Gene Association: MLH1

UniProt Search: MLH1 (PROTEIN_CODING)
Function Description: mutL homolog 1

found 51 associated metabolites with current gene based on the text mining result from the pubmed database.

Cytosine

6-amino-1,2-dihydropyrimidin-2-one

C4H5N3O (111.0433)


Cytosine, also known as C, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Cytosine is also classified as a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group at position 2). Cytosine is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, cytosine forms three hydrogen bonds with guanine. Cytosine was discovered and named by Albrecht Kossel and Albert Neumann in 1894 when it was hydrolyzed from calf thymus tissues. Cytosine exists in all living species, ranging from bacteria to plants to humans. Within cells, cytosine can undergo several enzymatic reactions. It can be methylated into 5-methylcytosine by an enzyme called DNA methyltransferase (DNMT) or be methylated and hydroxylated to make 5-hydroxymethylcytosine. The DNA methyltransferase (DNMT) family of enzymes transfer a methyl group from S-adenosyl-l-methionine (SAM) to the 5’ carbon of cytosine in a molecule of DNA. High levels of cytosine can be found in the urine of individuals with severe combined immunodeficiency syndrome (SCID). Cytosine concentrations as high as (23-160 mmol/mol creatinine) were detected in SCID patients compared to normal levels of <2 mmol/mol creatinine (PMID: 262183). Cytosine is an aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. It has a role as a human metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a pyrimidine nucleobase, a pyrimidone and an aminopyrimidine. Cytosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytosine is a natural product found in Streptomyces antibioticus, Salmonella enterica, and other organisms with data available. Cytosine is a pyrimidine base found in DNA and RNA that pairs with guanine. Cytosine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine base that is a fundamental unit of nucleic acids. See also: Pyrimidine (related). A pyrimidine base that is a fundamental unit of nucleic acids. The deamination of cytosine alone is apparent and the nucleotide of cytosine is the prime mutagenic nucleotide in leukaemia and cancer. [HMDB]. Cytosine is found in many foods, some of which are beech nut, turmeric, grass pea, and cucurbita (gourd). An aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. Cytosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-30-7 (retrieved 2024-07-01) (CAS RN: 71-30-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].

   

Dacarbazine

Dacarbazine, Pharmaceutical Secondary Standard; Certified Reference Material

C6H10N6O (182.0916)


Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) Dacarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564)The mechanism of action is not known, but appears to exert cytotoxic effects via its action as an alkylating agent. Other theories include DNA synthesis inhibition by its action as a purine analog, and interaction with SH groups. Dacarbazine is not cell cycle-phase specific. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

(6R)-Folinic acid

2-[(4-{[(2-amino-5-formyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H23N7O7 (473.1659)


The active metabolite of folic acid. Leucovorin is used principally as its calcium salt as an antidote to folic acid antagonists which block the conversion of folic acid to folinic acid. [HMDB] D020011 - Protective Agents > D000931 - Antidotes C2140 - Adjuvant > C2078 - Folic Acid Derivative Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1]. Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1].

   

Safranal

InChI=1/C10H14O/c1-8-5-4-6-10(2,3)9(8)7-11/h4-5,7H,6H2,1-3H3

C10H14O (150.1045)


Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

5-Methylcytosine

6-amino-5-methyl-1,2-dihydropyrimidin-2-one

C5H7N3O (125.0589)


5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties.; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. Its function varies significantly among species:; A methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem. 5-Methylcytosine is a methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M029 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].

   

Thymine

5-Methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C5H6N2O2 (126.0429)


Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.

   

Floxuridine

5-fluoro-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O5 (246.0652)


An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection. Floxuridine is available as a sterile, nonpyrogenic, lyophilized powder for reconstitution. When administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

2'-Deoxyinosine triphosphate

{[hydroxy({[hydroxy({[(2R,3S,5R)-3-hydroxy-5-(6-oxo-6,9-dihydro-3H-purin-9-yl)oxolan-2-yl]methoxy})phosphoryl]oxy})phosphoryl]oxy}phosphonic acid

C10H15N4O13P3 (491.9848)


2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832) [HMDB] 2-Deoxyinosine triphosphate (dITP) is a deoxyribonucleotide that may be generated from dATP by slow, non-enzymatic hydrolysis or by reduction of ITP. Normally, the cellular dITP concentration is very low. The inability to demonstrate the synthesis of dITP in cellular preparations has been attributed to the presence in the cytoplasm of an inosine triphosphatase pyrophosphatase (ITPase, EC 3.6.1.19), an enzyme that does not permit accumulation of these nucleotides. dITP can be incorporated into DNA by polymerases. The deoxyribonucleotide dITP behaves as a dGTP analogue and is incorporated opposite cytosine with about 50\\% efficiency. Both isolated nuclei and purified DNA polymerases rapidly incorporated dITP into DNA. In the presence of ATP, dITP is stabilized in extracts of nuclei. dITP exist in all cells and is potentially mutagenic, and the levels of these nucleotides are controlled by ITPase. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell. (PMID: 11278832). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-Methyldeoxycytidine

4-amino-1-[(2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2-dihydropyrimidin-2-one

C10H15N3O4 (241.1063)


5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933) [HMDB] 5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933). 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

Thioguanine

2-Amino-1,7-dihydro-6H-purine-6-thione

C5H5N5S (167.0266)


Thioguanine is only found in individuals that have used or taken this drug. It is an antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia. [PubChem]Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1594; ORIGINAL_PRECURSOR_SCAN_NO 1590 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1575; ORIGINAL_PRECURSOR_SCAN_NO 1574 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1573; ORIGINAL_PRECURSOR_SCAN_NO 1568 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1582; ORIGINAL_PRECURSOR_SCAN_NO 1581 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1583; ORIGINAL_PRECURSOR_SCAN_NO 1581 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1576; ORIGINAL_PRECURSOR_SCAN_NO 1575 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 852 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 853; ORIGINAL_PRECURSOR_SCAN_NO 850 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 852; ORIGINAL_PRECURSOR_SCAN_NO 850 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 872; ORIGINAL_PRECURSOR_SCAN_NO 869 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 865; ORIGINAL_PRECURSOR_SCAN_NO 862 CONFIDENCE standard compound; INTERNAL_ID 640; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 863; ORIGINAL_PRECURSOR_SCAN_NO 861 L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2254 - Amidophosphoribosyltransferase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 6-Thioguanine (Thioguanine; 2-Amino-6-purinethiol) is an anti-leukemia and immunosuppressant agent, acts as an inhibitor of SARS and MERS coronavirus papain-like proteases (PLpros) and also potently inhibits USP2 activity, with IC50s of 25 μM and 40 μM for Plpros and recombinant human USP2, respectively.

   

Megestil

17alpha-hydroxy-6-methylpregna-4,6-diene-3,20-dione acetate

C24H32O4 (384.23)


CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9660; ORIGINAL_PRECURSOR_SCAN_NO 9655 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9556; ORIGINAL_PRECURSOR_SCAN_NO 9555 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9613; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9650; ORIGINAL_PRECURSOR_SCAN_NO 9648 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9684; ORIGINAL_PRECURSOR_SCAN_NO 9681 CONFIDENCE standard compound; INTERNAL_ID 727; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9604; ORIGINAL_PRECURSOR_SCAN_NO 9603 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone CONFIDENCE standard compound; INTERNAL_ID 2814 CONFIDENCE standard compound; INTERNAL_ID 8750 D000970 - Antineoplastic Agents

   

Uracil

1,2,3,4-tetrahydropyrimidine-2,4-dione

C4H4N2O2 (112.0273)


Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

Fluorouracil

5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione

C4H3FN2O2 (130.0179)


Fluorouracil is only found in individuals that have used or taken this drug. It is a pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the thymidylate synthetase conversion of deoxyuridylic acid to thymidylic acid. [PubChem]The precise mechanism of action has not been fully determined, but the main mechanism of fluorouracil is thought to be the binding of the deoxyribonucleotide of the drug (FdUMP) and the folate cofactor, N5–10-methylenetetrahydrofolate, to thymidylate synthase (TS) to form a covalently bound ternary complex. This results in the inhibition of the formation of thymidylate from uracil, which leads to the inhibition of DNA and RNA synthesis and cell death. Fluorouracil can also be incorporated into RNA in place of uridine triphosphate (UTP), producing a fraudulent RNA and interfering with RNA processing and protein synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2566 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 5-Fluorouracil (5-FU) is an analogue of uracil and a potent antitumor agent. 5-Fluorouracil affects pyrimidine synthesis by inhibiting thymidylate synthetase thus depleting intracellular dTTP pools. 5-Fluorouracil induces apoptosis and can be used as a chemical sensitizer[1][2]. 5-Fluorouracil also inhibits HIV[3].

   

Capecitabine

pentyl N-{1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-2-oxo-1,2-dihydropyrimidin-4-yl}carbamate

C15H22FN3O6 (359.1493)


Capecitabine is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to fluorouracil (antimetabolite) in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite CONFIDENCE standard compound; EAWAG_UCHEM_ID 2845 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

aphidicolin

8,11|A-Methano-11aH-cyclohepta[a]naphthalene-4,9-dimethanol,tetradecahydro-3,9-dihydroxy-4,11b-dimethyl-, (3R,4R,4aR,6aS,8R,9R,11aS,11bS)-

C20H34O4 (338.2457)


A tetracyclic diterpenoid that has an tetradecahydro-8,11a-methanocyclohepta[a]naphthalene skeleton with two hydroxymethyl substituents at positions 4 and 9, two methyl substituents at positions 4 and 11b and two hydroxy substituents at positions 3 and 9. An antibiotic with antiviral and antimitotical properties. Aphidicolin is a reversible inhibitor of eukaryotic nuclear DNA replication. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine

1H-imidazo(4,5-b)Pyridin-2-amine, 1-methyl-6-phenyl- (9ci)

C13H12N4 (224.1062)


1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine is a food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish. Food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish CONFIDENCE standard compound; INTERNAL_ID 8317 CONFIDENCE standard compound; INTERNAL_ID 2293 CONFIDENCE standard compound; INTERNAL_ID 9 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Irinotecan

(19S)-10,19-diethyl-19-hydroxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4(9),5,7,10,15(20)-heptaen-7-yl 4-(piperidin-1-yl)piperidine-1-carboxylate

C33H38N4O6 (586.2791)


Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. It is a derivative of camptothecin that inhibits the action of topoisomerase I. Irinotecan prevents religation of the DNA strand by binding to topoisomerase I-DNA complex, and causes double-strand DNA breakage and cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Same as: D08086

   

Procarbazine

4-[(2-methylhydrazin-1-yl)methyl]-N-(propan-2-yl)benzamide

C12H19N3O (221.1528)


Procarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkins disease. [PubChem]The precise mode of cytotoxic action of procarbazine has not been clearly defined. There is evidence that the drug may act by inhibition of protein, RNA and DNA synthesis. Studies have suggested that procarbazine may inhibit transmethylation of methyl groups of methionine into t-RNA. The absence of functional t-RNA could cause the cessation of protein synthesis and consequently DNA and RNA synthesis. In addition, procarbazine may directly damage DNA. Hydrogen peroxide, formed during the auto-oxidation of the drug, may attack protein sulfhydryl groups contained in residual protein which is tightly bound to DNA. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Formaldehyde

Methylene glycol

CH2O (30.0106)


Formaldehyde is a highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) -- Pubchem; The chemical compound formaldehyde (also known as methanal), is a gas with a pungent smell. It is the simplest aldehyde. Its chemical formula is H2CO. Formaldehyde was first synthesized by the Russian chemist Aleksandr Butlerov in 1859 but was conclusively identified by August Wilhelm van Hofmann in 1867. Although formaldehyde is a gas at room temperature, it is readily soluble in water, and it is most commonly sold as a 37\\% solution in water called by trade names such as formalin or formol. In water, formaldehyde polymerizes, and formalin actually contains very little formaldehyde in the form of H2CO monomer. Usually, these solutions contain a few percent methanol to limit the extent of polymerization. Formaldehyde exhibits most of the general chemical properties of the aldehydes, except that is generally more reactive than other aldehydes. Formaldehyde is a potent electrophile. It can participate in electrophilic aromatic substitution reactions with aromatic compounds and can undergo electrophilic addition reactions with alkenes. In the presence of basic catalysts, formaldehyde undergoes a Cannizaro reaction to produce formic acid and methanol. Because formaldehyde resins are used in many construction materials, including plywood, carpet, and spray-on insulating foams, and because these resins slowly give off formaldehyde over time, formaldehyde is one of the more common indoor air pollutants. At concentrations above 0.1 mg/kg in air, inhaled formaldehyde can irritate the eyes and mucous membranes, resulting in watery eyes, headache, a burning sensation in the throat, and difficulty breathing. -- Wikipedia. A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. Formaldehyde is found in many foods, some of which are ginseng, lentils, coriander, and allspice. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives

   

3,5-Cyclic IMP

3,5-Cyclic Inosine monophosphate (cIMP)

C10H11N4O7P (330.0365)


A 3,5-cyclic purine nucleotide having hypoxanthine as the nucleobase.

   

GDP-4-Dehydro-6-deoxy-D-mannose

[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3S,4R,6R)-3,4-dihydroxy-6-methyl-5-oxooxan-2-yl]oxy})phosphinic acid

C16H23N5O15P2 (587.0666)


GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403) [HMDB]. GDP-4-Dehydro-6-deoxy-D-mannose is found in many foods, some of which are bayberry, cherimoya, greenthread tea, and pulses. GDP-4-Dehydro-6-deoxy-D-mannose is an intermediate in the fucosylation of mammalian cells. The functional significance of these fucosylated glycans is unclear, although there is evidence that the sialyl Lex determinant participaates in leukocyte adhesion and trafficking processes. GDP-4-Dehydro-6-deoxy-D-mannose is generated by GDP-D-mannose-4,6-dehydratase (GMD). This compound is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. (PMID: 11698403). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lomustine

1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea

C9H16ClN3O2 (233.0931)


Lomustine is only found in individuals that have used or taken this drug. It is an alkylating agent of value against both hematologic malignancies and solid tumors. [PubChem]Lomustine is a highly lipophilic nitrosourea compound which undergoes hydrolysis in vivo to form reactive metabolites. These metabolites cause alkylation and cross-linking of DNA (at the O6 position of guanine-containing bases) and RNA, thus inducing cytotoxicity. Other biologic effects include inhibition of DNA synthesis and some cell cycle phase specificity. Nitrosureas generally lack cross-resistance with other alkylating agents. As lomustine is a nitrosurea, it may also inhibit several key processes such as carbamoylation and modification of cellular proteins. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

(-)-Aspidospermine

1-[(1R,9R,12R,19R)-12-ethyl-6-methoxy-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2(7),3,5-trien-8-yl]ethan-1-one

C22H30N2O2 (354.2307)


(-)-Aspidospermine is an alkaloid from Aspidosperma quebracho-blanco (quebracho

   

Temik

aldicarb

C7H14N2O2S (190.0776)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

1-Methyl-2-nitro-1-nitrosoguanidine

N-Methyl-n,2-dioxohydrazinecarboximidohydrazide 2-oxide

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

Folinic acid

(2S)-2-{[4-({[(6S)-2-amino-5-formyl-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C20H23N7O7 (473.1659)


(6S)-5-formyltetrahydrofolic acid is the pharmacologically active (6S)-stereoisomer of 5-formyltetrahydrofolic acid. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a (6S)-5-formyltetrahydrofolate(2-). Levoleucovorin is the enantiomerically active form of Folinic Acid (also known as 5-formyl tetrahydrofolic acid or leucovorin). Commercially available leucovorin is composed of a 1:1 racemic mixture of the dextrorotary and levorotary isomers, while levoleucovorin contains only the pharmacologically active levo-isomer. In vitro, the levo-isomer has been shown to be rapidly converted to the biologically available methyl-tetrahydrofolate form while the dextro form is slowly excreted by the kidneys. Despite this difference in activity, the two commercially available forms have been shown to be pharmacokinetically identical and may be used interchangeably with limited differences in efficacy or side effects (Kovoor et al, 2009). As folate analogs, levoleucovorin and leucovorin are both used to counteract the toxic effects of folic acid antagonists, such as methotrexate, which act by inhibiting the enzyme dihydrofolate reductase (DHFR). They are indicated for use as rescue therapy following use of high-dose methotrexate in the treatment of osteosarcoma or for diminishing the toxicity associated with inadvertent overdosage of folic acid antagonists. Levoleucovorin, as the product Fusilev (FDA), has an additional indication for use in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer. Folic acid is an essential B vitamin required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. However, in order to function in this role, it must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted when high-dose methotrexate is used for cancer therapy. As methotrexate functions as a DHFR inhibitor to prevent DNA synthesis in rapidly dividing cells, it also prevents the formation of DHF and THF. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects of methotrexate therapy. As levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF), they are able to bypass DHFR reduction and act as a cellular replacement for the co-factor THF, thereby preventing these toxic side effects. Levoleucovorin is a Folate Analog. Levoleucovorin is a natural product found in Homo sapiens with data available. Levoleucovorin is the active l-isomer of the racemic mixture of the 5-formyl derivative of tetrahydrofolic acid. Metabolically active, l-leucovorin, also known levoleucovorin, does not require bioactivation by dihydrofolate reductase, an enzyme inhibited by folic acid antagonists. This agent may enhance the effects of fluoropyrimidines by stabilizing their binding to the enzyme thymidylate synthase. (NCI04) 5-Formyltetrahydrofolic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A folate analog consisting of the pharmacologically active isomer of LEUCOVORIN. See also: Levoleucovorin Calcium (active moiety of); Levoleucovorin disodium (active moiety of). Folinic acid (CAS: 58-05-9), also known as leucovorin, is a medication used to decrease the toxic effects of methotrexate (a chemotherapy agent and immune system suppressant) and pyrimethamine (Wikipedia). Folinic acid is the active metabolite of folic acid. Leucovorin is used principally as its calcium salt as an antidote to folic acid antagonists which block the conversion of folic acid to folinic acid. D020011 - Protective Agents > D000931 - Antidotes C2140 - Adjuvant > C2078 - Folic Acid Derivative Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1]. Folinic acid (Leucovorin) is a biological folic acid and is generally administered along with Methotrexate (MTX) (HY-14519) as a rescue agent to decrease MTX-induced toxicity[1].

   

Capecitabine

Capecitabine

C15H22FN3O6 (359.1493)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 2353 INTERNAL_ID 2353; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 2140 CONFIDENCE standard compound; INTERNAL_ID 8343 CONFIDENCE standard compound; INTERNAL_ID 4129 Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

Irinotecan

Irinotecan

C33H38N4O6 (586.2791)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CE - Topoisomerase 1 (top1) inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors Same as: D08086

   

Megestrol acetate

Megestrol acetate

C24H32O4 (384.23)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D000970 - Antineoplastic Agents

   

Cytosine

Prodelphinidin trimer GC-GC-C

C4H5N3O (111.0433)


(2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds (2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OPTASPLRGRRNAP_STSL_0157_Cytosine_0125fmol_180430_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].

   

Uracil

Uracil-5-d

C4H4N2O2 (112.0273)


A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ISAKRJDGNUQOIC_STSL_0177_Uracil_8000fmol_180430_S2_LC02_MS02_198; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

5-Methylcytosine

2-Pyrimidinol, 4-amino-5-methyl- (9CI)

C5H7N3O (125.0589)


A pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].

   

thymine

thymine

C5H6N2O2 (126.0429)


A pyrimidine nucleobase that is uracil in which the hydrogen at position 5 is replaced by a methyl group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RWQNBRDOKXIBIV_STSL_0176_Thymine_2000fmol_180506_S2_LC02_MS02_138; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.

   

procarbazine

procarbazine

C12H19N3O (221.1528)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

thioguanine

6-Thioguanine

C5H5N5S (167.0266)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BB - Purine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2254 - Amidophosphoribosyltransferase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 6-Thioguanine (Thioguanine; 2-Amino-6-purinethiol) is an anti-leukemia and immunosuppressant agent, acts as an inhibitor of SARS and MERS coronavirus papain-like proteases (PLpros) and also potently inhibits USP2 activity, with IC50s of 25 μM and 40 μM for Plpros and recombinant human USP2, respectively.

   

Floxuridine

Floxuridine

C9H11FN2O5 (246.0652)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].

   

Safranal

InChI=1\C10H14O\c1-8-5-4-6-10(2,3)9(8)7-11\h4-5,7H,6H2,1-3H

C10H14O (150.1045)


Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Pirod

InChI=1\C4H4N2O2\c7-3-1-2-5-4(8)6-3\h1-2H,(H2,5,6,7,8

C4H4N2O2 (112.0273)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

Thymin

2,4(1H,3H)-Pyrimidinedione, 5-methyl-, labeled with tritium

C5H6N2O2 (126.0429)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.

   

Zytosin

InChI=1\C4H5N3O\c5-3-1-2-6-4(8)7-3\h1-2H,(H3,5,6,7,8

C4H5N3O (111.0433)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].

   

Dacarbazine

Dacarbazine, Pharmaceutical Secondary Standard; Certified Reference Material

C6H10N6O (182.0916)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Dacarbazine appears as white to ivory microcrystals or off-white crystalline solid. (NTP, 1992) (E)-dacarbazine is a dacarbazine in which the N=N double bond adopts a trans-configuration. An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564). Dacarbazine with Oblimersen is in clinical trials for the treatment of malignant melanoma. Dacarbazine is an Alkylating Drug. The mechanism of action of dacarbazine is as an Alkylating Activity. Dacarbazine (also known as DTIC) is an intravenously administered alkylating agent used in the therapy of Hodgkin disease and malignant melanoma. Dacarbazine therapy has been associated with serum enzyme elevations during therapy and occasional cases of severe and distinctive acute hepatic failure, probably caused by acute sinusoidal obstruction syndrome. Dacarbazine is a triazene derivative with antineoplastic activity. Dacarbazine alkylates and cross-links DNA during all phases of the cell cycle, resulting in disruption of DNA function, cell cycle arrest, and apoptosis. (NCI04) An antineoplastic agent. It has significant activity against melanomas. (from Martindale, The Extra Pharmacopoeia, 31st ed, p564) C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent

   

formaldehyde

formaldehyde

CH2O (30.0106)


An aldehyde resulting from the formal oxidation of methanol. D000890 - Anti-Infective Agents D004202 - Disinfectants D005404 - Fixatives

   

Fluorouracil

2,4-Pyrimidinediol, 5-fluoro- (9CI)

C4H3FN2O2 (130.0179)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 5-Fluorouracil (5-FU) is an analogue of uracil and a potent antitumor agent. 5-Fluorouracil affects pyrimidine synthesis by inhibiting thymidylate synthetase thus depleting intracellular dTTP pools. 5-Fluorouracil induces apoptosis and can be used as a chemical sensitizer[1][2]. 5-Fluorouracil also inhibits HIV[3].

   

lomustine

lomustine

C9H16ClN3O2 (233.0931)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents

   

aspidospermine

aspidospermine

C22H30N2O2 (354.2307)


An indole alkaloid having the structure of aspirospermidine methoxylated at C-17 and acetylated at N-1.

   

2-Deoxyinosine triphosphate

2-Deoxyinosine triphosphate

C10H15N4O13P3 (491.9848)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-Methyl-2-deoxycytidine

5-Methyl-2-deoxycytidine

C10H15N3O4 (241.1063)


5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

GDP-4-Keto-6-deoxymannose

GDP-4-Keto-6-deoxymannose

C16H23N5O15P2 (587.0666)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

PhIP

2-amino-1-Methyl-6-phenylimidazo(4,5-b)pyridine

C13H12N4 (224.1062)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Methylnitronitrosoguanidine

N-Methyl-n-nitro-N-nitrosoguanidine

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

5-Fluoro-2-deoxyuridine

5-Fluoro-2-deoxyuridine

C9H11FN2O5 (246.0652)