(3S)-3-Methyl-2-oxopentanoic acid (BioDeep_00001868518)

Main id: BioDeep_00000003206

 

natural product


代谢物信息卡片


(3S)-3-Methyl-2-oxopentanoic acid

化学式: C6H10O3 (130.063)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCC(C)C(=O)C(=O)O
InChI: InChI=1S/C6H10O3/c1-3-4(2)5(7)6(8)9/h4H,3H2,1-2H3,(H,8,9)/t4-/m0/s1

描述信息

同义名列表

1 个代谢物同义名

(3S)-3-Methyl-2-oxopentanoic acid



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 BCAT1, CASP3, CAT, CIT, CRYZ, GCK
Peripheral membrane protein 2 ACHE, GCK
Endoplasmic reticulum membrane 2 PGAP2, PSEN1
Nucleus 5 ACHE, CASP3, CS, GCK, PSEN1
cytosol 8 BCAT1, CASP3, CAT, CIT, CRYZ, GCK, GHR, GPT
dendrite 1 PSEN1
centrosome 2 PSEN1, SLC16A1
nucleoplasm 4 BCAT2, CASP3, GCK, PSEN1
Cell membrane 4 ACHE, GHR, PSEN1, SLC16A1
Cell projection, axon 1 PSEN1
Cell projection, growth cone 1 PSEN1
Cytoplasmic granule 1 PSEN1
Early endosome membrane 1 PSEN1
Multi-pass membrane protein 3 PGAP2, PSEN1, SLC16A1
Golgi apparatus membrane 3 GCK, PGAP2, PSEN1
Synapse 3 ACHE, PSEN1, SLC16A1
cell cortex 1 PSEN1
cell junction 2 PSEN1, SLC16A1
cell surface 4 ACHE, ADIPOQ, GHR, PSEN1
ciliary rootlet 1 PSEN1
dendritic shaft 1 PSEN1
gamma-secretase complex 1 PSEN1
glutamatergic synapse 2 CASP3, PSEN1
Golgi apparatus 2 ACHE, PSEN1
Golgi membrane 4 GCK, INS, PGAP2, PSEN1
growth cone 1 PSEN1
lysosomal membrane 1 PSEN1
mitochondrial inner membrane 1 PSEN1
neuromuscular junction 2 ACHE, PSEN1
neuronal cell body 3 CASP3, GHR, PSEN1
postsynapse 1 PSEN1
presynaptic membrane 1 PSEN1
sarcolemma 1 PSEN1
smooth endoplasmic reticulum 1 PSEN1
synaptic vesicle 1 PSEN1
plasma membrane 6 ACHE, GCG, GHR, KNG1, PSEN1, SLC16A1
Membrane 8 ACHE, CAT, CIT, CS, GHR, PGAP2, PSEN1, SLC16A1
apical plasma membrane 1 SLC16A1
axon 1 PSEN1
basolateral plasma membrane 2 GCK, SLC16A1
extracellular exosome 6 CAT, CRYZ, CS, GPT, KNG1, SLC16A1
endoplasmic reticulum 2 ADIPOQ, PSEN1
extracellular space 7 ACHE, ADIPOQ, GCG, GHR, IGF1, INS, KNG1
perinuclear region of cytoplasm 1 ACHE
mitochondrion 7 BCAT1, BCAT2, CAT, CRYZ, CS, GCK, PSEN1
protein-containing complex 2 CAT, PSEN1
intracellular membrane-bounded organelle 2 CAT, SLC16A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 GHR
Secreted 6 ACHE, ADIPOQ, GCG, GHR, IGF1, INS
extracellular region 8 ACHE, ADIPOQ, CAT, GCG, GHR, IGF1, INS, KNG1
Mitochondrion matrix 1 CS
mitochondrial matrix 3 BCAT2, CAT, CS
Extracellular side 1 ACHE
nuclear membrane 1 PSEN1
external side of plasma membrane 1 GHR
Early endosome 1 PSEN1
Apical cell membrane 1 SLC16A1
Membrane raft 1 PSEN1
focal adhesion 1 CAT
Peroxisome 1 CAT
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 2 ADIPOQ, KNG1
lateral plasma membrane 1 SLC16A1
nuclear outer membrane 1 PSEN1
receptor complex 1 GHR
Cell projection, neuron projection 1 PSEN1
neuron projection 1 PSEN1
cytoplasmic ribonucleoprotein granule 1 GHR
Secreted, extracellular space 1 KNG1
blood microparticle 1 KNG1
Basolateral cell membrane 2 GCK, SLC16A1
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 GHR
endosome lumen 1 INS
side of membrane 1 ACHE
basal plasma membrane 1 SLC16A1
exocytic vesicle 1 IGF1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 GCG, INS, KNG1
platelet alpha granule lumen 2 IGF1, KNG1
kinetochore 1 PSEN1
transport vesicle 1 INS
azurophil granule membrane 1 PSEN1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
aggresome 1 PSEN1
synaptic cleft 1 ACHE
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 PSEN1
growth hormone receptor complex 1 GHR
[Glucagon-like peptide 1]: Secreted 1 GCG
catalase complex 1 CAT
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1
insulin-like growth factor binding protein complex 1 IGF1
insulin-like growth factor ternary complex 1 IGF1
[Growth hormone-binding protein]: Secreted 1 GHR
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Woong B Kwon, Kevin J Touchette, Aude Simongiovanni, Kostas Syriopoulos, Anna Wessels, Hans H Stein. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis1. Journal of animal science. 2019 Oct; 97(10):4282-4292. doi: 10.1093/jas/skz259. [PMID: 31410464]
  • Katsumi Shibata. Urinary Excretion of 2-Oxo Acids Is Greater in Rats with Streptozotocin-Induced Diabetes. Journal of nutritional science and vitaminology. 2018; 64(4):292-295. doi: 10.3177/jnsv.64.292. [PMID: 30175794]
  • Kurt Lächler, Janet Imhof, Michael Reichelt, Jonathan Gershenzon, Stefan Binder. The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant molecular biology. 2015 May; 88(1-2):119-31. doi: 10.1007/s11103-015-0312-3. [PMID: 25851613]
  • Claire L Boulangé, Sandrine P Claus, Chieh J Chou, Sebastiano Collino, Ivan Montoliu, Sunil Kochhar, Elaine Holmes, Serge Rezzi, Jeremy K Nicholson, Marc E Dumas, François-Pierre J Martin. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. Journal of proteome research. 2013 Apr; 12(4):1956-68. doi: 10.1021/pr400051s. [PMID: 23473242]
  • André Wajner, Cristiane Bürger, Carlos Severo Dutra-Filho, Moacir Wajner, Angela Terezinha de Souza Wyse, Clóvis Milton Duval Wannmacher. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex. Metabolic brain disease. 2007 Mar; 22(1):77-88. doi: 10.1007/s11011-007-9046-5. [PMID: 17295076]
  • Cláudia Funchal, Patrícia Fernanda Schuck, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Carmem Gottfried, Regina Pessoa-Pureur, Moacir Wajner. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Cellular and molecular neurobiology. 2006 Feb; 26(1):67-79. doi: 10.1007/s10571-006-9098-9. [PMID: 16633902]
  • Cláudia Funchal, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Ariane Zamoner, Carmem Gottfried, Moacir Wajner, Regina Pessoa-Pureur. Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells. Metabolic brain disease. 2005 Sep; 20(3):205-17. doi: 10.1007/s11011-005-7208-x. [PMID: 16167198]
  • Raquel Bridi, César A Braun, Giovanni K Zorzi, Clóvis M D Wannmacher, Moacir Wajner, Eduardo G Lissi, Carlos Severo Dutra-Filho. alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metabolic brain disease. 2005 Jun; 20(2):155-67. doi: 10.1007/s11011-005-4152-8. [PMID: 15938133]
  • Cláudia Funchal, Carmem Gottfried, Lúcia Maria Vieira De Almeida, Moacir Wajner, Regina Pessoa-Pureur. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia. 2004 Nov; 48(3):230-40. doi: 10.1002/glia.20072. [PMID: 15390119]
  • Cláudia Funchal, Franciele Dall Bello Pessutto, Lúcia Maria Vieira de Almeida, Priscila de Lima Pelaez, Samanta Oliveira Loureiro, Lilian Vivian, Moacir Wajner, Regina Pessoa-Pureur. Alpha-keto-beta-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. Journal of the neurological sciences. 2004 Jan; 217(1):17-24. doi: 10.1016/j.jns.2003.08.003. [PMID: 14675604]
  • Vilson de Castro Vasques, Melissa Avila de Boer, Felipe Diligenti, Fabrício Brinco, Fabrício Mallmann, Carlos Fernando Mello, Moacir Wajner. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacology, biochemistry, and behavior. 2004 Jan; 77(1):183-90. doi: 10.1016/j.pbb.2003.10.013. [PMID: 14724056]
  • Angela M Sgaravatti, Rafael B Rosa, Patrícia F Schuck, César A J Ribeiro, Clóvis M D Wannmacher, Angela T S Wyse, Carlos S Dutra-Filho, Moacir Wajner. Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochimica et biophysica acta. 2003 Nov; 1639(3):232-8. doi: 10.1016/j.bbadis.2003.09.010. [PMID: 14636955]
  • R Pessoa-Pureur, C Funchal, P de Lima Pelaez, L Vivian, S Oliveira Loureiro, R de Freitas Miranda, M Wajner. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metabolic brain disease. 2002 Jun; 17(2):65-75. doi: 10.1023/a:1015459910869. [PMID: 12083338]
  • A S Coitinho, C F de Mello, T T Lima, J de Bastiani, M R Fighera, M Wajner. Pharmacological evidence that alpha-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain research. 2001 Mar; 894(1):68-73. doi: 10.1016/s0006-8993(00)03321-7. [PMID: 11245816]
  • R G Tavares, C E Santos, C I Tasca, M Wajner, D O Souza, C S Dutra-Filho. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. Journal of the neurological sciences. 2000 Dec; 181(1-2):44-9. doi: 10.1016/s0022-510x(00)00402-0. [PMID: 11099711]
  • M Reis, M Farage, H Wolosker. Chloride-dependent inhibition of vesicular glutamate uptake by alpha-keto acids accumulated in maple syrup urine disease. Biochimica et biophysica acta. 2000 Jul; 1475(2):114-8. doi: 10.1016/s0304-4165(00)00069-6. [PMID: 10832024]
  • P Schadewaldt, H W Hammen, A C Ott, U Wendel. Renal clearance of branched-chain L-amino and 2-oxo acids in maple syrup urine disease. Journal of inherited metabolic disease. 1999 Aug; 22(6):706-22. doi: 10.1023/a:1005540016376. [PMID: 10472531]
  • P Schadewaldt, U Wendel, H W Hammen. Determination of R- and S-3-methyl-2-oxopentanoate enantiomers in human plasma: suitable method for label enrichment analysis. Journal of chromatography. B, Biomedical applications. 1996 Jul; 682(2):209-18. doi: 10.1016/0378-4347(96)00091-6. [PMID: 8844412]
  • M Wajner, J L Schlottfeldt, K Ckless, C M Wannmacher. Immunosuppressive effects of organic acids accumulating in patients with maple syrup urine disease. Journal of inherited metabolic disease. 1995; 18(2):165-8. doi: 10.1007/bf00711757. [PMID: 7564237]
  • L J Hoffer, A Taveroff, L Robitaille, O A Mamer, M L Reimer. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans. The Journal of nutrition. 1993 Sep; 123(9):1513-21. doi: 10.1093/jn/123.9.1513. [PMID: 8360777]
  • Y Matsuo, M Yagi, M Walser. Arteriovenous differences and tissue concentrations of branched-chain ketoacids. The Journal of laboratory and clinical medicine. 1993 Jun; 121(6):779-84. doi: NULL. [PMID: 8505589]
  • U Wendel, G Even, U Langenbeck, P Schadewaldt, W Hummel. Determination of (S)- and (R)-2-oxo-3-methylvaleric acid in plasma of patients with maple syrup urine disease. Clinica chimica acta; international journal of clinical chemistry. 1992 Jun; 208(1-2):85-91. doi: 10.1016/0009-8981(92)90024-k. [PMID: 1638756]
  • V Walker, G A Mills. Effects of birth asphyxia on urinary organic acid excretion. Biology of the neonate. 1992; 61(3):162-72. doi: 10.1159/000243739. [PMID: 1610944]
  • P Schadewaldt, C Dalle-Feste, U Langenbeck, U Wendel. Oral L-alloisoleucine loading studies in healthy subjects and in patients with maple syrup urine disease. Pediatric research. 1991 Nov; 30(5):430-4. doi: 10.1203/00006450-199111000-00007. [PMID: 1754297]
  • D Laouari, P R Parvy, M Burtin, C Kleinknecht, M Broyer. Optimal dietary substitution of racemic ketoanalogues for isoleucine in growing normal and uremic rats. The American journal of clinical nutrition. 1990 Jun; 51(6):1046-53. doi: 10.1093/ajcn/51.6.1046. [PMID: 2349918]
  • P Schadewaldt, H W Hammen, C Dalle-Feste, U Wendel. On the mechanism of L-alloisoleucine formation: studies on a healthy subject and in fibroblasts from normals and patients with maple syrup urine disease. Journal of inherited metabolic disease. 1990; 13(2):137-50. doi: 10.1007/bf01799676. [PMID: 2116545]
  • P Schadewaldt, K Beck, U Wendel. Analysis of maple syrup urine disease in cell culture: use of substrates. Clinica chimica acta; international journal of clinical chemistry. 1989 Sep; 184(1):47-56. doi: 10.1016/0009-8981(89)90255-6. [PMID: 2598467]
  • G J Kasperek. Regulation of branched-chain 2-oxo acid dehydrogenase activity during exercise. The American journal of physiology. 1989 Jan; 256(1 Pt 1):E186-90. doi: 10.1152/ajpendo.1989.256.1.e186. [PMID: 2912141]
  • P Schauder, K Langer, L Herbertz. [Plasma level of branched-chain amino and keto acids in healthy subjects after an intravenous dose of MCT/LCT or LCT]. Beitrage zu Infusionstherapie und klinische Ernahrung. 1988; 20(?):75-87. doi: NULL. [PMID: 3288190]
  • W D Rausch, K Schnecker, J Bruck, P Riederer. [Changes in organic acids in plasma and cerebrospinal fluid in cerebral infarct]. Infusionstherapie und klinische Ernahrung. 1987 Oct; 14(5):209-13. doi: . [PMID: 3679525]
  • M A Funk, K R Lowry, D H Baker. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts. The Journal of nutrition. 1987 Sep; 117(9):1550-5. doi: 10.1093/jn/117.9.1550. [PMID: 3116181]
  • M Walser, L M Swain, V Alexander. Measurement of branched-chain ketoacids in plasma by high-performance liquid chromatography. Analytical biochemistry. 1987 Aug; 164(2):287-91. doi: 10.1016/0003-2697(87)90494-5. [PMID: 3674376]
  • P Schauder, D Zavelberg, K Langer, L Herbertz. Sex-specific differences in plasma branched-chain keto acid levels in obesity. The American journal of clinical nutrition. 1987 Jul; 46(1):58-60. doi: 10.1093/ajcn/46.1.58. [PMID: 3300251]
  • F Fiaccadori, G F Elia, H Lehndorff, P Pizzaferri, G Pedretti. [Indications for the use of keto-analogs in internal medicine]. Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna. 1987 Apr; 2(2):143-9. doi: NULL. [PMID: 3079446]
  • C Demigné, C Rémésy, P Fafournoux. Respective contribution of plasma branched-chain amino acids and 2-keto acids to the hepatic metabolism of the carbon moiety of branched-chain amino acids in fed rats. The Journal of nutrition. 1986 Nov; 116(11):2201-8. doi: 10.1093/jn/116.11.2201. [PMID: 3794828]
  • J C Bode. [Branched-chain amino acids and their ketoanalogs: therapeutic uses in patients with chronic liver or kidney failure]. Der Internist. 1985 Jul; 26(7):388-98. doi: NULL. [PMID: 3897107]
  • R H Miller, A E Harper. Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney. The Biochemical journal. 1984 Nov; 224(1):109-16. doi: 10.1042/bj2240109. [PMID: 6508752]
  • M Walser. Rationale and indications for the use of alpha-keto analogues. JPEN. Journal of parenteral and enteral nutrition. 1984 Jan; 8(1):37-41. doi: 10.1177/014860718400800137. [PMID: 6366288]
  • R N Dalton, C Chantler. The relationship between branched-chain amino acids and alpha-keto acids in blood in uremia. Kidney international. Supplement. 1983 Dec; 16(?):S61-6. doi: NULL. [PMID: 6588270]
  • R N Dalton, C Chantler. Metabolism of orally administered branched-chain alpha-keto acids. Kidney international. Supplement. 1983 Nov; 15(?):S11-5. doi: . [PMID: 6368946]
  • H Tsuchiya, I Hashizume, T Tokunaga, M Tatsumi, N Takagi, T Hayashi. High-performance liquid chromatography of alpha-keto acids in human saliva. Archives of oral biology. 1983; 28(11):989-92. doi: 10.1016/0003-9969(83)90052-3. [PMID: 6581765]
  • O Yamada, M Shin, K Sano, C Umezawa. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1983; 53(2):192-8. doi: NULL. [PMID: 6885277]
  • P Schauder, D Matthaei, H V Henning, F Scheler, U Langenbeck. Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test. Klinische Wochenschrift. 1981 Aug; 59(15):845-9. doi: 10.1007/bf01721054. [PMID: 7021997]
  • S M Hutson, A E Harper. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. The American journal of clinical nutrition. 1981 Feb; 34(2):173-83. doi: 10.1093/ajcn/34.2.173. [PMID: 7211722]
  • O A Mamer, J A Montgomery, V Y Taguchi. Origin of the two peaks for 2-keto-3-methylvaleric acid produced by the oximation of the keto acids occurring in maple syrup urine disase. Journal of chromatography. 1980 May; 182(2):221-5. doi: 10.1016/s0378-4347(00)81626-6. [PMID: 7380914]
  • D Matthaei, P Schauder, P Kramer, K Grieben, F Scheler, A Mench-Hoinowski, U Langenbeck. Plasma keto-analogues in uraemic patients. Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association. 1979; 16(?):719-20. doi: NULL. [PMID: 549020]