlei Wei, Lin Zhang, Cheng Liu, Chun You, Zhiguang Zhu. Installing a Green Engine To Drive an Enzyme Cascade: A Light-Powered In Vitro Biosystem for Poly(3-hydroxybutyrate) Synthesis.
Angewandte Chemie (International ed. in English).
2022 01; 61(1):e202111054. doi:
10.1002/anie.202111054
. [PMID: 34664348] - Chen Zhao, Youlin Wang, Hao Yang, Shupei Wang, Marie-Christine Tang, Denis Cyr, Fabienne Parente, Pierre Allard, Paula Waters, Alexandra Furtos, Gongshe Yang, Grant A Mitchell. Propionic acidemia in mice: Liver acyl-CoA levels and clinical course.
Molecular genetics and metabolism.
2022 01; 135(1):47-55. doi:
10.1016/j.ymgme.2021.11.011
. [PMID: 34896004] - Keisuke Wada, Azusa Saika, Kazunori Ushimaru, Shun Sato, Tokuma Fukuoka, Tomotake Morita. Metabolomic Evaluation of the Central Metabolic Pathways of Mannosylerythritol Lipid Biosynthesis in Moesziomyces antarcticus T-34.
Journal of oleo science.
2022; 71(1):119-125. doi:
10.5650/jos.ess21229
. [PMID: 35013034] - W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
Biochemical and biophysical research communications.
2022 01; 586(?):121-128. doi:
10.1016/j.bbrc.2021.11.073
. [PMID: 34839190] - Zhaoyue Zhang, Tara TeSlaa, Xincheng Xu, Xianfeng Zeng, Lifeng Yang, Gang Xing, Gregory J Tesz, Michelle F Clasquin, Joshua D Rabinowitz. Serine catabolism generates liver NADPH and supports hepatic lipogenesis.
Nature metabolism.
2021 12; 3(12):1608-1620. doi:
10.1038/s42255-021-00487-4
. [PMID: 34845393] - Ying-Hui He, Xiao-Fei Shang, Hai-Xin Li, An-Ping Li, Chen Tang, Bao-Qi Zhang, Zhi-Jun Zhang, Rui Wang, Yue Ma, Sha-Sha Du, Yong-Mei Hu, Tian-Lin Wu, Wen-Bin Zhao, Cheng-Jie Yang, Ying-Qian Liu. Antifungal Activity and Action Mechanism Study of Coumarins from Cnidium monnieri Fruit and Structurally Related Compounds.
Chemistry & biodiversity.
2021 Dec; 18(12):e2100633. doi:
10.1002/cbdv.202100633
. [PMID: 34643056] - Lin Chen, Wei Yan, Xiujuan Qian, Minjiao Chen, Xiaoyu Zhang, Fengxue Xin, Wenming Zhang, Min Jiang, Katrin Ochsenreither. Increased Lipid Production in Yarrowia lipolytica from Acetate through Metabolic Engineering and Cosubstrate Fermentation.
ACS synthetic biology.
2021 11; 10(11):3129-3138. doi:
10.1021/acssynbio.1c00405
. [PMID: 34714052] - Jianli Wang, Wenjian Ma, Yu Fang, Hailing Zhang, Hao Liang, Haili Liu, Tingwei Wang, Shangwei Chen, Jian Ji, Xiaoyuan Wang. Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation.
Applied and environmental microbiology.
2021 11; 87(23):e0138921. doi:
10.1128/aem.01389-21
. [PMID: 34550763] - Hiroyuki Takagi, Tatsuya Ikehara, Kumi Hashimoto, Keiichi Tanimoto, Atsuyuki Shimazaki, Yuto Kashiwagi, Shingo Sakamoto, Hideo Yukioka. Acetyl-CoA carboxylase 2 inhibition reduces skeletal muscle bioactive lipid content and attenuates progression of type 2 diabetes in Zucker diabetic fatty rats.
European journal of pharmacology.
2021 Nov; 910(?):174451. doi:
10.1016/j.ejphar.2021.174451
. [PMID: 34454928] - Jae Mo Park, Sonal Josan, Ralph E Hurd, James Graham, Peter J Havel, David Bendahan, Dirk Mayer, Youngran Chung, Daniel M Spielman, Thomas Jue. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle.
Pflugers Archiv : European journal of physiology.
2021 11; 473(11):1761-1773. doi:
10.1007/s00424-021-02613-3
. [PMID: 34415396] - Karine Mention, Marie Joncquel Chevalier Curt, Anne-Frédérique Dessein, Claire Douillard, Dries Dobbelaere, Joseph Vamecq. Citrin deficiency: Does the reactivation of liver aralar-1 come into play and promote HCC development?.
Biochimie.
2021 Nov; 190(?):20-23. doi:
10.1016/j.biochi.2021.06.018
. [PMID: 34228977] - I E Azarova, E Y Klyosova, A V Polonikov. [Polymorphic variants of glutathione reductase - new genetic markers of predisposition to type 2 diabetes mellitus].
Terapevticheskii arkhiv.
2021 Oct; 93(10):1164-1170. doi:
10.26442/00403660.2021.10.201101
. [PMID: 36286817] - Liang Sun, Jae Won Lee, Sangdo Yook, Stephan Lane, Ziqiao Sun, Soo Rin Kim, Yong-Su Jin. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast.
Nature communications.
2021 08; 12(1):4975. doi:
10.1038/s41467-021-25241-y
. [PMID: 34404791] - Bat-Erdene Jugder, Layla Kamareddine, Paula I Watnick. Microbiota-derived acetate activates intestinal innate immunity via the Tip60 histone acetyltransferase complex.
Immunity.
2021 08; 54(8):1683-1697.e3. doi:
10.1016/j.immuni.2021.05.017
. [PMID: 34107298] - Shuanghui Lu, Zhiyuan Ma, Yong Gu, Ping Li, Yingchun Chen, Mengru Bai, Hui Zhou, Xi Yang, Huidi Jiang. Downregulation of glucose-6-phosphatase expression contributes to fluoxetine-induced hepatic steatosis.
Journal of applied toxicology : JAT.
2021 08; 41(8):1232-1240. doi:
10.1002/jat.4109
. [PMID: 33179799] - Yan-Peng Zhao, Na Wu, Wen-Jie Li, Jian-Ling Shen, Chen Chen, Fu-Guang Li, Yu-Xia Hou. Evolution and Characterization of Acetyl Coenzyme A: Diacylglycerol Acyltransferase Genes in Cotton Identify the Roles of GhDGAT3D in Oil Biosynthesis and Fatty Acid Composition.
Genes.
2021 07; 12(7):. doi:
10.3390/genes12071045
. [PMID: 34356061] - Xin Tang, Lulu Chang, Shujie Gu, Hao Zhang, Yong Q Chen, Haiqin Chen, Jianxin Zhao, Wei Chen. Role of beta-isopropylmalate dehydrogenase in lipid biosynthesis of the oleaginous fungus Mortierella alpina.
Fungal genetics and biology : FG & B.
2021 07; 152(?):103572. doi:
10.1016/j.fgb.2021.103572
. [PMID: 34015432] - Natalia Mast, Alexey M Petrov, Erin Prendergast, Ilya Bederman, Irina A Pikuleva. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2021 07; 18(3):2040-2060. doi:
10.1007/s13311-021-01079-6
. [PMID: 34235635] - Lijing Liao, Yuanze Zhou, Youdong Xu, Yuhao Zhang, Xikai Liu, Biao Liu, Xinxin Chen, Yan Guo, Zhixiong Zeng, Yucheng Zhao. Structural and Molecular Dynamics Analysis of Plant Serotonin N-Acetyltransferase Reveal an Acid/Base-Assisted Catalysis in Melatonin Biosynthesis.
Angewandte Chemie (International ed. in English).
2021 05; 60(21):12020-12026. doi:
10.1002/anie.202100992
. [PMID: 33682300] - Jonas Weidenhausen, Jürgen Kopp, Laura Armbruster, Markus Wirtz, Karine Lapouge, Irmgard Sinning. Structural and functional characterization of the N-terminal acetyltransferase Naa50.
Structure (London, England : 1993).
2021 05; 29(5):413-425.e5. doi:
10.1016/j.str.2020.12.004
. [PMID: 33400917] - Jessica B Felix, Aaron R Cox, Sean M Hartig. Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion.
Trends in endocrinology and metabolism: TEM.
2021 05; 32(5):320-332. doi:
10.1016/j.tem.2021.02.008
. [PMID: 33712368] - Sze-Han Lai, Mee-Len Chye. Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses.
Cells.
2021 04; 10(5):. doi:
10.3390/cells10051064
. [PMID: 33946260]