Glucose (BioDeep_00000014322)
Main id: BioDeep_00000000765
Secondary id: BioDeep_00001868608
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C6H12O6 (180.0633852)
中文名称: D(+)半乳糖, 己糖
谱图信息:
最多检出来源 Homo sapiens(blood) 0.71%
Last reviewed on 2024-09-14.
Cite this Page
Glucose. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/glucose (retrieved
2024-11-10) (BioDeep RN: BioDeep_00000014322). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C1C(C(C(C(O1)O)O)O)O)O
InChI: InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5-,6+/m1/s1
描述信息
D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk.
Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape.
Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
31 个代谢物同义名
(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol; alpha-D-Galactopyranose; alpha-D-Galactose; ALPHA D-GALACTOSE; d-(+)-galactose; Galactose (NF); Α D-galactose; a D-GALACTOSE; (+)-Galactose; a-D-Galactose; Α-D-galactose; alpha-D-Gal; D-Galactose; Galactose; SH-TA-508; SHU 508 a; Gal-alpha; Levovist; D-Hexose; Α-D-gal; SHU-508; a-D-Gal; SHU 508; Hexose; Gal-α; Gal-a; 5Abp; 8Abp; GLC; Gal; GLA
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:28061
- KEGG: C00984
- PubChem: 439357
- HMDB: HMDB0000143
- ChEMBL: CHEMBL1233058
- Wikipedia: Galactose
- MetaCyc: ALPHA-D-GALACTOSE
- KNApSAcK: C00001119
- foodb: FDB021787
- MoNA: RP022813
- MoNA: RP022812
- MoNA: RP022811
- PDB-CCD: GLA
- NIKKAJI: J292.885J
- CAS: 492-61-5
分类词条
相关代谢途径
Reactome(9)
BioCyc(6)
PlantCyc(4)
代谢反应
676 个相关的代谢反应过程信息。
Reactome(151)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + Heparan sulfate chain(5) ⟶ Heparan sulfate chain(6) + SO4(2-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + linker chain(2) ⟶ D-xylose + Gal
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O ⟶ CH3COO-
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O ⟶ CH3COO-
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glycosaminoglycan metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- Heparan sulfate/heparin (HS-GAG) metabolism:
H2O + Heparan(3)-PGs ⟶ CH3COO- + Heparan(4)-PGs
- HS-GAG degradation:
H2O + linker chain(2) ⟶ D-xylose + Gal
- Keratan sulfate/keratin metabolism:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal(S)-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + SO4(2-)
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Glycosphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Keratan sulfate/keratin metabolism:
Keratan(4)-PG + PAPS ⟶ KSPG(1) + PAP
- Keratan sulfate degradation:
Gal-GlcNAc(S)-Gal-GlcNAc(S)-Gal + H2O ⟶ Gal + GlcNAc(S)-Gal-GlcNAc(S)-Gal
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Glycosphingolipid metabolism:
GM1 ganglioside + H2O ⟶ GM2 ganglioside + Gal
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM2A + GM3 ganglioside + GalNAc
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM2A(32-193) + GM3 ganglioside + GalNAc
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM2A + GM3 ganglioside + GalNAc
- Glycosphingolipid catabolism:
H2O + PSAP(195-273):Gb4Cer:PE ⟶ GalNAc + PSAP(195-273):Gb3Cer:PE
- Glycosphingolipid catabolism:
H2O + PSAP(195-273):Gb4Cer:PE ⟶ GalNAc + PSAP(195-273):Gb3Cer:PE
- Glycosphingolipid catabolism:
H2O + PSAP(195-273):Gb4Cer:PE ⟶ GalNAc + PSAP(195-273):Gb3Cer:PE
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM2A + GM3 ganglioside + GalNAc
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM3 ganglioside + GalNAc + Gm2a
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM3 ganglioside + GalNAc + Gm2a
- Glycosphingolipid catabolism:
GM2A:GM2 + H2O ⟶ GM2A + GM3 ganglioside + GalNAc
- Glycosphingolipid catabolism:
GM2A:GA2 + H2O ⟶ GM2A:LacCer + GalNAc
BioCyc(62)
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactose + sucrose
- stachyose degradation:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation V (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation V (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I:
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- Leloir pathway:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- colanic acid building blocks biosynthesis:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- galactose degradation III:
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
WikiPathways(1)
- Colanic acid building blocks biosynthesis:
alpha-D-Galactose ⟶ Alpha-D-Galactose-1-Phosphate
Plant Reactome(0)
INOH(0)
PlantCyc(408)
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + stachyose ⟶ α-D-galactopyranose + raffinose
- stachyose degradation:
H2O + raffinose ⟶ α-D-galactopyranose + sucrose
- stachyose degradation:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- stachyose degradation:
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
α-D-galactose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose degradation I (Leloir pathway):
β-D-galactose ⟶ α-D-galactose
- D-galactose degradation I (Leloir pathway):
β-D-galactopyranose ⟶ α-D-galactopyranose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
α-D-galactose 1-phosphate + UDP-α-D-glucose ⟶ α-D-glucopyranose 1-phosphate + UDP-α-D-galactose
- D-galactose degradation I (Leloir pathway):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- indole-3-acetate activation II:
4-O-(indol-3-ylacetyl)-β-D-glucose + H2O ⟶ (indol-3-yl)acetate + D-glucopyranose + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- indole-3-acetate activation II:
1D-1-O-(indol-3-yl)acetyl-myo-inositol + H2O ⟶ (indol-3-yl)acetate + myo-inositol + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- D-galactose detoxification:
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
α-D-galactopyranose + ATP ⟶ α-D-galactose 1-phosphate + ADP + H+
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose):
UDP-α-D-glucose ⟶ UDP-α-D-galactose
- D-galactose detoxification:
UDP-α-D-glucose ⟶ UDP-α-D-galactose
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(52)
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Galactose Metabolism:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Galactose Degradation/Leloir Pathway:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Leloir Pathway:
-D-Galactose ⟶ D-Galactose
- D-Galactose Degradation (Leloir pathway):
Beta-D-Galactose ⟶ D-Galactose
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Nucleotide Sugars Metabolism:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia II (GALK):
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
- Galactosemia III:
Adenosine triphosphate + D-Galactose ⟶ Adenosine diphosphate + Galactose 1-phosphate
PharmGKB(0)
9 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 53852 - Cassia fistula: 10.1055/S-0028-1099585
- 312560 - Cuphea appendiculata: 10.1055/S-2006-959585
- 9606 - Homo sapiens: -
- 46094 - Limonium gmelinii: 10.1007/S10600-005-0012-3
- 170927 - Primula veris: 10.1055/S-0028-1099459
- 42229 - Prunus avium: 10.1016/S0031-9422(00)85322-4
- 126910 - Withania somnifera: 10.1016/J.PHYTOCHEM.2010.04.001
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Herbert Kaltner, Tamás Szabó, Krisztina Fehér, Sabine André, Sára Balla, Joachim C Manning, László Szilágyi, Hans-Joachim Gabius. Bivalent O-glycoside mimetics with S/disulfide/Se substitutions and aromatic core: Synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance.
Bioorganic & medicinal chemistry.
2017 06; 25(12):3158-3170. doi:
10.1016/j.bmc.2017.04.011
. [PMID: 28483453] - Nan Shang, Rihua Xu, Pinglan Li. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH.
Carbohydrate polymers.
2013 Jan; 91(1):128-34. doi:
10.1016/j.carbpol.2012.08.012
. [PMID: 23044113] - Mei-Liang Zhou, Qian Zhang, Ming Zhou, Zhan-Min Sun, Xue-Mei Zhu, Ji-Rong Shao, Yi-Xiong Tang, Yan-Min Wu. Genome-wide identification of genes involved in raffinose metabolism in Maize.
Glycobiology.
2012 Dec; 22(12):1775-85. doi:
10.1093/glycob/cws121
. [PMID: 22879458] - Jie Xu, Zhanting Li, Min Cao, Han Zhang, Jifeng Sun, Jie Zhao, Qiang Zhou, Zhifen Wu, Lianjia Yang. Synergetic effect of Andrographis paniculata polysaccharide on diabetic nephropathy with andrographolide.
International journal of biological macromolecules.
2012 Dec; 51(5):738-42. doi:
10.1016/j.ijbiomac.2012.06.035
. [PMID: 22766034] - Lianzhu Lin, Mingzhu Zhuang, Linwu Zou, Fenfen Lei, Bao Yang, Mouming Zhao. Structural characteristics of water-soluble polysaccharides from Rabdosia serra (MAXIM.) HARA leaf and stem and their antioxidant capacities.
Food chemistry.
2012 Nov; 135(2):730-7. doi:
10.1016/j.foodchem.2012.05.029
. [PMID: 22868152] - Xin Liu, Zhenliang Sun, Miansong Zhang, Xiumei Meng, Xuekui Xia, Wenpeng Yuan, Feng Xue, Changheng Liu. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus.
Carbohydrate polymers.
2012 Nov; 90(4):1664-70. doi:
10.1016/j.carbpol.2012.07.047
. [PMID: 22944431] - Zhanting Li, Libing Zhu, Han Zhang, Jie Yang, Jie Zhao, Dewei Du, Junping Meng, Feng Yang, Yanlong Zhao, Jifeng Sun. Protective effect of a polysaccharide from stem of Codonopsis pilosula against renal ischemia/reperfusion injury in rats.
Carbohydrate polymers.
2012 Nov; 90(4):1739-43. doi:
10.1016/j.carbpol.2012.07.062
. [PMID: 22944441] - Jun-Yi Yin, Zhi-Hong Jiang, Hua Yu, Ming-Yong Xie, Wen-Luan Hsiao, Ai-Ping Lu, Quan-Bin Han. A new application of an aqueous diphase solvent system in one-step preparation of polysaccharide from the crude water extract of Radix Astragali by high-speed counter-current chromatography.
Journal of chromatography. A.
2012 Nov; 1262(?):92-7. doi:
10.1016/j.chroma.2012.08.099
. [PMID: 22999203] - Tie Hong, Jing Zhao, Man Dong, Yixiao Meng, Jiaye Mu, Zhen Yang. Composition and bioactivity of polysaccharides from Inula britannica flower.
International journal of biological macromolecules.
2012 Nov; 51(4):550-4. doi:
10.1016/j.ijbiomac.2012.06.021
. [PMID: 22728640] - Devavratha H Rao, Yashavanth L Vishweshwaraiah, Lalitha R Gowda. The enzymatic lectin of field bean (Dolichos lablab): salt assisted lectin-sugar interaction.
Phytochemistry.
2012 Nov; 83(?):7-14. doi:
10.1016/j.phytochem.2012.07.027
. [PMID: 22959225] - Guang-Kai Bian, Zhao-Zhong Feng, Sheng Qin, Ke Xing, Zhe Wang, Cheng-Liang Cao, Chang-Hong Liu, Chuan-Chao Dai, Ji-Hong Jiang. Kineococcus endophytica sp. nov., a novel endophytic actinomycete isolated from a coastal halophyte in Jiangsu, China.
Antonie van Leeuwenhoek.
2012 Nov; 102(4):621-8. doi:
10.1007/s10482-012-9757-4
. [PMID: 22669199] - Zibin Cai, Wei Li, Haotian Wang, Weiqun Yan, Yulai Zhou, Guanjun Wang, Jiuwei Cui, Fang Wang. Anti-tumor and immunomodulating activities of a polysaccharide from the root of Sanguisorba officinalis L.
International journal of biological macromolecules.
2012 Nov; 51(4):484-8. doi:
10.1016/j.ijbiomac.2012.05.029
. [PMID: 22659266] - Kui Zhong, Weijing Lin, Qiang Wang, Sumei Zhou. Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls.
International journal of biological macromolecules.
2012 Nov; 51(4):612-7. doi:
10.1016/j.ijbiomac.2012.06.032
. [PMID: 22750575] - Yunxin Zhang, Qiusheng Wang, Tie Wang, Haikui Zhang, Ying Tian, Hong Luo, Shen Yang, Yuan Wang, Xun Huang. Inhibition of human gastric carcinoma cell growth in vitro by a polysaccharide from Aster tataricus.
International journal of biological macromolecules.
2012 Nov; 51(4):509-13. doi:
10.1016/j.ijbiomac.2012.06.019
. [PMID: 22728055] - Christopher R Dunston, Khujesta Choudhury, Helen R Griffiths. Terminal galactose residues on transferrin are increased in midlife adults compared to young adults.
Proteomics.
2012 Nov; 12(21):3147-53. doi:
10.1002/pmic.201100506
. [PMID: 22930475] - Xiao-Qiang Han, Ben Chung Lap Chan, Hua Yu, Yin-Hua Yang, Shui-Qing Hu, Chun-Hay Ko, Cai-Xia Dong, Chun-Kwok Wong, Pang-Chui Shaw, Kwok-Pui Fung, Ping-Chung Leung, Wen-Luan Hsiao, Peng-Fei Tu, Quan-Bin Han. Structural characterization and immuno-modulating activities of a polysaccharide from Ganoderma sinense.
International journal of biological macromolecules.
2012 Nov; 51(4):597-603. doi:
10.1016/j.ijbiomac.2012.06.029
. [PMID: 22750578] - Huihui Liu, Yanli Fan, Wenhang Wang, Nian Liu, Hui Zhang, Zhenyuan Zhu, Anjun Liu. Polysaccharides from Lycium barbarum leaves: isolation, characterization and splenocyte proliferation activity.
International journal of biological macromolecules.
2012 Nov; 51(4):417-22. doi:
10.1016/j.ijbiomac.2012.05.025
. [PMID: 22652219] - Fatemeh Nejatzadeh-Barandozi, Sattar Tahmasebi Enferadi. FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment.
Organic and medicinal chemistry letters.
2012 Oct; 2(1):33. doi:
10.1186/2191-2858-2-33
. [PMID: 23095284] - Hee-Jung Choi, Tae-Wook Chung, Cheorl-Ho Kim, Han-Sol Jeong, Myungsoo Joo, Buhyun Youn, Ki-Tae Ha. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells.
Biochemical and biophysical research communications.
2012 Oct; 426(4):620-5. doi:
10.1016/j.bbrc.2012.08.140
. [PMID: 22982306] - Andreia Varmes Fernandes, Márcio Viana Ramos, Ilka Maria Vasconcelos, Ana Cristina Oliveira Monteiro Moreira, Frederico Bruno Moreno, Jose Odair Pereira, José Francisco de Carvalho Gonçalves. Purification and characterization of a lectin of the Swartzieae Legume Taxa.
Protein and peptide letters.
2012 Oct; 19(10):1082-8. doi:
10.2174/092986612802762679
. [PMID: 22512646] - Ismet Ara, Baljinova Tsetseg, Damdinsuren Daram, Manabu Suto, Katsuhiko Ando. Cryptosporangium mongoliense sp. nov., isolated from soil.
International journal of systematic and evolutionary microbiology.
2012 Oct; 62(Pt 10):2480-2484. doi:
10.1099/ijs.0.038307-0
. [PMID: 22140154] - Hanna Johansson Jänkänpää, Yogesh Mishra, Wolfgang P Schröder, Stefan Jansson. Metabolic profiling reveals metabolic shifts in Arabidopsis plants grown under different light conditions.
Plant, cell & environment.
2012 Oct; 35(10):1824-36. doi:
10.1111/j.1365-3040.2012.02519.x
. [PMID: 22497620] - Zhangshun Liu, Chao Li, Qin Zhang, Minfang Tao. Effect of Renshen polysaccharides on oxidative injury in kidney IR rabbits.
Carbohydrate polymers.
2012 Oct; 90(2):773-7. doi:
10.1016/j.carbpol.2012.05.040
. [PMID: 22840000] - John P O'Hara, Sean Carroll, Carlton B Cooke, Douglas J Morrison, Thomas Preston, Roderick F G J King. Preexercise galactose and glucose ingestion on fuel use during exercise.
Medicine and science in sports and exercise.
2012 Oct; 44(10):1958-67. doi:
10.1249/mss.0b013e318258bf85
. [PMID: 22525771] - Tao Xin, Fubin Zhang, Qiuying Jiang, Chunhong Chen, Dayong Huang, Yanju Li, Weixi Shen, Yinghua Jin. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia.
Carbohydrate polymers.
2012 Oct; 90(2):1127-31. doi:
10.1016/j.carbpol.2012.06.058
. [PMID: 22840049] - Ken-ichiro Suehara, Takaharu Kameoka, Atsushi Hashimoto. Sugar uptake analysis of suspension Arabidopsis, tobacco, and rice cells in various media using an FT-IR/ATR method.
Bioprocess and biosystems engineering.
2012 Oct; 35(8):1259-68. doi:
10.1007/s00449-012-0713-5
. [PMID: 22395819] - Jin-Yu Liu, Yu Zhang, Ru-Xu You, Fang Zeng, Dan Guo, Kai-Ping Wang. Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia.
Journal of medicinal food.
2012 Oct; 15(10):923-9. doi:
10.1089/jmf.2012.2231
. [PMID: 22985399] - Xiang-Lin Meng, Yan Fang, Ling-Shu Wan, Xiao-Jun Huang, Zhi-Kang Xu. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density.
Langmuir : the ACS journal of surfaces and colloids.
2012 Sep; 28(38):13616-23. doi:
10.1021/la302389e
. [PMID: 22950871] - Qiang Peng, Jingjing Song, Xiaopeng Lv, Zhongfu Wang, Linjuan Huang, Yuguang Du. Structural characterization of an arabinogalactan-protein from the fruits of Lycium ruthenicum.
Journal of agricultural and food chemistry.
2012 Sep; 60(37):9424-9. doi:
10.1021/jf302619c
. [PMID: 22928652] - Devesh Kishore, Arvind M Kayastha. A β-galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications.
Food chemistry.
2012 Sep; 134(2):1113-22. doi:
10.1016/j.foodchem.2012.03.032
. [PMID: 23107735] - Erik J Boll, Lene N Nielsen, Karen A Krogfelt, Carsten Struve. Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation.
BMC microbiology.
2012 Sep; 12(?):201. doi:
10.1186/1471-2180-12-201
. [PMID: 22967317] - Lan Li, Chen Zhang, Dan Xu, Michael Schläppi, Zi-Qin Xu. Expression of recombinant EARLI1, a hybrid proline-rich protein of Arabidopsis, in Escherichia coli and its inhibition effect to the growth of fungal pathogens and Saccharomyces cerevisiae.
Gene.
2012 Sep; 506(1):50-61. doi:
10.1016/j.gene.2012.06.070
. [PMID: 22759515] - Zhanying Hong, Zebin Lin, Yue Liu, Guangguo Tan, Ziyang Lou, Zhenyu Zhu, Yifeng Chai, Guorong Fan, Junping Zhang, Liming Zhang. Innovative microwave-assisted oximation and silylation procedures for metabolomic analysis of plasma samples using gas chromatography-mass spectrometry.
Journal of chromatography. A.
2012 Sep; 1254(?):14-22. doi:
10.1016/j.chroma.2012.07.033
. [PMID: 22841665] - Shailly Anand, Kiran Bala, Anjali Saxena, Peter Schumann, Rup Lal. Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site.
International journal of systematic and evolutionary microbiology.
2012 Sep; 62(Pt 9):2114-2120. doi:
10.1099/ijs.0.034439-0
. [PMID: 22039005] - Francois Berthoux, Hitoshi Suzuki, Lise Thibaudin, Hiroyuki Yanagawa, Nicolas Maillard, Christophe Mariat, Yasuhiko Tomino, Bruce A Julian, Jan Novak. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy.
Journal of the American Society of Nephrology : JASN.
2012 Sep; 23(9):1579-87. doi:
10.1681/asn.2012010053
. [PMID: 22904352] - Heather D Coleman, Francisco M Cánovas, Huimin Man, Edward G Kirby, Shawn D Mansfield. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4).
Plant biotechnology journal.
2012 Sep; 10(7):883-9. doi:
10.1111/j.1467-7652.2012.00714.x
. [PMID: 22672155] - Mingchun Wang, Peilei Zhu, Changxing Jiang, Liping Ma, Zhanjun Zhang, Xiaoxiong Zeng. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2012 Sep; 50(9):2964-70. doi:
10.1016/j.fct.2012.06.034
. [PMID: 22750723] - Zhang-Yong Ning, Xin-Tao Wu, Yan-Fen Cheng, Wen-Bao Qi, Yu-Fu An, Heng Wang, Gui-Hong Zhang, Shou-Jun Li. Tissue distribution of sialic acid-linked influenza virus receptors in beagle dogs.
Journal of veterinary science.
2012 Sep; 13(3):219-22. doi:
10.4142/jvs.2012.13.3.219
. [PMID: 23000577] - Dmitriy V Volokhov, Megan Amselle, Brian J Beck, David L Popham, Paul Whittaker, Hua Wang, Elizabeth Kerrigan, Vladimir E Chizhikov. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis).
International journal of systematic and evolutionary microbiology.
2012 Sep; 62(Pt 9):2068-2076. doi:
10.1099/ijs.0.033852-0
. [PMID: 22021580] - Roneel Prakash, Sarah L Johnston, Helen L Boldingh, Robert J Redgwell, Ross G Atkinson, Laurence D Melton, David A Brummell, Roswitha Schröder. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-β-mannanase.
Journal of plant physiology.
2012 Aug; 169(12):1125-33. doi:
10.1016/j.jplph.2012.03.017
. [PMID: 22658221] - Devavratha H Rao, Lalitha R Gowda. The D-galactose specific lectin of field bean (Dolichos lablab) seed binds sugars with extreme negative cooperativity and half-of-the-sites binding.
Archives of biochemistry and biophysics.
2012 Aug; 524(2):85-92. doi:
10.1016/j.abb.2012.05.005
. [PMID: 22613075] - Kirsti Parikka, Ann-Sofie Leppänen, Chunlin Xu, Leena Pitkänen, Paula Eronen, Monika Osterberg, Harry Brumer, Stefan Willför, Maija Tenkanen. Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides.
Biomacromolecules.
2012 Aug; 13(8):2418-28. doi:
10.1021/bm300679a
. [PMID: 22724576] - Robert W Wheatley, Ruixiang Blake Zheng, Michele R Richards, Todd L Lowary, Kenneth K S Ng. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan.
The Journal of biological chemistry.
2012 Aug; 287(33):28132-43. doi:
10.1074/jbc.m112.347484
. [PMID: 22707726] - Reuven Rasooly, Xiaohua He, Mendel Friedman. Milk inhibits the biological activity of ricin.
The Journal of biological chemistry.
2012 Aug; 287(33):27924-9. doi:
10.1074/jbc.m112.362988
. [PMID: 22733821] - Marc Antoine Cannesan, Caroline Durand, Carole Burel, Christophe Gangneux, Patrice Lerouge, Tadashi Ishii, Karine Laval, Marie-Laure Follet-Gueye, Azeddine Driouich, Maïté Vicré-Gibouin. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.
Plant physiology.
2012 Aug; 159(4):1658-70. doi:
10.1104/pp.112.198507
. [PMID: 22645070] - Mohammad Al-Haggar, Osamu Sakamoto, Ali Shaltout, Amani Al-Hawari, Yahya Wahba, Dina Abdel-Hadi. Mutation analysis of the GLUT2 gene in three unrelated Egyptian families with Fanconi-Bickel syndrome: revisited gene atlas for renumbering.
Clinical and experimental nephrology.
2012 Aug; 16(4):604-10. doi:
10.1007/s10157-012-0603-9
. [PMID: 22350464] - Mundekkad Deepa, Sulochana Priya. Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves.
Protein and peptide letters.
2012 Aug; 19(8):839-45. doi:
10.2174/092986612801619516
. [PMID: 22762189] - Ying Liu, Baoyun Xia, Tyler J Gleason, Uriel Castañeda, Miao He, Gerard T Berry, Judith L Fridovich-Keil. N- and O-linked glycosylation of total plasma glycoproteins in galactosemia.
Molecular genetics and metabolism.
2012 Aug; 106(4):442-54. doi:
10.1016/j.ymgme.2012.05.025
. [PMID: 22743281] - Sooah Kim, Eun Ju Yun, Md Aktar Hossain, Hojoung Lee, Kyoung Heon Kim. Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry.
Analytical and bioanalytical chemistry.
2012 Aug; 404(2):553-62. doi:
10.1007/s00216-012-6142-0
. [PMID: 22729379] - Anna Chludzińska, Lech Chrostek, Bogdan Cylwik. [The alterations of proteins glycosylation in rheumatic diseases].
Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego.
2012 Aug; 33(194):112-6. doi:
NULL
. [PMID: 23009010] - Takuo Onizuka, Hiroyuki Shimizu, Yuka Moriwaki, Takayuki Nakano, Shozo Kanai, Ichio Shimada, Hideo Takahashi. NMR study of ligand release from asialoglycoprotein receptor under solution conditions in early endosomes.
The FEBS journal.
2012 Aug; 279(15):2645-56. doi:
10.1111/j.1742-4658.2012.08643.x
. [PMID: 22613667] - Ileana Rodriguez León, Ana Gisele da Costa Neves-Ferreira, Surza Lucia Gonçalves da Rocha, Monique Ramos de Oliveira Trugilho, Jonas Perales, Richard Hemmi Valente. Using mass spectrometry to explore the neglected glycan moieties of the antiophidic proteins DM43 and DM64.
Proteomics.
2012 Aug; 12(17):2753-65. doi:
10.1002/pmic.201200062
. [PMID: 22744933] - Soon Dong Lee. Labedaea rhizosphaerae gen. nov., sp. nov., isolated from rhizosphere soil.
International journal of systematic and evolutionary microbiology.
2012 Aug; 62(Pt 8):1772-1778. doi:
10.1099/ijs.0.034355-0
. [PMID: 21948095] - Victoria V Golovchenko, Daria S Khramova, Alexandre S Shashkov, Dorjgoo Otgonbayar, Aria Chimidsogzol, Yury S Ovodov. Structural characterisation of the polysaccharides from endemic Mongolian desert plants and their effect on the intestinal absorption of ovalbumin.
Carbohydrate research.
2012 Jul; 356(?):265-72. doi:
10.1016/j.carres.2012.03.023
. [PMID: 22549013] - Jakub Jez, Bernhard Antes, Alexandra Castilho, Manuela Kainer, Susanne Wiederkum, Josephine Grass, Florian Rüker, Max Woisetschläger, Herta Steinkellner. Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments.
The Journal of biological chemistry.
2012 Jul; 287(29):24313-9. doi:
10.1074/jbc.m112.360701
. [PMID: 22589538] - Tyler Mark Pierson, David A Adams, Thomas Markello, Gretchen Golas, Sandra Yang, Murat Sincan, Dimitre R Simeonov, Karin Fuentes Fajardo, Nancy F Hansen, Praveen F Cherukuri, Pedro Cruz, Jamie K Teer, James C Mullikin, Cornelius F Boerkoel, William A Gahl, Cynthia J Tifft. Exome sequencing as a diagnostic tool in a case of undiagnosed juvenile-onset GM1-gangliosidosis.
Neurology.
2012 Jul; 79(2):123-6. doi:
10.1212/wnl.0b013e31825f047a
. [PMID: 22675082] - Jayne E Telford, Jonathan Bones, Ciara McManus, Radka Saldova, Gwen Manning, Margaret Doherty, F Markus Leweke, Matthias Rothermundt, Paul C Guest, Hassan Rahmoune, Sabine Bahn, Pauline M Rudd. Antipsychotic treatment of acute paranoid schizophrenia patients with olanzapine results in altered glycosylation of serum glycoproteins.
Journal of proteome research.
2012 Jul; 11(7):3743-52. doi:
10.1021/pr300218h
. [PMID: 22594947] - Sung-Geun Woo, Yingshun Cui, Myung-Suk Kang, Long Jin, Kwang Kyu Kim, Sung-Taik Lee, Myungjin Lee, Joonhong Park. Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture.
International journal of systematic and evolutionary microbiology.
2012 Jul; 62(Pt 7):1703-1709. doi:
10.1099/ijs.0.033217-0
. [PMID: 21930682] - Julian Avila, Oliver G Gregory, Dongyin Su, Taunya A Deeter, Sixue Chen, Cecilia Silva-Sanchez, Shouling Xu, Gregory B Martin, Timothy P Devarenne. The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3.
Plant physiology.
2012 Jul; 159(3):1277-90. doi:
10.1104/pp.112.198432
. [PMID: 22573803] - Feng Peng, Pai Peng, Feng Xu, Run-Cang Sun. Fractional purification and bioconversion of hemicelluloses.
Biotechnology advances.
2012 Jul; 30(4):879-903. doi:
10.1016/j.biotechadv.2012.01.018
. [PMID: 22306329] - Franziska Kaplan, Louise A Lewis, Johann Wastian, Andreas Holzinger. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta).
Protoplasma.
2012 Jul; 249(3):789-804. doi:
10.1007/s00709-011-0324-z
. [PMID: 21979310] - Ying-ping Xiao, Tian-xing Wu, Qi-hua Hong, Jiang-ming Sun, An-guo Chen, Cai-mei Yang, Xiao-yan Li. Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry.
Journal of Zhejiang University. Science. B.
2012 Jul; 13(7):567-78. doi:
10.1631/jzus.b1100343
. [PMID: 22761248] - P Tsirtsikos, K Fegeros, A Kominakis, C Balaskas, K C Mountzouris. Modulation of intestinal mucin composition and mucosal morphology by dietary phytogenic inclusion level in broilers.
Animal : an international journal of animal bioscience.
2012 Jul; 6(7):1049-57. doi:
10.1017/s1751731111002680
. [PMID: 23031464] - José Gómez-Fernández, Emilio Gómez-Izquierdo, Cristina Tomás, Eva Mocé, Eduardo de Mercado. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation.
Animal reproduction science.
2012 Jul; 133(1-2):109-16. doi:
10.1016/j.anireprosci.2012.06.010
. [PMID: 22771077] - Olga I Nedashkovskaya, Andrey D Kukhlevskiy, Natalia V Zhukova. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia.
International journal of systematic and evolutionary microbiology.
2012 Jul; 62(Pt 7):1450-1456. doi:
10.1099/ijs.0.032219-0
. [PMID: 21841007] - Eric Nguema-Ona, Sílvia Coimbra, Maïté Vicré-Gibouin, Jean-Claude Mollet, Azeddine Driouich. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects.
Annals of botany.
2012 Jul; 110(2):383-404. doi:
10.1093/aob/mcs143
. [PMID: 22786747] - Sri Puvanesvari Gannasin, Yogeshini Ramakrishnan, Noranizan Mohd Adzahan, Kharidah Muhammad. Functional and preliminary characterisation of hydrocolloid from tamarillo (Solanum betaceum Cav.) puree.
Molecules (Basel, Switzerland).
2012 Jun; 17(6):6869-85. doi:
10.3390/molecules17066869
. [PMID: 22669042] - Stephen J Fey, Krzysztof Wrzesinski. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line.
Toxicological sciences : an official journal of the Society of Toxicology.
2012 Jun; 127(2):403-11. doi:
10.1093/toxsci/kfs122
. [PMID: 22454432] - Amanda M Goldston, Rhonda R Powell, Amrita B Koushik, Lesly A Temesvari. Exposure to host ligands correlates with colocalization of Gal/GalNAc lectin subunits in lipid rafts and phosphatidylinositol (4,5)-bisphosphate signaling in Entamoeba histolytica.
Eukaryotic cell.
2012 Jun; 11(6):743-51. doi:
10.1128/ec.00054-12
. [PMID: 22505337] - Yan Wang, Ana P Alonso, Curtis G Wilkerson, Kenneth Keegstra. Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation.
Plant molecular biology.
2012 Jun; 79(3):243-58. doi:
10.1007/s11103-012-9909-y
. [PMID: 22527750] - Ewa Olszewska, Joanna Jakimowicz-Rudy, Malgorzata Knas, Malgorzata Chilimoniuk, Jan Krzysztof Pietruski, Andrzej Sieskiewicz. Cholesteatoma-associated pathogenicity: potential role of lysosomal exoglycosidases.
Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.
2012 Jun; 33(4):596-603. doi:
10.1097/mao.0b013e31824bae8d
. [PMID: 22588235] - Chien-Hsun Hsia, Cheng-Hsin Wang, Yi-Wen Kuo, Ying-Jui Ho, Hsiao-Ling Chen. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice.
The British journal of nutrition.
2012 Jun; 107(12):1787-92. doi:
10.1017/s0007114511005150
. [PMID: 21929837] - N Mahfoudhi, M Chouaibi, F Donsì, G Ferrari, S Hamdi. Chemical composition and functional properties of gum exudates from the trunk of the almond tree (Prunus dulcis).
Food science and technology international = Ciencia y tecnologia de los alimentos internacional.
2012 Jun; 18(3):241-50. doi:
10.1177/1082013211415173
. [PMID: 22701057] - Seval Aydın, Karolin Yanar, Pinar Atukeren, Enis Dalo, Mustafa Erinç Sitar, Ezel Uslu, Nazli Caf, Ufuk Cakatay. Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats.
Biogerontology.
2012 Jun; 13(3):251-60. doi:
10.1007/s10522-011-9370-3
. [PMID: 22179795] - Cees Bruggink, Ben J H M Poorthuis, André M Deelder, Manfred Wuhrer. Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography-mass spectrometry.
Analytical and bioanalytical chemistry.
2012 Jun; 403(6):1671-83. doi:
10.1007/s00216-012-5968-9
. [PMID: 22526647] - Dorota Formanowicz, Piotr Formanowicz. Transferrin changes in haemodialysed patients.
International urology and nephrology.
2012 Jun; 44(3):907-19. doi:
10.1007/s11255-011-9947-4
. [PMID: 21455763] - Mihály Kondrák, Ferenc Marincs, Ferenc Antal, Zsófia Juhász, Zsófia Bánfalvi. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions.
BMC plant biology.
2012 May; 12(?):74. doi:
10.1186/1471-2229-12-74
. [PMID: 22646706] - L Ruiz-Aceituno, L Ramos, I Martinez-Castro, M L Sanz. Low molecular weight carbohydrates in pine nuts from Pinus pinea L.
Journal of agricultural and food chemistry.
2012 May; 60(19):4957-9. doi:
10.1021/jf2048959
. [PMID: 22533651] - Virginia Lanzotti, Pasquale Termolino, Marcello Dolci, Paolo Curir. Paviosides A-H, eight new oleane type saponins from Aesculus pavia with cytotoxic activity.
Bioorganic & medicinal chemistry.
2012 May; 20(10):3280-6. doi:
10.1016/j.bmc.2012.03.048
. [PMID: 22507208] - Zhou Lan, Jiping Liu, Lvyi Chen, Qiang Fu, Jianguang Luo, Rong Qu, Lingyi Kong, Shiping Ma. Danggui-Shaoyao-San ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in d-galactose-induced senescent mice.
Journal of ethnopharmacology.
2012 May; 141(1):386-95. doi:
10.1016/j.jep.2012.02.050
. [PMID: 22414474] - Zhen Xu, Qingyan Xu, Zhonghui Zheng, Yaojian Huang. Kribbella amoyensis sp. nov., isolated from rhizosphere soil of a pharmaceutical plant, Typhonium giganteum Engl.
International journal of systematic and evolutionary microbiology.
2012 May; 62(Pt 5):1081-1085. doi:
10.1099/ijs.0.033290-0
. [PMID: 21705443] - Gemma E Walton, Ellen G H M van den Heuvel, Marit H W Kosters, Robert A Rastall, Kieran M Tuohy, Glenn R Gibson. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age.
The British journal of nutrition.
2012 May; 107(10):1466-75. doi:
10.1017/s0007114511004697
. [PMID: 21910949] - Hunter K C Laidlaw, Jelle Lahnstein, Rachel A Burton, Geoffrey B Fincher, Stephen A Jobling. Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development.
Journal of experimental botany.
2012 May; 63(8):3031-45. doi:
10.1093/jxb/ers019
. [PMID: 22378943] - Yan-jun Zhang, Hua-ting Zhu, Sai-nan Huang, Yong-jie Xia, Zhi-qiang Wang, Li-jun Shen, Meng An, Yu-hua Qiu. [Changes in the expression of T lymphocyte subsets in ageing mice induced by D-galactose].
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.
2012 May; 28(5):449-51. doi:
NULL
. [PMID: 22558979] - Ze Yun, Shuai Jin, Yuduan Ding, Zhuang Wang, Huijun Gao, Zhiyong Pan, Juan Xu, Yunjiang Cheng, Xiuxin Deng. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage.
Journal of experimental botany.
2012 May; 63(8):2873-93. doi:
10.1093/jxb/err390
. [PMID: 22323274] - Bei Wu, Juncheng Cui, Chaogui Zhang, Zhihong Li. A polysaccharide from Agaricus blazei inhibits proliferation and promotes apoptosis of osteosarcoma cells.
International journal of biological macromolecules.
2012 May; 50(4):1116-20. doi:
10.1016/j.ijbiomac.2012.02.023
. [PMID: 22390851] - Sean Bulley, Michele Wright, Caius Rommens, Hua Yan, Maysoon Rassam, Kui Lin-Wang, Christelle Andre, Di Brewster, Sakuntala Karunairetnam, Andrew C Allan, William A Laing. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase.
Plant biotechnology journal.
2012 May; 10(4):390-7. doi:
10.1111/j.1467-7652.2011.00668.x
. [PMID: 22129455] - Luis Izquierdo, Angela Mehlert, Michael A J Ferguson. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases.
Glycobiology.
2012 May; 22(5):696-703. doi:
10.1093/glycob/cws003
. [PMID: 22241825] - Soo Rin Kim, Suk-Jin Ha, Na Wei, Eun Joong Oh, Yong-Su Jin. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.
Trends in biotechnology.
2012 May; 30(5):274-82. doi:
10.1016/j.tibtech.2012.01.005
. [PMID: 22356718] - Bertalan Mesko, Szilard Poliska, Szilvia Szamosi, Zoltan Szekanecz, Janos Podani, Csaba Varadi, Andras Guttman, Laszlo Nagy. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis.
The Journal of rheumatology.
2012 May; 39(5):916-28. doi:
10.3899/jrheum.110961
. [PMID: 22467923] - Chunhong Liu, Jinkang Chang, Li Zhang, Jie Zhang, Shengyu Li. Purification and antioxidant activity of a polysaccharide from bulbs of Fritillaria ussuriensis Maxim.
International journal of biological macromolecules.
2012 May; 50(4):1075-80. doi:
10.1016/j.ijbiomac.2012.03.006
. [PMID: 22459924] - Chang-Eui Hong, Su-Yun Lyu. The antimutagenic effect of mistletoe lectin (Viscum album L. var. coloratum agglutinin).
Phytotherapy research : PTR.
2012 May; 26(5):787-90. doi:
10.1002/ptr.3639
. [PMID: 22084060] - Marya Ahmed, Ravin Narain. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems.
Biomaterials.
2012 May; 33(15):3990-4001. doi:
10.1016/j.biomaterials.2012.02.015
. [PMID: 22386601] - Aurélie Egert, Shaun Peters, Christelle Guyot, Bruno Stieger, Felix Keller. An Arabidopsis T-DNA insertion mutant for galactokinase (AtGALK, At3g06580) hyperaccumulates free galactose and is insensitive to exogenous galactose.
Plant & cell physiology.
2012 May; 53(5):921-9. doi:
10.1093/pcp/pcs036
. [PMID: 22437845] - Stephanie Barcelona, Danusa Menegaz, Ana Díez-Sampedro. Mouse SGLT3a generates proton-activated currents but does not transport sugar.
American journal of physiology. Cell physiology.
2012 Apr; 302(8):C1073-82. doi:
10.1152/ajpcell.00436.2011
. [PMID: 22301059] - Sandrina Silva, Patrícia M R Pereira, Patrícia Silva, Filipe A Almeida Paz, Maria A F Faustino, José A S Cavaleiro, João P C Tomé. Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties.
Chemical communications (Cambridge, England).
2012 Apr; 48(30):3608-10. doi:
10.1039/c2cc17561d
. [PMID: 22358391] - Lieve M L Laurens, Matthew Quinn, Stefanie Van Wychen, David W Templeton, Edward J Wolfrum. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification.
Analytical and bioanalytical chemistry.
2012 Apr; 403(1):167-78. doi:
10.1007/s00216-012-5814-0
. [PMID: 22349344] - Maurice H J Selman, Sanne E de Jong, Darius Soonawala, Frank P Kroon, Ayola Akim Adegnika, André M Deelder, Cornelis H Hokke, Maria Yazdanbakhsh, Manfred Wuhrer. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination.
Molecular & cellular proteomics : MCP.
2012 Apr; 11(4):M111.014563. doi:
10.1074/mcp.m111.014563
. [PMID: 22184099] - Zhi Huang, Xia-Fang Sheng, Fei Zhao, Lin-Yan He, Jing Huang, Qi Wang. Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium.
International journal of systematic and evolutionary microbiology.
2012 Apr; 62(Pt 4):971-976. doi:
10.1099/ijs.0.033043-0
. [PMID: 21669920]