Cycloastragenol (BioDeep_00000230345)

 

Secondary id: BioDeep_00000177799

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


InChI=1/C30H50O5/c1-24(2)20(33)8-11-30-16-29(30)13-12-26(5)23(28(7)10-9-21(35-28)25(3,4)34)18(32)15-27(26,6)19(29)14-17(31)22(24)30/h17-23,31-34H,8-16H2,1-7H3/t17-,18-,19-,20-,21-,22-,23-,26+,27-,28+,29-,30+/m0/s1

化学式: C30H50O5 (490.365805)
中文名称: 环黄芪醇
谱图信息: 最多检出来源 Homo sapiens(blood) 0.7%

分子结构信息

SMILES: CC(C)(O)C1CCC(C)(C2C(O)CC3(C)C4CC(O)C5C(C)(C)C(O)CCC56CC46CCC23C)O1
InChI: InChI=1S/C30H50O5/c1-24(2)20(33)8-11-30-16-29(30)13-12-26(5)23(28(7)10-9-21(35-28)25(3,4)34)18(32)15-27(26,6)19(29)14-17(31)22(24)30/h17-23,31-34H,8-16H2,1-7H3/t17-,18-,19-,20-,21-,22-,23-,26+,27-,28+,29-,30+/m0/s1

描述信息

Cycloastragenol is a sapogenin that is the aglycone derivative of astragaloside IV, a major saponin extracted from the root of Astragalus membranaceus. It has a role as a metabolite. It is a sapogenin, a pentacyclic triterpenoid, a tetrol and a member of oxolanes. It derives from a hydride of a 5alpha-gonane.
Cycloastragenol is a natural product found in Euphorbia glareosa, Astragalus mongholicus, and other organisms with data available.
A sapogenin that is the aglycone derivative of astragaloside IV, a major saponin extracted from the root of Astragalus membranaceus.
Cycloastragenol (Astramembrangenin), the active form of astragaloside IV, has anti-oxidant, anti-inflammatory, anti-aging, anti-apoptotic, and cardiovascular protective effects. Cycloastragenol is a potent telomerase activator and can lengthen telomeres. Cycloastragenol alleviates age-related bone loss and improves bone microstructure and biomechanical properties[1][2][3].
Cycloastragenol (Astramembrangenin), the active form of astragaloside IV, has anti-oxidant, anti-inflammatory, anti-aging, anti-apoptotic, and cardiovascular protective effects. Cycloastragenol is a potent telomerase activator and can lengthen telomeres. Cycloastragenol alleviates age-related bone loss and improves bone microstructure and biomechanical properties[1][2][3].
Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1].
Cyclogalegenin (Cyclogalegigenin) is a isoprenoid found in Astragalus galegiformis. Cyclogalegenin is the enantiomer of Cycloastragenol[1].

同义名列表

22 个代谢物同义名

InChI=1/C30H50O5/c1-24(2)20(33)8-11-30-16-29(30)13-12-26(5)23(28(7)10-9-21(35-28)25(3,4)34)18(32)15-27(26,6)19(29)14-17(31)22(24)30/h17-23,31-34H,8-16H2,1-7H3/t17-,18-,19-,20-,21-,22-,23-,26+,27-,28+,29-,30+/m0/s1; (2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyltetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthrene-4,7,9-triol; (2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-3-((2R,5S)-5-(2-Hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethylhexadecahydrocyclopenta[a]cyclopropa[e]phenanthrene-4,7,9-triol; (1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.01,3.03,8.012,16]octadecane-6,9,14-triol; 9,19-CYCLOLANOSTANE-3,6,16,25-TETROL, 20,24-EPOXY-, (3.BETA.,6.ALPHA.,16.BETA.,20R,24S)-; (3beta,6alpha,9beta,16beta,20R,24S)-20,24-epoxy-9,19-cyclolanostane-3,6,16,25-tetrol; (3.BETA.,6.ALPHA.,16.BETA.,20R,24S)-20,24-EPOXY-9,19-CYCLOLANOSTANE-3,6,16,25-TETROL; (3b,6a,16b,24R)-20,24-Epoxy-9,19-cyclolanostane-3,6,16,25-tetrol;Cyclogalagenin; (3beta,6alpha,16beta,20R,24S)-20,24-Epoxy-9,19-cyclolanostane-3,6,16,25-tetrol; 9,19-Cyclolanostane-3,6,16,25-tetrol, 20,24-epoxy-,(3b,6a,16b,20R,24S)-; Cycloastragenol, >=98\\% (HPLC); WENNXORDXYGDTP-UOUCMYEWSA-; CYCLOASTRAGENOL [WHO-DD]; Cyclosieversigenin; astramembrangenin; Cyclosiversigenin; cyclogalegigenin; Cycloastragenol; UNII-X37D9F2L0V; Cyclogalegenin; Cyclogalegenol; X37D9F2L0V



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jie Xia, Yuan Zhang, Qing Wang, Teng Zhang. Cycloastragenol restrains keratinocyte hyperproliferation by promoting autophagy via the miR-145/STC1/Notch1 axis in psoriasis. Immunopharmacology and immunotoxicology. 2024 Jan; ?(?):1-11. doi: 10.1080/08923973.2023.2300310. [PMID: 38194243]
  • Juantao Kong, Rongshan Chen, Ruirui Liu, Wei Wang, Simin Wang, Jinping Zhang, Ning Yang. PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana. BMC plant biology. 2023 Nov; 23(1):571. doi: 10.1186/s12870-023-04555-7. [PMID: 37978426]
  • Shuyi Song, Yanan Li, Xin Liu, Jiayi Yu, Zhe Li, Kexin Liang, Shaoping Wang, Jiayu Zhang. Study on the Biotransformation and Activities of Astragalosides from Astragali Radix In Vitro and In Vivo. Journal of agricultural and food chemistry. 2023 Nov; ?(?):. doi: 10.1021/acs.jafc.3c05405. [PMID: 37940610]
  • Feng Zhu, Xiao Zhang, Bing-Yuan Du, Xiang-Xia Zhu, Gui-Fang Zhao, Ying Sun, Qing-Qiang Yao, Hong-Bao Liang, Jing-Chun Yao, Zhong Liu, Gui-Min Zhang, Guo-Fei Qin. Using UPLC-LTQ-Orbitrap-MS and HPLC-CAD to Identify Impurities in Cycloastragenol, Which Is a Pre-Clinical Candidate for COPD. Molecules (Basel, Switzerland). 2023 Aug; 28(17):. doi: 10.3390/molecules28176382. [PMID: 37687212]
  • Juantao Kong, Kai Yin, Cuixia Zhang, Xuan Liu, Ning Yang. PLDδ, auxin, and H2O2 mediated the allelopathic effect of cycloastragenol on root growth in Arabidopsis. Journal of plant physiology. 2023 Mar; 282(?):153929. doi: 10.1016/j.jplph.2023.153929. [PMID: 36724592]
  • Huajian Li, Shaoping Wang, Hong Wang, Haoran Li, Yanan Li, Pingping Dong, Xianming Lan, Jiayu Zhang, Long Dai. Comprehensive Study of In vivo and In vitro Metabolites of Cycloastragenol Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometer. Current drug metabolism. 2023; 23(14):1090-1114. doi: 10.2174/1389200224666230202150436. [PMID: 36733242]
  • Ting Chen, Ziqing Li, Shichun Li, Yingxiang Zou, Xinyi Gao, Shi Shu, Zhifei Wang. Cycloastragenol suppresses M1 and promotes M2 polarization in LPS-stimulated BV-2 cells and ischemic stroke mice. International immunopharmacology. 2022 Dec; 113(Pt A):109290. doi: 10.1016/j.intimp.2022.109290. [PMID: 36252498]
  • Guoliang Deng, Lisha Zhou, Binglin Wang, Xiaofan Sun, Qinchang Zhang, Hongqi Chen, Ning Wan, Hui Ye, Xiaoqi Wu, Dongdong Sun, Yang Sun, Haibo Cheng. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation. Journal for immunotherapy of cancer. 2022 Oct; 10(10):. doi: 10.1136/jitc-2022-004874. [PMID: 36307151]
  • Fan C Wang, Philip L Hudson, Keith Burk, Alejandro G Marangoni. Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier. Journal of colloid and interface science. 2022 Feb; 608(Pt 2):1222-1228. doi: 10.1016/j.jcis.2021.10.143. [PMID: 34735856]
  • Xueyi Zhu, Yuxue Cao, Mingyue Su, Mengmeng Chen, Congcong Li, La Yi, Jingjing Qin, Wuniqiemu Tulake, Fangzhou Teng, Yuanyuan Zhong, Weifeng Tang, Shiyuan Wang, Jingcheng Dong. Cycloastragenol alleviates airway inflammation in asthmatic mice by inhibiting autophagy. Molecular medicine reports. 2021 11; 24(5):. doi: 10.3892/mmr.2021.12445. [PMID: 34542166]
  • Chen Chen, Yaohui Ni, Baocheng Jiang, Song Yan, Bohui Xu, Boyi Fan, Huilian Huang, Guangtong Chen. Anti-aging derivatives of cycloastragenol produced by biotransformation. Natural product research. 2021 Aug; 35(16):2685-2690. doi: 10.1080/14786419.2019.1662011. [PMID: 31496283]
  • Seda Duman, Güner Ekiz, Sinem Yılmaz, Hasan Yusufoglu, Petek Ballar Kırmızıbayrak, Erdal Bedir. Telomerase activators from 20(27)-octanor-cycloastragenol via biotransformation by the fungal endophytes. Bioorganic chemistry. 2021 04; 109(?):104708. doi: 10.1016/j.bioorg.2021.104708. [PMID: 33621779]
  • Jiahuan Wu, Zhanwei Zeng, Yuyun Li, Huiyi Qin, Changqing Zuo, Chenhui Zhou, Daohua Xu. Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase. Phytotherapy research : PTR. 2021 Apr; 35(4):2034-2044. doi: 10.1002/ptr.6946. [PMID: 33165990]
  • Man Li, Shi-Chun Li, Bao-Kai Dou, Ying-Xiang Zou, Hao-Zhen Han, Dong-Xiang Liu, Zun-Ji Ke, Zhi-Fei Wang. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta pharmacologica Sinica. 2020 Aug; 41(8):1025-1032. doi: 10.1038/s41401-020-0386-6. [PMID: 32203080]
  • Yu-Shan Ren, Hong-Hua Li, Jing-Chun Yao, Yu-Jun Tan, Li-Hong Pan, Tao Peng, Li-Li Zhao, Gui-Min Zhang, Jiang Yue, Xue-Mei Hu, Zhong Liu, Jie Li. Application quantitative proteomics approach to identify differentially expressed proteins associated with cardiac protection mediated by cycloastragenol in acute myocardial infarction rats. Journal of proteomics. 2020 06; 222(?):103691. doi: 10.1016/j.jprot.2020.103691. [PMID: 32068187]
  • Wissem Mhiri, Merve Ceylan, Neslihan Turgut-Kara, Barbaros Nalbantoğlu, Özgür Çakır. Transcriptomic analysis reveals responses to Cycloastragenol in Arabidopsis thaliana. PloS one. 2020; 15(12):e0242986. doi: 10.1371/journal.pone.0242986. [PMID: 33301486]
  • Güner Ekiz, Sinem Yılmaz, Hasan Yusufoglu, Petek Ballar Kırmızıbayrak, Erdal Bedir. Microbial Transformation of Cycloastragenol and Astragenol by Endophytic Fungi Isolated from Astragalus Species. Journal of natural products. 2019 11; 82(11):2979-2985. doi: 10.1021/acs.jnatprod.9b00336. [PMID: 31713424]
  • Haijun Lin, Baocheng Jiang, Chen Chen, Yan Song, Min Yang, Huilian Huang, Guangtong Chen. Microbial transformation of the anti-aging agent cycloastragenol by Mucor racemosus. Natural product research. 2019 Nov; 33(21):3103-3108. doi: 10.1080/14786419.2018.1519822. [PMID: 30449165]
  • Jing Liu, Dongxiao Gao, Juhua Dan, Dan Liu, Lei Peng, Ruoyu Zhou, Ying Luo. The protective effect of cycloastragenol on aging mouse circadian rhythmic disorder induced by d-galactose. Journal of cellular biochemistry. 2019 10; 120(10):16408-16415. doi: 10.1002/jcb.28587. [PMID: 31310357]
  • Guoliang Deng, Wenjun Chen, Peng Wang, Tianying Zhan, Wei Zheng, Zhengbing Gu, Xiaomei Wang, Xiaoyun Ji, Yang Sun. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice. International immunopharmacology. 2019 Sep; 74(?):105682. doi: 10.1016/j.intimp.2019.105682. [PMID: 31203155]
  • Jing Wang, Meng-Ling Wu, Shou-Pei Cao, Hui Cai, Zhi-Ming Zhao, Yao-Hong Song. Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Nov; 107(?):1074-1081. doi: 10.1016/j.biopha.2018.08.016. [PMID: 30257319]
  • S Divya Reddy, Bandi Siva, V S Phani Babu, M Vijaya, V Lakshma Nayak, Reeta Mandal, Ashok K Tiwari, P Shashikala, K Suresh Babu. New cycloartane type-triterpenoids from the areal parts of Caragana sukiensis and their biological activities. European journal of medicinal chemistry. 2017 Aug; 136(?):74-84. doi: 10.1016/j.ejmech.2017.04.065. [PMID: 28482219]
  • Ming Gu, Shiying Zhang, Yuanyuan Zhao, Jinwen Huang, Yahui Wang, Yin Li, Shengjie Fan, Li Yang, Guang Ji, Qingchun Tong, Cheng Huang. Cycloastragenol improves hepatic steatosis by activating farnesoid X receptor signalling. Pharmacological research. 2017 Jul; 121(?):22-32. doi: 10.1016/j.phrs.2017.04.021. [PMID: 28428116]
  • Peng-Kai Ma, Bao-Hong Wei, Yan-Ling Cao, Qing Miao, Ning Chen, Chang-E Guo, Hong-Ying Chen, Yu-Jie Zhang. Pharmacokinetics, metabolism, and excretion of cycloastragenol, a potent telomerase activator in rats. Xenobiotica; the fate of foreign compounds in biological systems. 2017 Jun; 47(6):526-537. doi: 10.1080/00498254.2016.1204568. [PMID: 27412909]
  • Chenghong Sun, Mingmin Jiang, Li Zhang, Jian Yang, Guimin Zhang, Bingyuan Du, Yushan Ren, Xin Li, Jingchun Yao. Cycloastragenol mediates activation and proliferation suppression in concanavalin A-induced mouse lymphocyte pan-activation model. Immunopharmacology and immunotoxicology. 2017 Jun; 39(3):131-139. doi: 10.1080/08923973.2017.1300170. [PMID: 28290732]
  • Ruixue Ran, Chunze Zhang, Rongshan Li, Bowei Chen, Weihua Zhang, Zhenying Zhao, Zhiwei Fu, Zuo Du, Xiaolang Du, Xiaolong Yang, Zhongze Fang. Evaluation and Comparison of the Inhibition Effect of Astragaloside IV and Aglycone Cycloastragenol on Various UDP-Glucuronosyltransferase (UGT) Isoforms. Molecules (Basel, Switzerland). 2016 Nov; 21(12):. doi: 10.3390/molecules21121616. [PMID: 27916843]
  • Tingting Wang, Jingya Ruan, Xiaoxia Li, Liping Chao, Pingping Shi, Lifeng Han, Yi Zhang, Tao Wang. Bioactive cyclolanstane-type saponins from the stems of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. Journal of natural medicines. 2016 Apr; 70(2):198-206. doi: 10.1007/s11418-015-0959-8. [PMID: 26800699]
  • Yan Zhao, Qiang Li, Wenjun Zhao, Jia Li, Yan Sun, Kang Liu, Baolin Liu, Ning Zhang. Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. Journal of ethnopharmacology. 2015 Jul; 169(?):210-8. doi: 10.1016/j.jep.2015.04.030. [PMID: 25922268]
  • Shifeng Wang, Chenxi Zhai, Qing Liu, Xing Wang, Zhenzhen Ren, Yuxin Zhang, Yanling Zhang, Qinghua Wu, Shengnan Sun, Shiyou Li, Yanjiang Qiao. Cycloastragenol, a triterpene aglycone derived from Radix astragali, suppresses the accumulation of cytoplasmic lipid droplet in 3T3-L1 adipocytes. Biochemical and biophysical research communications. 2014 Jul; 450(1):306-11. doi: 10.1016/j.bbrc.2014.05.117. [PMID: 24942874]
  • Nancy J Szabo. Dietary safety of cycloastragenol from Astragalus spp.: subchronic toxicity and genotoxicity studies. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2014 Feb; 64(?):322-34. doi: 10.1016/j.fct.2013.11.041. [PMID: 24316212]
  • Tao Li, Yiwei Wang, Yanli Wang, Rixin Liang, Dong Zhang, Huihui Zhang, Li Chen, Weipeng Yang. Development of an SPE-HPLC-MS method for simultaneous determination and pharmacokinetic study of bioactive constituents of Yu Ping Feng San in rat plasma after oral administration. Journal of ethnopharmacology. 2013 Feb; 145(3):784-92. doi: 10.1016/j.jep.2012.12.010. [PMID: 23261488]
  • Lisa Y Yung, Wing See Lam, Maurice K C Ho, Yueqing Hu, Fanny C F Ip, Haihong Pang, Allison C Chin, Calvin B Harley, Nancy Y Ip, Yung H Wong. Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types. Planta medica. 2012 Jan; 78(2):115-21. doi: 10.1055/s-0031-1280346. [PMID: 22083896]
  • Rui-Na Zhou, Yue-Lin Song, Jian-Qing Ruan, Yi-Tao Wang, Ru Yan. Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug metabolism and pharmacokinetics. 2012; 27(6):586-97. doi: 10.2133/dmpk.dmpk-11-rg-160. [PMID: 22673033]
  • Ming Ruan, Li-Yang Zhang, Bin Yu, Yu-Sheng Chen, Yi Zhuang. [Transformation of astragaloside IV in bidirectional solid fermenting of Astragalus membranaceus]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2010 Mar; 33(3):339-43. doi: ". [PMID: 20681294]
  • I Calis, H A Gazar, S Piacente, C Pizza. Secondary metabolites from the roots of Astragalus zahlbruckneri. Journal of natural products. 2001 Sep; 64(9):1179-82. doi: 10.1021/np0102051. [PMID: 11575952]